

Large area micromegas detector for AMBER: lateral module prototype test

Chiara Alice

on behalf of AMBER-micromegas group University of Torino INFN Torino CERN

DRD1 collaboration meeting 10.12.2024

Chiara Alice - DRD1 collaboration meeting - 10.12.2024

AMBER experiment at CERN

AMBER experiment: SPS, North area, EHN2 hall

> **AMBER (NA66)** is a fixed target experiment at the M2 beam-line in the North Area of CERN. It is located in the same experimental hall (EHN2) in which COMPASS experiment was.

Physics program Phase-I

- Antiproton production cross-section for indirect Dark Matter search (APX)
- Proton radius measurement (PRM)
- Drell-Yan processes for Kaon and Pion PDFs (DY)

AMBER experiment at CERN

AMBER spectrometer

The former COMPASS spectrometer is being used for APX measurement and will undergo several **upgrades** for the mid- and long-term program.

AMBER experiment at CERN

AMBER spectrometer

The former COMPASS spectrometer is being used for APX measurement and will undergo several **upgrades –** for the mid- and long-term program.

Torino group is responsible for the Multi-Wire Proportional Chamber (**MWPC**) tracking stations and the **Rich Wall** Mini-Drift Tubes (MDTs) detector. Part of the MWPCs will be substituted by Micro-Pattern Gaseous Detectors (**MPGD**) to face their structural aging.

Introduction: LMM lateral module prototype

Chiara Alice - DRD1 collaboration meeting - 10.12.2024

Introduction: LMM lateral module prototype

Chiara Alice - AMBER collaboration meeting - 03.12.2024

Detector production

After PCB production the DLC deposition is performed followed by "bulkage" process

FR4 frame with cathode electrode

Diamond-like carbon (DLC) resistive layer: 10 $M\Omega/cm^2$ Mesh electrode high: 150 um

Micromegas detector assembled

Current leakage test carried out in the clean room before assembling.

Chiara Alice - DRD1 collaboration meeting - 10.12.2024

LMM test setup @ AMBER

LMM test setup @ AMBER

Beam test facilities

- GAS lines:
 - Ar/CO₂ 70/30 \rightarrow Rich Wall line
 - Ar/CO₂ 93/7 \rightarrow Gas bottle
 - Ar/CO₂/iC₄H₁₀(isobutane) 93/5/2 \rightarrow Gas bottle
- LV power supplies: KEYSIGHT E36313A
- HV power supplies: CAEN A18221HN (negative), CAEN A1560HDP (positive)
- NETGEAR 10Gb Network switch for data transmission.
- TIGER-based electronics:
 - \circ 6 front-end boards \rightarrow 2 TIGERs each \rightarrow 128ch/feb
 - \circ 3 GEMROCs DAQ modules \rightarrow capable to read 12 FEBs

9

CAEN

LMM test @ AMBER: HV stability

- drift electrodes stable up to 550 V
- Resistive X : stable up to 550 V
- Resistive UV: stable up to 500 V

LMM test @ AMBER: HV stability

LMM test @ AMBER: readout chain

Chiara Alice - DRD1 collaboration meeting - 10.12.2024

Chiara Alice - DRD1 collaboration meeting - 10.12.2024

example

TIGER_0_channel_26

Chiara Alice - DRD1 collaboration meeting - 10.12.2024

Chiara Alice - DRD1 collaboration meeting - 10.12.2024

Applying mapping it is even more clear

LMM test @ Torino: strip capacitance

LMM test @ AMBER: grounding enhancement

Grounding enhancement general operations (common for both GND scheme):

- Copper braids between FEBs and detector ground
- extra GND cables added on both TOP and BOTTOM side
- Aluminized Mylar wrapping \rightarrow particularly effective: copper stiplines shielding

Chiara Alice - DRD1 collaboration meeting - 10.12.2024

detector

LMM test @ Torino: HV stability

Ar/CO₂ 70/30

uA	550.0 V	549.9 V										
			On	On	1 Vps	10 Vps	1.0 sec	Low	0.000 uA	0.0 uA	POS	1000 V
uA	550.0 V	549.7 V	On	On	1 Vps	10 Vps	1.0 sec	Low	0.010 uA	0.0 uA	POS	1000 V
uA	300.0 V	299.9 V	On	On	1 Vps	10 Vps	1.0 sec	Low	0.004 uA	0.0 uA	NEG	1000 V
uA	300.0 V	299.9 V	On	On	1 Vps	10 Vps	1.0 sec	Low	0.004 uA	0.0 uA	NEG	1000 V
												1
	AU AU AU	uA 550.0 V uA 300.0 V uA 300.0 V	UA 550.0 V 549.7 V UA 300.0 V 299.9 V UA 300.0 V 299.9 V	UA SSU.0 V S43.7 On UA 300.0 V 299.9 V On UA 300.0 V 299.9 V On UA 300.0 V 299.9 V On	UA S50.0 V S49.7 V On On UA 300.0 V 299.9 V On On UA 300.0 V 299.9 V On On	ULA S50.0 V S49.7 V On On I Vps ULA 300.0 V 299.9 V On On 1 Vps ULA 300.0 V 299.9 V On On 1 Vps ULA 300.0 V 299.9 V On On 1 Vps	UA S50.0 V S49.7 V On On I Vps I 0 Vps UA 300.0 V 299.9 V On On 1 Vps 10 Vps UA 300.0 V 299.9 V On On 1 Vps 10 Vps UA 300.0 V 299.9 V On On 1 Vps 10 Vps	UA S50.0 V S49.7 V On On I Vps I 0 Vps I 0 sec UA 300.0 V 299.9 V On On I Vps 10 Vps 1.0 sec UA 300.0 V 299.9 V On On 1 Vps 10 Vps 1.0 sec UA 300.0 V 299.9 V On On 1 Vps 10 Vps 1.0 sec	ULA S50.0 V S49.7 V On On 1 Vps 10 Vps 1.0 sec Low ULA 300.0 V 299.9 V On On 1 Vps 10 Vps 1.0 sec Low ULA 300.0 V 299.9 V On On 1 Vps 10 Vps 1.0 sec Low ULA 300.0 V 299.9 V On On 1 Vps 10 Vps 1.0 sec Low	ULA S50.0 V S49.7 V On On 1 Vps 10 Vps 1.0 sec Low 0.010 UA 0 UA 300.0 V 299.9 V On On 1 Vps 10 Vps 1.0 sec Low 0.004 UA 0 UA 300.0 V 299.9 V On On 1 Vps 10 Vps 1.0 sec Low 0.004 UA	VIA S50.0 V S49.7 V On On 1 Vps 10 Vps 1.0 sec Low 0.010 uA 0.0 uA VIA 300.0 V 299.9 V On On 1 Vps 10 Vps 1.0 sec Low 0.004 uA 0.0 uA VIA 300.0 V 299.9 V On On 1 Vps 10 Vps 1.0 sec Low 0.004 uA 0.0 uA	VILA S50.0 V S49.7 V On On 1 Vps 10 Vps 1.0 sec Low 0.010 ua 0.0 ua POS VILA 300.0 V 299.9 V On On 1 Vps 10 Vps 1.0 sec Low 0.004 ua 0.0 ua NEG VILA 300.0 V 299.9 V On On 1 Vps 10 Vps 1.0 sec Low 0.004 ua 0.0 ua NEG

test setup in Torino

- drift electrodes stable up to 600 V
- **Resistive X** : stable up to 630 V
- **Resistive UV**: stable up to 630 V

 not totally clear why now the detector is more stable in terms of HV.
 currents drawn during rump up are comparable with the ones we had in October. RH + oxygen sensor system could be added to better understand the detector behavior

ch1

PS offset 9nA

PS accuracy ± 1nA

Front-end electronics: future ToRA-based FEE

Main characteristics:

- **To**rino **R**eadout for **A**MBER will be a 64 chs ASIC with a fully digital interface
- compatibility with MPGD and Wire chambers
- digital back-end inherited from ToASt ASIC (110 nm CMOS) to be adapted for ToRA v1 which will be implemented in 65 nm CMOS technology
- The ASIC front-end design development was done providing simulated signal with Garfield++ to optimize signal amplification and conditioning
- time schedule
 - ToRA v1 submission Feb 2025
 - ToRA readout chain design first GeneSys2 (Kintex-7 based) board ordered.

AMBER ToRA-based readout chain

Further activities and next steps

Summary

- ✓ LMM detector prototype: HV stability, noise study
 → proper complete characterization of the detector has to be addressed in the next months
- Validity of the mechanical elements, TIGER-based DAQ infrastructure, cooling system, data transmission proven

Next steps

- Test activities in Torino:
 - Grounding enhancement and shielding configurations
 - Analog readout tests with cremat/cividec pre-amp
- Test with VMM-readout at GDD lab @ CERN
- Design of the final mechanical suspension structure
- ToRA-based readout electronics design and development
 - Design of the ToRA v1 will be submitted in February 2025
 - R/O chain design to be start soon with the support of INFN-Torino electronics workshop

capacitance measurement test setup in Torino

Chiara Alice - DRD1 collaboration meeting - 10.12.2024

References

[1] Adams et al., Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS (COMPASS++/AMBER), 2019.

[2] Adams et al., COMPASS++/AMBER: Proposal for Measurements at the M2 beam line of the CERN SPS Phase-1: 2022-2024, 2019.

[3] M.G. Alexeev et al., Development of a Micromegas prototype for the AMBER experiment at CERN, NIMA, Volume 1049, 2023.

[4] C. Alice et al., Development and test of the Micromegas detector prototype and its readout electronics for the AMBER experiment at CERN, Journal of Instrumentation, 2023.

[5] Giomataris et al., MICROMEGAS: A High granularity position sensitive gaseous detector for high particle flux environment, Nucl. Inst. Meth. A, 1996.

[6] Rivetti et al., TIGER: A front-end ASIC for timing and energy measurements with radiation detectors, Nucl. Inst. Meth. A, 2019

[7] A. Amoroso, et al., The CGEM-IT readout chain, JINST 16 (2021) P08065. doi:10.1088/1748-0221/16/08/p08065

[8] A. Bortone, Deployment of the readout electronics for the BESIII Cylindrical GEM Inner Tracker, Ph.D. thesis, UniTO, 2021.

[8] F. Cossio, A mixed-signal ASIC for time and charge measurements with GEM detectors, Ph.D. thesis, PoliTO, 2019.

[9] G. Mazza et al., ASIC developments for the AMBER MM experiment, 2nd DRD1 collaboration meeting, 2024.

[10] M. Zemko et al., Free-running data acquisition system for the AMBER experiment, EPJ Web of Conferences 251, 04028 (2021)

Thanks for your attention!

Backup slides

TIGER bonded on PCB

Chip features:

- 64 channels
- Power consumption < 12 mW/channel
- Sustained event rate 100 kHz
- Input dynamic range up to 50 fC
- Time resolution < 5 ns

- ENC < 2000 e⁻ rms with 100 pF input capacitance
- Analog read out providing charge and time measurement
- Digital logic protected from single event upset (SEU)
- Tunable internal test pulse generator
- 110 nm technology

LMM lateral module detector prototype stackup

				I
material	Density [g/cm^3]	radiation lenght (from PDG) [mm]	<u>Stackup</u> X shielding and connector layer : 35um copper	
Cu	8.96	14.36	-3.2mm Glass epoxy X strip layer : 35um Copper -50um Prepreg	resistive X ───○ ~500V
Glass epoxy	1.98	159.3*	-50um Kapton X DLC layer -pillars 150um X mesh: 45/18	
Prepreg	1.47	354.9*	Drift gap : 5mm	drift X -300V
Kapton	1.42	285.7	Drift PCB: 500 um glass epoxy, 17 um Cu Drift gap: 5mm	drift -300V UV
photoresist	1	340.7	UV mesh: 45/18 -pillars 150um UV DLC layer	
DLC	3	121.3	-50um Kapton -50um Prepreg	
Stainless steel	7.93	14.22	-28um Prepreg V Layer: 17um copper -3.2mm glass epoxy	resistive UV
			UV bottom shielding and connector layer: 35um copper	

* from Radiation length of the ALICE TRD

LMM lateral module detector prototype weight

		X shielding and connector layer : 35um co	opper
	Densite	-3.2mm Glass epoxy	
material	Density	X strip layer : 35um Copper	
	[g/oin o]	-50um Prepreg	
Cu	8.96	-nillars 150um	
		X mesh: 45/18	
Glass	1.98		
ероху		Drift gap : 5mm	
Prepreg	1.47	Drift mesh : 45/18	
	1.10	Drift gap: 5mm	
Kapton	1.42	LL) (marks 45/40	
		D.V mesh: 45/18	
photoresist	1	LLV DLC laver	
		-50um Kapton	
DLC	3	-50um Prepreg	
		U layer: 35um Copper	
Stainless	7.03	-28um Prepreg	
steel	1.00	V Layer: 17um copper	
		-3.2mm glass epoxy	
		 U.V bottom shielding and connector laye 	er: 35um copper

Total mass first estimation: 7.812 kg

Cu:

SHIELDING x2: (0.0035*100*51.2)*2 cm3 = 17.92*2 cm3 X strips: (0.0035*100*25.6)cm3 = 8.96 cm3 U strips: (0.0035*100*32)cm3 = 11.2 cm3 V strips: (0.0017*100*32)cm3 = 5.44 cm3 Total copper = 550.5 g

Glass epoxy: **x2** (0.32*100*51.2)*2 cm3 =1638*2 cm3 Total glass epoxy = 6486.5 g

• Prepreg:

x2 (0.005*100*51.2)*2 cm3 = 25.6*2 cm3 ; **x1** (0.0028*100*51.2)cm3 = 14.336 cm3 Total Prepreg : 96.338 g

• Kapton:

x2 (0.005*100*51.2)*2cm3 = 25.6*2 cm3 Total Kapton: 72.704 g

- Photoresist (uniform layer approx): x2 (0.0150*100*51.2)*2 cm3= 65.536*2 cm3 Total photoresist: 127,072 g
- DLC: **x2** (0.01*100*51.2)*2 cm3 = 51.2*2 cm3 Total DLC: 307.2 g
- Stainless Steel (uniform layer approx): x3 (0.0018*100*51.2)*3 cm3 = 9.216*3 cm3 Total SS: 219.25 g

C. Alice - MM stackup weight and X0 - 17/10/2024

LMM lateral module detector prototype X0 calculation

material	Density [g/cm^3]	radiation lenght (from PDG) [mm]	Radiation length in composite materials: $1/X_o = \sum w_i/X_i$
Cu	8.96	14.36	X shielding and connector layer : 35um copper
Glass epoxy	1.98	159.3*	-3.21ml Glass epoxy X strip layer : 35um Copper -50um Prepreg -50um Kapton X DLC layer -pillars 150um
Prepreg	1.47	354.9*	X mesh: 45/18 Drift gap : 5mm
Kapton	1.42	285.7	Drift mesh : 45/18
			Drift gap: 5mm Rac
photoresist	1	340.7	UV mesh: 45/18 -pillars 150um UV DLC layer
DLC	3	121.3	-50um Kapton CU: -50um Prepreg
Stainless steel	7.93	14.22	-28um Prepreg V Layer: 17um copper -3.2mm glass epoxy UV bottom shielding and connector layer: 35um copper

w_i and X_i are the fraction by weight and the radiation length for the i-th element

Radiation length (avoiding pillars)

- FR-4 (PCB): 6.4/159.3 = 0.04
- Cu: 0.0157/14.36 = 0.001
- Prepreg: 0.0128/354.9 = 0.00004
- Kapton: 0.01/285.7 = 0.000035
- DLC: 0.002/121.3 = 0.00002

X₀≈4 %

BACKUP : Large area micromegas project: detector development

- AMBER MWPC stations are **structurally aged**. During last years we carried out a refurbishment campaign for MWPC-PB type.
- For AMBER mid and long-term program we decide to substitute a part of the MWPCs (PA-type) with a **micromegas** detector.

BACKUP: Large area micromegas project: detector development

Large-area micromegas design:

The large-area **MM detector** will be composed of three different modules covering a total active area of **1.5 m x 1 m**

1 m

LATERAL modules

•

modules 512 UV-strips

512 X-strips LATERAL

LATERAL modules

512 X-strips + 512

Backup slides: DY test run

For Drell-Yan test run (2026) definitive suspension structure + FEE should be finalized:

