WP7B

Timing (M)RPC I.Laktineh&I.Dappner

We share the same tasks as for MPGD but adapted to (M)RPC

Task ID	Task	Performance Goal	ECFA DRD Theme
T1	Optimize the amplification technology towards large-area detectors	Uniformity over m2 (time resolution, rate capability, efficiency)	
Т2	Enhance timing performance	Time resolution < 100 ps for large area detectors (> 1m x 1 m)	
Т3	Enhance rate capability	Time resolution < 200 ps with a few kHz/cm2	1.1, 1.3
Т4	Spatial resolution and read- out granularity	Spatial resolution of mm with low number of readout channels	
Т5	Stability, robustness and longevity	Uniform gain in time	
Т6	Material studies	 Radiation-hardness Longevity 	
Τ7	Gas studies for precise timing applications		
Т8	Modelling and simulation of timing detectors	Modelling and simulation of timing detectors	
Т9	Readout electronics for precise timing	 Low-noise FEE Large dynamic range – Fast rise time Multi-channel readout solution for timing detectors 	
T10	Precision mechanics and construction techniques	Precise mechanics (a few tens of μ m) over relatively large active areas (> 1 m ²)	
T11	Common framework and test facilities for precise timing R&D	Test bench for precise timing studies	

Milestones and Deliverables	Title	Description	Start Date	End Date
M7.B.1	Production of small MRPC with different technologies	Production of small detector O(10 cm) of 4-8 gaps prototypes using different technologies	0	12M
D7.B.1	Production of large MRPC with different technologies	Two techniques to build large 4-8 gap RPC will be used. One is using the standard fishing line-based method and the second is using home-made spacers. The two techniques will be worked out to ensure efficient gas circulation as well as gas tightness system. The cassette to host the detectors and their readout electronics with reduced dead zones will be also designed and produced.	12	24 M
M7.B.2	Review of timing readout electronics	Review of the needed electronics components to achieve 100 ps for strips and pad-like and performance comparison between direct and differential readout techniques.	12M	24M
D7.B.2	Production of large PCB of strip and PAD-based pickup configurations equipped with electronics able to reach better than 100 ps time resolution	To exploit the timing performance of MRPC, large PCBs hosting the strip or the PAD need to be designed and produced. These PCBs should be read out using a system equipped with Front-End electronics able to reach tens of ps time resolution and an acquisition system able to deal with a large amount of data. The possibility to reach sub- millimetre spatial resolution with the same readout electronics and adequate PCBs will be investigated	24M	36M
M7.B.3	Production of a small single cell MRPC with very high-rate capability	Conception and construction of a small MRPC using low resistive material to achieve high rate detection capability with excellent time resolution	0	18M
D7.B.3	Production of a stable (single cell) MRPC with very high-rate capability (> 50 kHz/cm2) and time resolution better than 100 ps	The MRPC developed in the task will use low resistivity material and thin gas gap to achieve both high rate and excellent time resolution. This intends to provide T0 for ToF-based PID system in fixed target experiments and colliders. It will also be used as a reference for high rate and detector test	18M	36M
M7.B.4	Construction of small double-gap RPC	The goal is to build a few small double-gap RPC featuring time resolution better than 200 ps.	0	18M
D7.B.4	Construction of large-area double-gap RPC with a time resolution better than 200 ps	we aim to develop a large area standard single/double gap RPC with O(200 ps) by optimizing the gas gap thickness and the gap assembly procedures. To achieve high efficiency, dedicated low threshold readout should be implemented	18M	36M
M7.B.5	Tests of small (M)RPC chambers with eco-friendly gas mixtures	The goal is to validate the performances of the new chambers and their electronics using eco-friendly gases	12M	24M
D7.B.5	Timing and spatial resolution studies versus different gas mixtures	The different kinds of (M)RPC developed in the previous tasks will be thoroughly tested to validate their performances. This concerns the so-called standard gas mixture (TFE, Isobutane/CO2, SF6) but more importantly the gas mixtures using eco-friendly gases studying the impact of the latter on the detector performances	24M	36M

Internal organization

Deliverables responsibilities

- **WP47B.1**: Alberto Bianco, Natsuki Tomida
- WP47B.2 : Weihao Wu
- WP47B. 3: Ingo Deppner
- □ WP47B.4 : Daryon Ramos Lopez
- □WP47B.5 : N.A (can wait)

Several meetings: one with results already obtained within WP7B. Others will come soon.

https://indico.cern.ch/event/1405493/

New comers

We were joined by: RCNP, Kyoto Sangyo (Kyoto) and Academia Sinica and NCU (Taiwan)

Conclusion

D7B.1:no show stopper. Several groups have started to conceive and build large (M)RPC detectors with spacers and fishing lines

D7B.2: Several groups have started to design large ASU to host timing readout electronics with pads. Strips-based PCB is no issue (CMS iRPC like). The readout electronics will be common with WP5 and DRD6

D7B.3: High rate MRPC is challenging but with new low resistivity materials like Tsinghua glass this is rather achievable in the two coming years

D7B.4: double-gap with thin gas gap with better than 200 ps has already nice results

D7B.5: new eco-friendly gases are been tested in (M)RPC to assess their impact on timing. When large detectors equipped with timing electronics will be ready the tests will be completed.

WP7B deliverables are achievable within 3 years starting from January 2025