Simulation studies of PID for the CEPC TPC

Guang Zhao, Yue Chang, Linghui Wu, Huirong Qi

zhaog@ihep.ac.cn

DRD1 3rd Collaboration Meeting

Institute of High Energy Physics Chinese Academy of Sciences

Outline

- Introduction
- Simulation of Pixelated TPC
- PID Performances
- Summary

Circular Electron Position Collider (CEPC)

- The CEPC was proposed in 2012 right after the Higgs discovery. It aims to start operation in 2030s, as an e⁺e⁻ Higgs / Z factory
- To produce Higgs / W / Z / top for high precision Higgs, EW measurements, studies of flavor physics & QCD, and probes of physics BSM.

CEPC 4th Concept Detector

Performance requirements

Sub-system	Key Specifications	
Vertex	$\sigma_{r_{\varphi}} \sim$ 3 $\mu m,~\text{X/X}_{0} < 0.15\%$ per layer	
Tracking	$\sigma\left(\frac{1}{P_T}\right) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{P \times \sin^{3/2}\theta} (GeV^{-1})$	
Particle ID	Relative uncertainty ~ 3% σ(t) ~ 30 ps	
EM calorimeter	EM resolution ~ $3\%/\sqrt{E(GeV)}$ Granularity ~ $1 \times 1 \times 2 \text{ cm}^3$	
Hadron calorimeter	Support PFA jet reconstruction Single hadron $\sigma_E^{had} \sim 40\% / \sqrt{E(GeV)}$ Jet $\sigma_E^{jet} \sim 30\% / \sqrt{E(GeV)}$	

4th concept baseline

CEPC Baseline Gaseous Detector: TPC

Pixelated TPC:

• High-performance particle identification and high-precision tracking

TPC Parameters			
Radius		0.6 – 1.8 m	
Half length		2.9 m	
Readout size		0.5 x 0.5 mm ²	
Total # of channels		$2 \times 3 \times 10^{7}$	
Material budget (barrel/endcap)		0.59 % / 15% X ₀	
PID Performance	K/π separation @ 20 GeV/c	3.0 σ	
	Resolution	3 %	
Tracking Performance: $\sigma_{1/p_T} = \sqrt{a^2 + (b/p_T)^2}$		$a = 1.9 \times 10^{-5}$ $b = 0.8 \times 10^{-3}$ (3T field)	$a = 3.3 \times 10^{-5}$ $b = 1.5 \times 10^{-3}$ (2T field)
			5

PID is important for CEPC physics

Decent PID is required

- For flavor physics, PID is essential especially for measurements involving B/D mesons...
- For identification of jet origin, PID can influence all physics measurements with hadronic final state

Benchmark channel: $B^0_{(s)} \rightarrow h^+ {h'}^-$

Ionization measurement in TPC

dE/dx (traditional method):

- **Method:** Total energy loss measurement by integrating the energies in large pads
- Characteristics:
 - Large fluctuations from energy measurements, amplification, secondary ionizations, etc

dN/dx or cluster counting ("ideal" method):

- Method: Number of primary ionization cluster measurement, requiring high granularity readout
- Characteristics:
 - Small fluctuation (resolution potentially improved by a factor of 2)

dN/dx vs. dE/dx

• Definition: $\frac{\text{separation}}{\text{resolution}} = \frac{|\mu_A - \mu_B|}{(\sigma_A + \sigma_B)/2}$

dN/dx has much better PID power than dE/dx dN/dx represents a breakthrough in PID

Full Simulation Framework

Simulation:

- Full geometry TPC
- Ionization generation by Heed

Digitization:

- Amplification:
 - Amplification factor (# of e⁻): 2000
 - Signal width in space: RMS = 15 um
- Electronic noise: $RMS = 100 e^{-}$ / channel

Geometry and gas mixture

- Full TPC: Radius (0.6-1.8 m), half length (2.9 m)
- Magnetic field: 3T/2T
- Gas mixture: T2K (Ar/CF₄/iC₄H₁₀: 95/3/2)
 - High drift velocity (70 μm/ns)
 - Low transvers diffusion (30 μm/sqrt(cm))
 - High cluster density (~37 cls/cm)

TPC Geometry and event display

Ionizations

- Ionizations are simulated by Heed
- Gas mixture is T2K: Ar/CF₄/iC₄H₁₀ (95/3/2)
- Cluster density: ~37 cls / cm or ~1.8 cls / pixel

- Electron drift and diffusion is parameterized from Garfield++
- The pixel readout could achieve better hit resolution with reasonable clustering

Amplification: Single electron \rightarrow Avalanche electrons

- Amplification factor f_{amp} (# of electrons): x 2000
- Signal width σ_{amp} : 15 µm

Amplification

Pixel readout

Pixel size:

- Current choice: 0.5x0.5 mm²
- Need further optimization

Electronics noise:

• Single channel noise: RMS = 100 e⁻

-7.50

-8.00 -7.75

-7.25 -7.00

x (cm)

-6.75 -6.50

-6.25

- 0

BCD

drift & diffusion

amplification

Reconstruction

Goal: Pixel responses → Ionizations

Principle: The ionization is proportional to

- # of primary electrons (dN/dx) → Count pixels
- Total energy depositions (dE/dx) → Sum charges

Method:

- Layered measurement
- Truncated mean to reduce the secondary ionizations

Reconstruction (2)

Algorithm:

- Divide the readout into layers
 - Pixels per interval in each layer: *N_{layer}*
- Measure R_i in each layer:
 - **dN/dx:** Count the # of fired pixels
 - **dE/dx:** Integrate the charge
- Calculate the truncated mean

•
$$\langle R \rangle_a = \frac{1}{M} \sum_{i=i}^M R_i$$

• Here $R_i \leq R_{i+1}$ for i = 1, ..., n-1 and M is an integer $M = aN_R$

PID performance

 K/π separation power

Separation Power =
$$\frac{|\mu_A - \mu_B|}{(\sigma_A + \sigma_B)/2}$$

For 0.5x0.5 mm² pixel TPC:

- dN/dx is generally better than dE/dx
- dN/dx or dE/dx is much better than dE/dx in 1x6 mm² pad TPC
- $3\sigma K/\pi$ separation can be achieved at 20 GeV/c

PID performance (2)

Pion resolution

dN/dx resolutions are better than 3%

•

Summary and outlook

A Garfield++-based full simulation framework is developed for the CEPC TPC study

PID performance generally satisfies the CEPC requirements with a pixel size of 0.5x0.5 mm²

• K/π separation > 3σ for momentum within [2, 20] GeV/c

dN/dx resolution < 3%</p>

There is room to further improve the PID

- Pixel size optimization
- More sophisticated reconstruction/calibration
- Combine dN/dx and dE/dx

Summary and outlook

Plan of the testbeam validation

- R&D on pixelated TPC readout is ongoing
- Testbeam at DESY is in preparation (early 2025)

Chip testing is done

DAQ firmware development is ongoing

TPC modules assembled for the testbeam

Backup

Particle Separation Power (MC truth)

Simulating pion/kaon within [0.1 - 20] GeV/c in T2K gas

- The performance of particle separation power is proportional to the difference in the average ionization
- The relative ionization of different particle species depends on the momentum
- Cluster counting exhibits excellent potential for particle identification

PID Performance (3T and 2T fields)

Parameters optimization

Figure of merit: K/π separation power @ 20 GeV

PID performance (3)

Discussions:

- The dN/dx with small pixels are better than the dE/dx with large pads
- The performance degrades when considering detector/electronics responses
- Diffusion and secondary electrons could worsen the performance significantly.
 - ➔ More sophisticated algorithm