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Longevity studies for (wired) detectors

ageing is a well known potential problem of all gaseous detectors
(summary by F. Sauli at Ageing Phenomena - 2023)

the nature of the ageing phenomena is chemical reactions between molecules of the detector
material and/or gas mixture in plasma conditions of the avalanche (or other) discharges

there is no strict theory of detector ageing processes, but quite a lot of proved empirical
experience

there are two directions in longevity studies

* methodological - direct studies of ageing effects in their correlation to the gas and detector materials
and to the detector operation condition
Large contribution by CERN during the detector construction phase of LHC experiments
- for example, in this overview (and many others)
» practical - pre-production longevity tests for a given detector kind/chosen material/gas/gas equipment
etc
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https://indico.cern.ch/event/1237829/contributions/5637193/attachments/2746235/4778596/AGING%20FOR%20DUMMIES.pdf
https://indico.in2p3.fr/event/10020/sessions/13/attachments/118/278/11_CAPEANS_WS_Orsay_V2.pdf

Detector operafion time

* Upon given conditions, the number of “operation cycles” of the detector is defined by the
number of avalanche discharges, and the operation time is defined by the integral of the
detector current, or so-called “accumulated charge”

* If the irradiation is uniform (GIF++ :), the characteristic value is the charge per anode
wire length for wired detectors, or charge per unit of the detector area for wireless
detectors

* For non-uniform irradiation (local irradiation with laboratory radioactive source) it is
important (and a bit conditional...) to define the size of the irradiation spot to characterize
the accumulated charge



Can be defined different ways

e MC

Local irradiation — definition of the irradiation zone

BUZOVERIA et al.
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e Measurements

* Usually no way to use electronics read-out due to too high rate
e Current measurement - if possible (for example, CSC:)
* Emulsions? Other detectors?
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Accelerated longevity tests

* Upon given conditions, the number of “operation cycles” of the detector is defined by the number of avalanche
discharges...

* We never have possibility to perform one-to-one irradiation study
* Have to irradiated with higher intensity (so-called accelerated longevity test)

* Many factors will influence reliability of the (always!) accelerated longevity test. Just some of them:

* Even if the production of the reactive radicals/ions/molecules is proportional to the irradiation intensity (not
always), the distribution of their concentration (non-uniform!) depends on... presence of other
molecules/ions/radicals (recombination), gas flow, electrical field, etc (can not be avoided)

» Sometimes the high irradiation intensity results in presence of the space charge > lower gas gain > different
distribution of the reactive species around the anode wire (can be checked and, probably, avoided)

* Some of the detectors have relatively large resistance in the HV circuit and high irradiation current causes the

voltage drop changing the actual operation voltage (can be easily avoided)
5



Accelerated longevity tests

Gas gain and space charge effects in aging tests of
Relative gas gain along the straw
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Fig. 6. The gas gain distribution across the beam profile. The
beam profile was studied by measuring the irradiation current
density for different straw position across the beam. Gray
background labels two zones where the LSM can appear.


https://www.sciencedirect.com/science/article/pii/S0168900203024823?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900203024823?via%3Dihub

How scaling for longevity tests works?

* But even if we don’t have the space charge, irradiate at the nominal gas gain and use a
moderate acceleration factor... Still, can we scale?

* Primitively, just considering the reaction rate law:

Reaction aA+bB-...
rate = k(T) [A]"[B]™, but n and m depend on the reaction and has to be defined experimentally

* What about plasma conditions?..

* Probably comparative studies to choose the detector material and gas still can be performed
with relatively large acceleration factors? ... but at least at the same conditions.

* However, the final pre-production longevity test have to be performed with the smallest
reasonable acceleration factor



What about the gas flow?

* We never can do accelerated aging test for the conditions identical to the operational. In
this case we should choose the worst conditions

* “identical conditions” for volume scaling (small prototype studies) = the same replenishment
rate (what about the local irradiation? :)
* Are there “identical conditions” for the accelerated irradiation?

* What we expect more from the gas flow?
* To bring potentially dangerous outguessing/permeability products inside the gas volume?
* Scaling the replenishment rate with the irradiation acceleration factor may be the
solution
* To remove dangerous products from the irradiation zone?
* Keeping the same replenishment rate may be the solution

 Still should be some reasonable limits...
* If possible, several gas flow values can be tested 8



What about the gas flow?
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Longeviétzy tests with small CMS CSC prototype
Acceleration factor (source spot) - more than 1000!
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Fig. 16. Relative gas gain versus accumulated charge at points 1, 2 (top) and 3, 4 (bottom).

Actual CMS CSC - 3(4) chambers per
line, replenishment - 4V/day


http://dx.doi.org/10.1016/S0168-9002(02)00400-X
http://dx.doi.org/10.1016/S0168-9002(02)00400-X

Parameter monitoring during irradiation fests

 Basic detector characteristics (both lab and pre-production tests)
* Gas gain (absolute or relative)
pressure/temperature dependent => relative wrt reference points/chamber/gaps
* Dark current, dark rate
 Current instabilities (Malter current ) (lower intensity)
* CSC: resistance between strips

» Operation characteristics (pre-production tests, better if with the original electronics)

* Efficiency
 Spatial/time resolution
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Gas gain monitoring during irradiation
CMS-CSC talk at ICPPA-2024 CMS-CSC example
Full-scale chamber irradiation at GIF++ - detector current
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https://indico.particle.mephi.ru/event/436/contributions/4230/attachments/2507/4700/V._Perelygin_ICPPA-2024_report_final_v4.pdf
https://indico.cern.ch/event/782953/contributions/3482451/attachments/1888308/3114226/20190801-DPF2019-ALW-final.pdf

CMS-CSC talk at ICPPA-2024

Performmance monitoring at GlF++ fest beam
CMS-CSC examples

Full-scale chamber irradiation at GIF++ - detector current

monitoring
Muons only
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Material analysis affer the irradiation
comparative studies with CSC prototypes CMS_CSC m ples

Comparison of chamber material
after irradiation tests with 0,2 and 5%
CF4 - usual set of material analysis -
visual inspection, SEM/EDS (CERN-
MME-MM)

But how to make them quantitative
or at least comparable?

Distribution of C along the wire length
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https://inspirehep.net/files/b4249f34857aa6a5510faa6e3a108db8

summary

Only reasonable methodology can provide adequate results - but still not a guarantee!!
(usually a safety factor ~3 is considered to make the longevity prediction more reliable)

There are quite a lot of studies and results, especially from the LHC experiment
construction time, and quite a lot of new experience

Close communication with chemists may be very useful not only in explaining the
longevity test results but also for better organization of irradiation test

Intensive experience exchange is very helpful!

DRD1 R&D Collaboration

Development of Gaseous Detectors Technologies
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While we study
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detectors ... -
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... its effects may N
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elsewhere l ﬂ
Don't wait too long!!!
@ M. Bianco, 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detector, 6th-10" Nov 2023 CERN 22
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Dry Etching Spectrum

Pressure Ion Energy
Physical (Sputtering) .
Low Directional 1 ngh
<50 mTorr Poor Selectivity
Radiation Damage Possible
Reactive Ion Etching
100 mTorr Physical and Chemical
Variable Anisotropy
Variable Selectivity
—
400 mTortt Chemical Plasma.Etchmg
A Fast, Isotropic Low
High v High Selectivity

Low radiation Damage

Philip D. Rack University of Tennessee

CF4 and dry etching

Not really the same
But can we learn something from them?

In a very naive consideration...

Basic Principle of Plasma Etching

CF4 is inert gas (Freon 14)

add electron impact:

CF,+e =>CFg++F +2e

CF,+e = CF;+F +e

To produce chemically reactive
fluorine radicals. Then at the
surface:

Si + 4F => SiF, (gas)

(Dissociative lonization)

(impact dissociation)

F
| |

Silicon

Philip D. Rack University of Tennessee
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A combination of tools, approaches and models

* (1) description of the reactor and temperatures

4
7 (cm)

FIG. 2. (a) Electrostatic potential (in V) and (b) electron temperature (in eV)
obtained for the gas pressure of 20 mTor, discharge power of 100 W, CF,/O,/Ar
ratio of 70:5:25, and gas residence time of 0.01s.

* (2) a process model and reaction rates
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dry eftching simulation

ARTICLE avs.scitation.org/journal/jvb

Computational study of plasma dynamics and
reactive chemistry in a low-pressure inductively
coupled CF,/O, plasma

Cite as: J. Vac. Sci. Technol. B 39, 042202 (2021); doi: 1
Submitted: 15 March 2021 - Accepted: 2 June 2021 -
Published Online: 29 June 2021

Optimization of silicon etch rate in a CF,/Ar/
O, inductively coupled plasma

Dmitry Levko, > © Chandrasekhar Shukla,’ Rochan
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dry etching simulation

Computational study of plasma dynamics and

e (3) densities and fluxes

e Electron drift + diffusion reactive chemistry in a low-pressure inductively
 lon drift

coupled CF,/O, plasma

Cite as: J. Vac. Sci. Technol. B 39, 042202 (2021); doi: 1

E3 8 Submitted: 15 March 2021 - Accepted: 2 June 2021 - Optlmlzatlon Of SIIIcon etCh rate ina CF4/Ar/

Published Online: 29 June 2021 02 inductively coupled plasma

Dmitry Levko,"” @ Chandrasekhar Shukla,' Rochan

Fita ac; 3. Vac. Sci. Technol. B 40, 032203 (2022); https://doi.org/10.1116/6.0001745
tted: 11 January 2022 « Accepted: 24 March 2022 « Published Online: 18 April 2022
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