Readout electronics of the TGC detectors in ATLAS

Arisa Wada, Luca Moleri 11 Dec. 2024 3rd DRD1 Collaboration Meeting

ATLAS detector

Thin Gap Chamber (TGC)

Quarter-cut view of the ATLAS detector

2/16

Thin Gap Chamber (TGC)

- Multi-wire proportional chamber
 - CO2 : n-pentane (55:45)
 - supply 2.8 kV for anode wire

Feature

- 2D position (R, ϕ) measurement using anode wire and cathode strip
- thin gas gap (~2.8 mm)
- fast time response ($\lesssim 25$ ns)
- Role
 - Endcap muon trigger
 - Associating muons with proton-proton collisions
- Work stable from Run 1 to Run 3

 $\frac{2}{16}$

TGC Phase II upgrade overview

• The Phase II upgrade for the HL-LHC, starting in 2030, is planned

- instantaneous luminosity: 7.5×10³⁴ cm⁻²s⁻¹
- integrated luminosity: 4000 fb⁻¹
- To achieve high acceptance in high-luminosity environments, upgrades to the trigger, readout circuits, and detectors are required

TGC readout electronics at HL-LHC

The Phase 2 trigger readout uses 4 readout circuits.

Amplifer Shaper Discriminator Board

- amplifies and discriminates TGC hit signals
- converting to LVDS digital signals

Patch-Panel ASIC and Sender Board

• adjusts timing and sends all hit data every 25 ns

JTAG Assistance Hub (JATHub board)

• Monitor the FPGA on the PS board and recover from errors

Sector Logic Board

- Aggregates hit information from multiple muon detectors
- · reconstructs tracks, calculates transverse momentum, and reduces muon candidates to six

Amplifer Shaper Discriminator Board (ASD board)

- The hit signal is amplified by a factor of 7 in the main amplifier.
- The threshold voltage is supplied from the DAC and compared with the signal.
- The external threshold input is set to half the value and used as the comparator threshold
- 16 channels per board

Patch-Panel ASIC and Sender Board (PS board)

- Equipped with 8 PP ASICs and 1 FPGA
 - 32 channels for each PP ASIC
 - 256 channels for each PS board
- PP ASIC
 - apply a fine delay to each signal to compensate for the differences in cable lengths and adjust the timing of the signal (Bunch Crossing Identification)
 - synchronize signals with the LHC clock (40 MHz)
- Sends all TGC hit data to subsequent circuits ever 25 ns via two 8 Gbps GTX transceivers

7/16

JTAG Assistance Hub (JATHub board)

- Independently from the data path, the PS board handles the control
 - One JATHub is connected to up to 11 PS boards via Cat 6 cables with RJ45 multi-jacks
- PS board is installed in a location that is difficult to access
 - FPGA firmware configuration, handling SEU errors due to radiation damage, and monitoring the clock phase on the PS board are performed through JATHub
- Equipped with the Xilinx Zynq-7000 (integrated CPU and FPGA)

Sector Logic Board (SL board)

- Includes high-capacity optical communication modules an FPGA, and mezzanine cards
 - Equipped with 10 Firefly modules for both transmission and reception
 - Capable of 120 optical communication links
- FPGA
 - Calculate p_T using TGC hit data and information from other muon detectors
 - Stores and transfers data for which a trigger has been issued to the subsequent stages
- MPSoC
 - Operate the registers inside the SL FPGA to configure parameters related to triggering and readout
- IPMC
 - Monitor SL voltage and temperature and remotely control power through the IPMC from the ATCA crate

Background suppression by EIL4 TGC

- Truth muons enter the EIL4 from the interaction point and pass through the end-cap TGC
- To suppress fake muon by taking coincidence with End-cap TGCs
- It plans to upgrade and early install the ATLAS detector this week
 - 4 chambers (Normal ×2, Special ×2)
 - Normal: 32 channels
 - Special: small chamber, 21 channels
- We evaluated three chambers

11/16

Changes to the EIL4 TGC

Until 2025 (end of Run 3)

- Two detection layers (doublet)
- Requires hits in at least one of the two layers, but only in areas where both layers are operational.
- Read out the OR of 8 channels

From 2029 (start of HL-LHC)

- Three detection layers (triplet)
- Triple-layer structure fits within the same envelope as the previous doublet
- Hits in at least two of the three layers are required.
- Read out each channel individually
- Robustness allows operation as a doublet even if one layer fails.

EIL4 DAQ system for evaluation

Using phase II trigger readout electronics for the evaluation

- ASD board, PS board, JATHub
- Trigger logic using TGC hits added in JATHub for data taking of cosmic muons

12/16

Noise rate of normal chamber

- The hit data was taken with random trigger (11 kHz)
 - Module 1: 11k events
 - Module 2: ~1M events
- The ASD discriminator threshold (Vth) scanned
- Using CO2 gas

Nominal Vth at Point 1: 60 mV (wire), 70 mV (strip) with exceptions (up to ~300 mV) for ~1% chambers

Zero occupancy	Module 1	Module 2
wire	Vth \geq 20 mV	Vth ≧ 20 mV
strip	Vth \geq 90 mV	Vth \geq 60 mV

Noise level fine for the operation

Efficiency of normal chamber

- The data taken when at least two layers have a hit
- Using cosmic muon and Vth = 100 mV (low noise but still fine for minimum ionizing particles)
- Nominal gas CO2+n-pentane and nominal HV (2.8 kV) supplied
- The efficiency for the layer 1 was evaluated by:

Efficiency = $\frac{(\text{Number of events with hits on layers 0, 1, and 2)}{(\text{Number of events with hits on layers 0 and 2)}$

```
Module 1: (94.0±0.1)% (wire), (92.2±0.1)% (strip)
Module 2: (93.8±0.1)% (wire), (93.3±0.1)% (strip)
```


Summary

- In the ATLAS experiment, the TGC is responsible for the muon trigger
- With the Phase II upgrade, both TGC and the trigger DAQ circuits will be updated.
 - Many readout circuits will use SoC, allowing high data collection with good acceptance even in high-luminosity environments
- The EIL4 TGC will have 3 detection layers instead of 2, making it more robust
 - Performance evaluations were conducted using several circuits for Phase II TDAQ
 - Both noise and efficiency were confirmed to be within acceptable limits for operation