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Signals in Resistive Plate Chambers
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Generally the growth of ONE avalanche in a Resistive Plate Chamber is
schetched like in the following, containing a part of exponential growth and one 
of saturation because of space charge effects:

Exponential growthxsat

Saturation

“Drift”

The induced charge on a planar readout electrode is usually written as:
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Of course the second term depens on how the saturation effects are modelled.



Signals in Resistive Plate Chambers
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If one considers all clusters, in number ncl , each containing n0
j electrons, 

generated by the passage of one ionizing particle through the gas gap, of width
g, the induced current iind(t) can be usefully expressed as:

Here, we neglect saturation effects (correct if we consider the initial stages of 
the avalanches), and:

✓ vd is the electron drift velocity (assumed constant with time);
✓ Ew is the weighting field (assumed uniform in space);
✓ η is the first effective Townsend coefficient
✓ Mj is the avalanche fluctuation coefficient
✓ t is the time elapsed since the passage of the ionizing particle



Signal fluctuations in RPC
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ALL quantities in the red boxes are stochastic variables, namely they change from 
event to event; in particular:
✓ ncl follows a Poisson distribution
✓ n0

j depends strongly on the gas used, generally a 1/n2 distribution for small n 
is used, followed by a long tail toward large n-values.

✓ Mj is described by different distributions depending on the approach used: 
usually, for small avalanches, a Furry’s law is used, for larger avalanches
generally a Polya distribution with a suitable value of the parameter is chosen. 

The fact that the induced current contains stochastic variables has the 
consequence that it changes from event to event. 
→ These fluctuations cannot be eliminated.



Signal fluctuations in RPC
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Note that the number of clusters ncl(t) in the gas at a certain time t, is
monotonically decreasing with time, due to the fact that, with time, more and 
more avalanches arrive onto the anode and stop.
✓ Due to the fact that their initial positions are, themselves, stochastic variables, 

this adds up a «hidden» cause for fluctuations.
✓ In the initial phases of the avalanches, ALL clusters are drifting (and 

avalanching).

Vice versa, the induced charge, which is another quantity typically measured, 
depends mainly on the cluster closest to the cathode:

≈ 0.02 is the average ratio between the charge induce by two
consecutive clusters

Note that, at a certain time t, ALL clusters contribute at the same way to the 
induced current.



Signals after readout electronics
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Considering the electronics, the output of a perfect voltage amplifier can be 
usefully written like:

where:
✓ P1 is the amplification factor
✓ Rin is the input impendance
✓ ½ takes into account that usually strips are used.

In the case of charge sensitive amplifiers:

where:
✓ P2 is the amplifiers charge sensitivity.



Origin of timing
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Generally we are interested to the time tthr when vout(t) becomes larger than a 
certain electronics threshold Vthr. The most logical thing to do would be invert
the expression:

where λ is the primary cluster density (# cluster/mm).

➢ This is not possible because of the dependance of ncl(t) over t.
On the average, however:

Also:
➢ Mj has average 1 (by definition)
➢ n0

j average depends on the gas



The «average» signal
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Therefore, we can re-write the previous formula for the «average» signal as:

where:

B is the average value of n0
jMj (Mj has average value 1).

Comparison between
«average» and 
«exact» formula (one 
instance)

Initial phase, typical
zone of interest



Inverting the «average» signal
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Not even this simplified expression can be directly inverted, because of the 
contemporary presence of the exponential and linear terms in t:

However, we can take the logarithm of both terms, and expand the logarithm
at the right of the equal sign (stopping at the second power):

This is equivalent to approximate, in the initial stages of the avalanche as:

where R = ½ P1 Rin



Inverting the «average» signal 2
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THIS expression can be easily inverted, to obtain, for v(t)=vthr:

in the linear approximation, and, for the quadratic approximation: 

The time tthr at which the signal overcomes the threshold is inversely
proportional to vd, inversely proportional to η – 1/g, and only logarithmically
dependant on λ, g and vthr (and R, A and B).



Timing fluctuations in RPCs
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Moreover, from the expression (modified exploiting the fact that «ncl»=λg):

one can compute the partial derivatives with respect to Mj , n0
j (included in B) 

and ncl, which are the stochastic variables contained therein.
These are, within the approximations done, the contributions to the 
fluctuations of tthr:

Since they appear in the same term, the 
numerical factors in front of the relative 
fluctuations on ncl, Mj and n0

j are the same, 
which simplifies the conclusions to be drawn.



Time resolution of RPC
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An estimation of the RPC resolution is therefore:

Of course, there are other sources of signal fluctuations (electronics, 
diffusion), but these above derive directly from the statistics of electron-ion
pairs formation and avalanche growth: they cannot be eliminated.

Time resolution is inversely proportional to vd (hence the need for gas mixtures
characterized by a large drift velocity), and inversely proportional to η – 1/g.

➢ Note that, keeping the same electronics, the η g product, which is related
to the gain, is roughly constant in «narrow» or «wide» gap RPCs

→ Narrow gap RPCs are characterized by a good time resolution simply
because η is larger in this case.

In this sense, they represent a lower limit of the time resolution for an RPC 
(within the hypothesys done).



Time resolution of RPC
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To quantify the time resolution using the previous formula, the various terms
need to be quantified, at least approximately.

easy, denser gases provide better time resolution

Actually depends on the preferred model for avalanche
fluctuations; this is an approximate value for a Polya
distribution with θ = 1.5

Strongly depends on the gas (mixture) used

For a 2 mm RPC, η = 9 mm-1, vd = 120 μm/ns σt≈ 1 ns

For a 300 μm RPC, η = 110 mm-1, vd = 200 μm/ns σt≈ 50 ps

Both in the right ballpark.



Time resolution of RPC
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Following a different approach, and other simplifying assumptions
➢ one cluster only
➢ exponentially distribution of the amplitudes
Riegler, Lippman and Veenhof found out a similar expression:

σ𝑡 ≈
1.28

η𝑣𝑑

W. Riegler et al., Nuclear Instruments and Methods 
in Physics Research A 500 (2003) 144–162, 
doi:10.1016/S0168-9002(03)00337-1

Comparison between the above
formula (line) and a full Monte Carlo 
simulation (dots), for a timing (300 μm) 
RPC

Weak dependance of time resolution
on vthr, predicted by both approaches, 
confirmed by Monte Carlo.



Conclusions
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In some communities of gaseous detectors, there are discussions about timing 
properties of RPCs; this presentation stemmed from one of them.
→ «narrow» gap RPCs are characterized by a better time resolution with respect
to «wide» gap RPCs because of the larger values of η and vd.

Statistical considerations can help a lot in understanding the physical reasons
of signal fluctuations and derive approximate expressions for time resolution.

Even if approximate, these
expressions give results in the right
ballpark and, above all, provide
limits beyond which is hard 
(impossible?) to go.


