

Micromegas assembly and operation

Ali Muhammad, Chiapponi Francesco, Kumar Eshita, Perna Simone

What are micromegas?

- Two-stage parallel-plate avalanche chamber
- Multiplication takes place in **high E field** (~ **40 kV/cm**) between the anode and the mesh
- Thin amplification gap (**50-150 µm)**
- **High gain** (up to $10⁵$ or more)
- **Single stage** of **amplification**
	- **Fast signals** (< 1 ns)
	- **Low ion backflow** to the drift region
	- ➝ **Short recovery time** (~150 ns) → **High rate** capability $(>MHz)$
	- high spatial resolution $\left($ < 100 μ m) \rightarrow used for tracking
- **Signal** is **induced by both electron & ion movement** towards the anode / micromesh
- **Resistive layer** to limit damages from discharges *from Esther Ferrer Ribas slides from Esther Ferrer Ribas slides*

What are micromegas?

- **Large area** detectors
- Low cost detectors
	- ➞ **large scale** production
- Used in:
	- ALICE muon tracking chambers
	- CMS endcap muon system
	- ATLAS New Small Wheel

… and in many other experiments

SM1 of the ATLAS NSW, produced in Italy

Lab activity outline

- 1. Two detectors
	- **a. Non-resistive** Micromegas with **strip** readout, active area 8x8 cm² with 1 mm strip pitch
	- **b. Resistive** Micromegas with **pad** readout active area 10x10 cm² with pad 1x3 mm².
- **2. Disassembly & assembly** of both detectors.
- 3. Non-resistive Micromegas operated in discharge region.
- 4. Characterization of **Fe-55 energy spectrum.**

PCB board with strip anode readout

Floating Mesh

Mesh-like Cathode

Aluminium frame with plastic window to complete the assembly

Anode plane with grounded bulk mesh

mesh embedded in the pillar

Observation of one pillar with the microscope

Copper cathode

Operation in Discharge Region

Non-resistive Micromegas tested under extremely high voltages to see discharges

Discharges can cause damages to the anode layer and can reduce the overall performance of the detector

Operation with Fe-55 source

Fe-55 source

The detector: active area **20x20 cm²,** with readout **pad** size 1x3 mm². **Only 8 pads** were actually connected

Gas out

Gas in: Ar:CO₂ (93:7)

Acquisition of frequency and energy spectrum of

Amplification voltage 480-500 V Drift voltage 780-800 V

Operation with Fe-55 source

- Two peaks:
	- 5.9 keV γ peak of Fe
	- 2.9 keV Argon escape peak
- **Energy resolution:**

 $rac{\Delta E}{E} \approx 22\%$

Conclusions

First of all… **amazing experience!**

- Assembly of Micromegas detectors
- observed the different detector structures like bulk and floating meshes, resistive and non-resistive anode structures, etc.
- Characterisation of the detector using an Fe-55 source was performed.
- Energy resolutions of up to 22% were achieved optimising the rate and the operating voltages

Thank you for the attention!

And many thanks to our tutors! **Chiara Alice & Valerio D'Amico**

Backup

Fe -55 decay

55Fe → Mn* + νe Mn* → Mn + γ

When the photon interacts with the Argon atoms, it can induce the emission of an electron from the shell k by **photoelectric effect** . It is possible that an electron of an outer shell occupies space in the k -shell, releasing photons of X -rays that, in turn, can interact with other electrons of outer shells, emitting them . This phenomenon is known as **Auger electron emission** occurs in **85 % of cases .**

