

CERN November 27 - December 6, 2024

Characterization of THGEM Detector: A Member of the MPGD Family DRD1 school 2024 - CERN

Angela Zaza¹, Daniel Fachieri², Giulia Paggi³, Subir Mandal⁴

- 1. University of Bari, Bari, Italy
- 2. Universidade de São Paulo, São Paulo, Brasil
- 3. INFN Bologna and Università di Bologna, Bologna, Italy
- 4. BOSE Institute , Kolkata , India

WG8 collaboration meeting 13 December 2024

Outline

- Experimental setup
- Gain measurement and results
	- HV scan of the gem field with drift and induction field

 $= 0$

- Gain Scan
- scan of induction field with fixed gem field and drift field $= 0$
	- Best collection
- scan of the drift field with fixed gem field and induction field $= 0$
	- Best Extraction
- scan of the gem field with fixed drift (maximum extraction) and induction field (maximum collection at anode)
	- Optimal operation

Experimental Setup

- Drift region \sim 5 mm
- Insulator \sim 0.8 mm
	- a. 1 mm pitch hexagonal pattern of 0.5 mm diameter holes (obtained by drilling and etching)
- Induction region \sim 1 mm
- 10 x 10 cm2 Thick GEM
- Gas Mixture: Ar/CO2/iC4H10 (93:5:2%) flushing
- Sources: UV lamp (Hg) with lines in 200 to 600 nm range
- Keithely 6517A (1pA resolution)
- HV power supply : 4 ch. CAEN HV Module
- A computer for HV control and automated measurements (Labview interface)

Experimental Setup - Photoelectric effect in GEM foils

- Photons from the UV lamp
	- $-\lambda \sim 200$ to 600 nm
- Electrons extracted from the copper surface
	- work function \sim 4.5 to 5.1 eV
- The drift lines extracts the electrons and then the multiplication lines drags the electrons into the hole
- The electric currents generated in the cathode, top GEM, bottom GEM and anode are monitored to understand the phenomena Anode

1) HV scan of the gem field

- ΔV (drift) = ΔV (induction) = 0V
- V(GEM) scanned from 0 to 1000V \rightarrow AV GFM scanned from 0V to 1000V \rightarrow opposite polarity tested

 ΔV scan from 0 to 500 V \rightarrow electric field \downarrow

- electrons from the avalanche are pushed towards the bottom electrode of the gem: all the electrons are collected at the bottom electrode of the gem
- most of the ions are collected at the top electrode of the gem
	- cathode and anode currents \sim 0

2) Scan of the induction field

- ΔV (drift) = 0V, ΔV (gem) = 1000V
- V(anode) scanned from 0 to 1000V \rightarrow AV anode scanned from -500V to 500V \rightarrow opposite polarity tested
- 1) ΔV scan from 0 to 500 V \rightarrow electric field \downarrow
	- electrons from the avalanche are pushed towards the bottom electrode of the gem: all the electrons are collected at the bottom electrode of the gem
	- most of the ions are collected at the top electrode of the gem
		- $-$ cathode and anode currents ~ 0

2) Scan of the induction field

- $\triangle V$ (drift) = 0V, $\triangle V$ (gem) = 1000V
- V(anode) scanned from 0 to 1000V \rightarrow ΔV anode scanned from -500V to 500V \rightarrow opposite polarity tested
- 2) ΔV scan from 0 to -500 V \rightarrow electric field \uparrow nominal direction of the electric field
	- as the electric field increases the electrons from the avalanche are directed towards the anode \rightarrow the anode current increases and the gem bottom current decreases
		- \circ from \sim -200 V all the electrons are collected at the anode
		- \circ from \sim -350 V we start to observe the multiplication process in the induction gap

3) Scan of the drift field

- ΔV (induction) = 0V, ΔV (gem) = 1000V
- V(cathode) scanned from 0 to -1000V \rightarrow AV cathode scanned from -500V to 500V \rightarrow nominal and opposite polarity tested

1) ΔV scan from 0 to 500 V \rightarrow electric field \perp

- some of the electrons extracted from the top gem are drifted towards the cathode \rightarrow the cathode current increases with ΔV
- $less$ electrons start an avalanche \rightarrow less ions and secondary electrons produced \rightarrow top and bottom gem currents and anode current decrease with ΔV

3) Scan of the drift field

- \triangle \triangle V(induction) = 0V, \triangle V(gem) = 1000V
- V(cathode) scanned from 0 to -1000V \rightarrow ΔV cathode scanned from -500V to 500V \rightarrow nominal and opposite polarity tested

2) ΔV scan from 0 to - 500 V \rightarrow electric field \uparrow

- the electrons extracted are pushed towards the top gem electrode and some of the ions towards the cathode \rightarrow small negative cathode current
- the drift field reduces the number of electrons extracted from the top gem \rightarrow less electrons start avalanches \rightarrow top and bottom gem currents and anode current decrease with ΔV

4) Gain in maximum extraction and induction

- ΔV (drift) = -25V
- ΔV (GEM) scanned from 0 to -1500V
- \bullet ΔV (Induction) scanned from \rightarrow ΔV cathode scanned from -500V to 500V
	- \rightarrow nominal and opposite polarity tested

ΔV scan from 0 to +1500 V \rightarrow gain ↑ (around 10²)

- the electrons extracted are dragged by the electric field inside the hole where multiplication takes place
- the current in the top gem and the anode are very similar and much higher than the current in the bottom and the cathode
- Could not reach a maximum gain due to overcurrent

Conclusion

- Multiplication:
	- Almost no multiplication in ΔV below 600V
	- Exponential growth in the gain in ΔV above 600V
- Inverted Polarity:
	- Reversed induction field: higher current measured in the bottom
	- Matching induction field: higher current measured in the anode
	- top GEM measured the same current as the bottom/anode
- Voltage setup:
	- application of a GEM-based detector for photoelectric effect
	- optimal operation: best extraction and best collection of the electrons
	- Could reach higher gains

THGEM: Overview and experimental parameters

- 1) Large holes larger than e- diffusion
	- a) full electron collection efficiency from conversion gap, photocathodes
	- b) good energy resolution
	- c) optimal geometry
		- i) easier manufacturing
- 2) Large multiplication factor in most gases (incl. noble gases
	- a) Single THGEM gain around $10⁴$ to 10^{5}
- 3) Rate capability $\sim 10^4$ Hz/mm²
- 4) High resistance to radiation damage
- 10 x 10 cm2 Thick GEM
- Gas Mixture: Ar/CO2/iC4H10 (93:5:2%) flushing
- Sources: UV lamp (Hg) with lines in 200 to 600 nm range
- Keithely 6517 A (1pA resolution)
- HV power supply : 4 ch. CAEN HV Module
- A computer for HV control and automated measurements (Labview interface)

Thick Gas Electron Multiplier (THGEM)

- drift region \sim 5 mm
- insulator \sim 0.8 mm
	- 1 mm pitch hexagonal pattern of 0.5 mm diameter holes (obtained by drilling and etching)
- induction region \sim 1 mm

Readout Pad

- Large holes larger than e- diffusion
- Good energy resolution
- Easy manufacturing
- **High Gains**
	- \circ around 10⁴ to 10⁵
- Rate capability $\sim 10^4$ Hz/mm²
- **High Resistance to radiation** damage

THGEM: overview

1) Large holes larger than e- diffusion

- full electron collection efficiency from conversion gap, photocathodes
- good energy resolution with ionizing radiation
- efficient electron transfer effective cascading of electrodes
- optimal geometry: hole diameter $=$ thickness

2) Large multiplication factors in most gases incl. noble gases

 \bullet single electrons - Single THGEM Gain 10⁴ - 10^{5}

3) Rate capability:~104 MHz/mm2

4) Fast response

Experimental Parameters

- \bullet 10 x 10 cm2 Thick GFM
- Gas Mixture: Ar/CO2/iC4H10 (93:5:2%) flushing
- Sources: UV lamp (Hg) with lines in 200 to 600 nm range
- Keithely 6517 A (1pA resolution)
- HV power supply 4 ch. CEAN HV Module
- A computer for HV control and automated measurements (Labview interface)

Thick Copper THGEM

- Use a thicker copper (400µm) on bottom electrode \rightarrow converter directly on the GEM
- Geometrical Parameters
	- Thickness=0.8mm
	- HoleDiameter=0.5mm
	- Pitch=1mm
	- Top Copper Thickness=0.035mm
	- BottomCopperThickness=0.4mm
- Square Pattern
- This THGEM should have a very high real gain but a unitary effective gain

Methodology

-

- Scanning of different configurations of the electric fields inside the three regions
- we set a fixed voltage for 2 regions then we did a scan using the software between 0-1000V in the other electrode -> discussed the effects with this change

Conclusions and Future Plans

- Every voltage setup should be chosen for a specific application
	- In this experiment, we wanted to extract the maximum current and collect it in the anode
- Scanning regions allows to identify

HV scan of the gem field with drift and induction field $= 0$

- high current in top and bottom of gem
- low current in anode and cathode
- we had more current in top gem than in the bottom
	- because we had photoelectric + ions coming due to avalanche than in the bottom that were just the electrons from multiplication

(make new graphs with python)

Experimental Setup (Subir)

Detector setup with vessel, UV lamp and power supply.

Schematic of double THGEM detector for UV detection.