

CERN November 27 - December 6, 2024

Characterization of THGEM Detector: A Member of the MPGD Family DRD1 school 2024 - CERN

Angela Zaza¹, Daniel Fachieri², Giulia Paggi³, Subir Mandal⁴

- 1. University of Bari, Bari, Italy
- 2. Universidade de São Paulo, São Paulo, Brasil
- 3. INFN Bologna and Università di Bologna, Bologna, Italy
- 4. BOSE Institute , Kolkata , India

Outline

- Experimental setup
- Gain measurement and results
 - HV scan of the gem field with drift and induction field

= 0

- Gain Scan
- \circ scan of induction field with fixed gem field and drift field = 0
 - Best collection
- \circ scan of the drift field with fixed gem field and induction field = 0
 - Best Extraction
- scan of the gem field with fixed drift (maximum extraction) and induction field (maximum collection at anode)
 - Optimal operation

Experimental Setup

- Drift region ~ 5 mm
- Insulator ~ 0.8 mm
 - a. 1 mm pitch hexagonal pattern of 0.5 mm diameter holes (obtained by drilling and etching)
- Induction region ~ 1 mm
- 10 x 10 cm2 Thick GEM
- Gas Mixture: Ar/CO2/iC4H10 (93:5:2%) flushing
- Sources: UV lamp (Hg) with lines in 200 to 600 nm range
- Keithely 6517A (1pA resolution)
- HV power supply : 4 ch. CAEN HV Module
- A computer for HV control and automated measurements (Labview interface)

Experimental Setup - Photoelectric effect in GEM foils

- Photons from the UV lamp
 - λ ~ 200 to 600 nm
- Electrons extracted from the copper surface
 - work function ~ 4.5 to 5.1 eV
- The drift lines extracts the electrons and then the multiplication lines drags the electrons into the hole
- The electric currents generated in the cathode, top GEM, bottom GEM and anode are monitored to understand the phenomena

Anode

1) HV scan of the gem field

- $\Delta V(drift) = \Delta V(induction) = 0V$
- V(GEM) scanned from 0 to 1000V $\rightarrow \Delta V$ GEM scanned from 0V to 1000V
 - \rightarrow opposite polarity tested

 ΔV scan from 0 to 500 V \rightarrow electric field \downarrow

- electrons from the avalanche are pushed towards the bottom electrode of the gem: all the electrons are collected at the bottom electrode of the gem
- most of the ions are collected at the top electrode of the gem
 - cathode and anode currents ~ 0

2) Scan of the induction field

- $\Delta V(drift) = 0V, \Delta V(gem) = 1000V$
- V(anode) scanned from 0 to 1000V
 → ΔV anode scanned from -500V to 500V
 → opposite polarity tested
- 1) ΔV scan from 0 to 500 V \rightarrow electric field \downarrow
 - electrons from the avalanche are pushed towards the bottom electrode of the gem: all the electrons are collected at the bottom electrode of the gem
 - most of the ions are collected at the top electrode of the gem
 - cathode and anode currents ~ 0

2) Scan of the induction field

- ΔV(drift) = 0V, ΔV(gem) = 1000V
- V(anode) scanned from 0 to 1000V
 → ΔV anode scanned from -500V to 500V
 → opposite polarity tested
- 2) ΔV scan from 0 to -500 V \rightarrow electric field \uparrow nominal direction of the electric field
 - as the electric field increases the electrons from the avalanche are directed towards the anode → the anode current increases and the gem bottom current decreases
 - from ~-200 V all the electrons are collected at the anode
 - from ~-350 V we start to observe the multiplication process in the induction gap

3) Scan of the drift field

- $\Delta V(induction) = 0V, \Delta V(gem) = 1000V$
- V(cathode) scanned from 0 to -1000V
 → ΔV cathode scanned from -500V to 500V
 → nominal and opposite polarity tested

1) ΔV scan from 0 to 500 V \rightarrow electric field \downarrow

- some of the electrons extracted from the top gem are drifted towards the cathode \rightarrow the cathode current increases with ΔV
- less electrons start an avalanche → less ions and secondary electrons produced
 - \rightarrow top and bottom gem currents and anode current decrease with ΔV

3) Scan of the drift field

- $\Delta V(induction) = 0V, \Delta V(gem) = 1000V$
- V(cathode) scanned from 0 to -1000V
 → ΔV cathode scanned from -500V to 500V
 → nominal and opposite polarity tested

2) ΔV scan from 0 to - 500 V \rightarrow electric field \uparrow

- the electrons extracted are pushed towards the top gem electrode and some of the ions towards the cathode → small negative cathode current
- the drift field reduces the number of electrons extracted from the top gem → less electrons start avalanches → top and bottom gem currents and anode current decrease with ΔV

4) Gain in maximum extraction and induction

- $\Delta V(drift) = -25V$
- ΔV(GEM) scanned from 0 to -1500V
- ΔV(Induction) scanned from
 - $\rightarrow \Delta V$ cathode scanned from -500V to 500V
 - \rightarrow nominal and opposite polarity tested

 ΔV scan from 0 to +1500 V \rightarrow gain \uparrow (around 10²)

- the electrons extracted are dragged by the electric field inside the hole where multiplication takes place
- the current in the top gem and the anode are very similar and much higher than the current in the bottom and the cathode
- Could not reach a maximum gain due to overcurrent

Conclusion

- Multiplication:
 - Almost no multiplication in ΔV below 600V
 - Exponential growth in the gain in ΔV above 600V
- Inverted Polarity:
 - Reversed induction field: higher current measured in the bottom
 - Matching induction field: higher current measured in the anode
 - top GEM measured the same current as the bottom/anode
- Voltage setup:
 - application of a GEM-based detector for photoelectric effect
 - optimal operation: best extraction and best collection of the electrons
 - Could reach higher gains