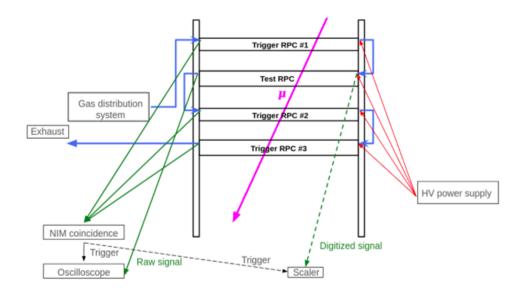

naracterization school 2024 Group 8: Felice Nenna, Jinxian Zhang, Ioannis Karakoulias, Mattia Verzeroli


Experimental setup

Main instrumentation:

- 3 RPCs with 1 mm gas gap used as **trigger** chambers
- 1 RPC with 1 mm gas gap used as test chamber
- Gas mixture (94.7% $C_2H_2F_4$, 5% i- C_4H_{10} , 0.3% SF_6)

Further instrumentation: oscilloscope, high voltage power supply, NIM modules, gas supply

Insulator

Conductive

Coating

Insulator

Button Spacer

Gas Gap

Side Spacer

X Readout

Y Readout

 $\operatorname{Electrode}$

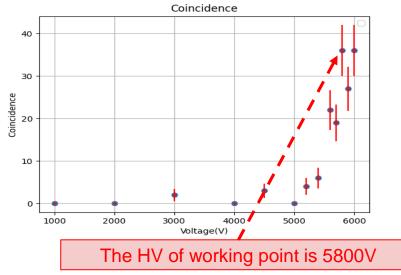
DRD1 Collaboration Meeting - 13/12/2024

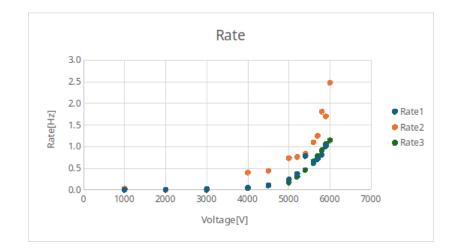
Experimental setup

The coincidence of the 3 trigger chambers selects events from **cosmic muons**.

Sensors measuring temperature, pressure and humidity were employed in order to monitor the working condition of the detector

The properties of the gas molecules depend on its pressure and temperature \rightarrow affect the HV working point: Pressure 966 mbar The properties of the gas molecules depend on its pressure $HV_{corr} = HV_{app} \cdot \frac{P_0}{P} \cdot \frac{T}{T_0}$


laboratory E.g., in our Temperature 24.4 C° condition for an applied P_0 1010 mbar voltage of 5800V, the effective HV is 6064V T_0 20 C°


Characterization of an RPC

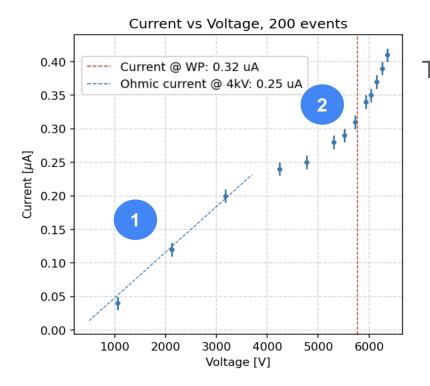
The working point is defined as the high voltage at which the number of coincidences plateaus, ensuring maximum efficiency and stable operation without excessive noise or discharge.

• Number of coincidence events for different voltages in 100 seconds

• Number of each trigger chamber for different voltages in 100 sec.

DRD1 Collaboration Meeting - 13/12/2024

Efficiency curve

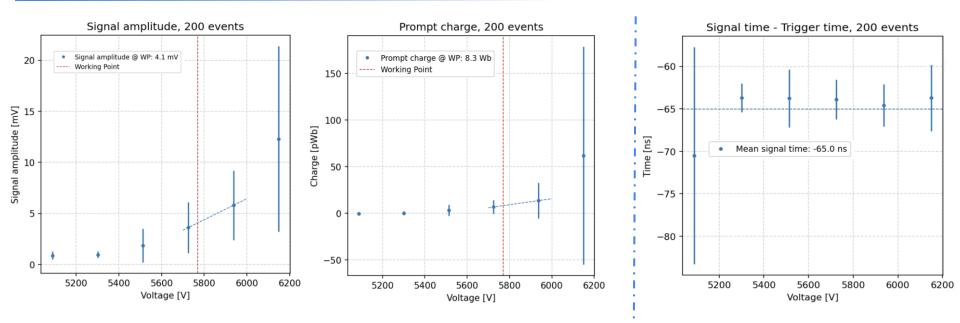

 $\begin{array}{ll} \textbf{Sigmoid fit:} \quad \epsilon(HV_{eff}) = \frac{\epsilon_{max}}{1 + e^{\gamma(HV_{eff} - HV_{50})}} \\ \text{Where:} \\ \text{HV}_{eff} \text{: Applied voltage corrected by T/P} \\ \epsilon_{max} \text{: Maximum efficiency} \\ \text{HV}_{50} \text{: Voltage where efficiency} = 50\% \end{array}$

Working point: voltage for which efficiency reach 95% of ϵ_{max} , plus 150 V.

The single point are obtained as: Efficiency = N. signal / N. trigger

with the Standard poissonian errors.

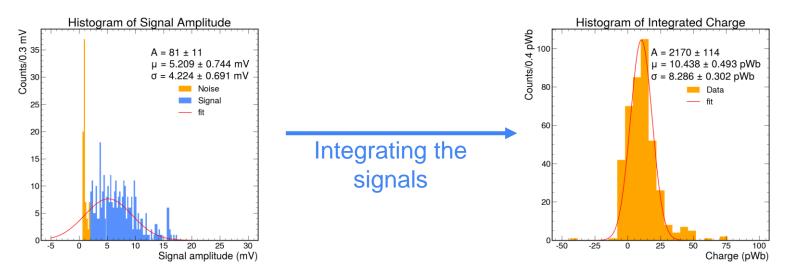
Current curve


Two different trends:

Ohmic linear contribution up to 4 kV: This take in account all the possible ohmic current due to detector's imperfection;

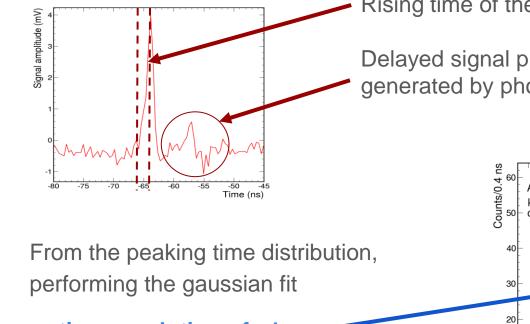
Physics exponential contribution after 4 kV:

This is the contribution of the ionization inside the gas gap, and it shows an exponential increase.


Other relevant parameters

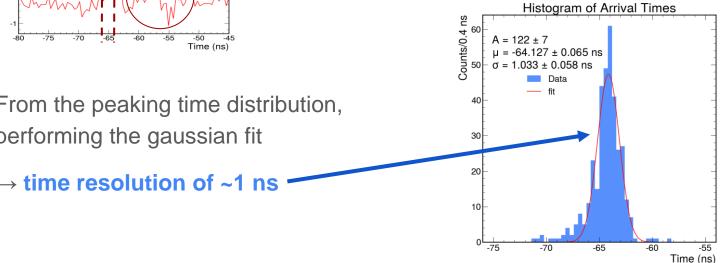
- Increase as the Voltage increases;
- Similar trend to the increase of the prompt charge:
 - The charge is the integral of the signal in mV

The time difference between the signal and the trigger remain constant over the Voltage applied.


High statistics run at the Working Point

At the working point (5800 V) \rightarrow higher statistics run:

- low signal amplitude (<2 mV): noise
- intermediate signal amplitude (<15 mV): signals generated by avalanches
- high signal amplitude (>15 mV): signals generated by streamers


Time resolution

 \rightarrow time resolution of ~1 ns

Rising time of the signal: ~2 ns

Delayed signal probably due to an afterpulse generated by photon induced avalanche

DRD1 Collaboration Meeting - 13/12/2024

Conclusions

We operated RPC chambers and measured some relevant parameters:

- With a trigger made of 3 RPCs in coincidence aligned with one RPC under test
- A maximum efficiency of ~90% was reached at a working point of 5800V
- The average signal amplitude (and integrated charge) increases as the voltage increases, as expected
- The signal time resolution of the chamber was **1** ns at the working point

Thank you for your attention!

Accelerating Sci

Accélérateur