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|. Introduction

» Two basic approaches for the input stage:
= Charge sensitive amplifier
= (Super) common base/gate stages

» Our developments are focused on the later: speed and power ! :
= SiGe AMS 0.35 um BiCMOS technology
= But no serious problem to adapt to CMOS for this application

» We will present an overview of our developments related to SiPM readout:
= Preamplifier for CTA project (tested)
= FE stage for PET application (simulation)
= Version (simulation) of the ICECAL chip (tested)

» Signal processing ?
= Peak detector

» |ntegration
= ToT

» Measurements and simulations using SiPM model will be shown



ll. Measurements with SiPM + CTA preamplifier

 Basic circuit:
= Super common base input

= Cascode current mirror with CB feedback >
= Fully differential transimpedance amplifier

 Performances

= BW > 500 MHz

= Low Zi<10 Ohm up to > 500 MHz

= Low noise (in=10 pA/sqrt(Hz))

= Differential: optimal CMRR and PSRR

e But the current mirror can not

stand a 1000 phe pulse
» Saturation at 500 to1000 phe

* Not enough for 16 bit...

Simplified schematic
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ll. Measurements with SiPM + CTA preamplifier

 Previous circuit is modified to split the input current by a novel technique:
— Current is divided in the common stage

— Different current mirrors for high and low gain

« Each can be optimized for BW / linearity
— Dedicated saturation control circuit is added to the HG mirror

« Current division remains operational even if HG mirror saturates
« Saturation threshold of HG mirror can be controlled

— Range: > 6000 phe

« True delta pulse with 500 MHz BW
« No arrival time effect considered

— Patent pending (cur. splitting has other possible applications)
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Il. Measurements with SiPM + CTA preamplifier

. Preliminary tests with SiPM

= Low Zin current mode circuit are well suited for SiPM readout

« We just took an available MPPC (S10931-050P), operated at 1 V

overvoltage

= Recovery time seems to be dominated by internal SiPM time

constant

= Rq(Cq+Cd) = 18 ns, with (Cq+Cd) about 90 fF and Rq about 200K 1OK§
« PACTA Zi related time constant is below 1 ns (15 Ohm x 40 pF) "L
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Il. Measurements with SiPM + CTA preamplifier

o Preliminary tests with SiPM
= Bi-gain is also working
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Il. Measurements with SiPM + CTA preamplifier

o Preliminary tests with SiPM
= Charge spectrum
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. Simulations with a FE designed for PET

 PACTA preamplifier could perform well as a VFE but some drawbacks:

= Current division seems not necessary in this application, could be removed.

= Limited voltage swing for SiPM adjustment:
Major problem
Related to common emitter amplifier feedaback to decrease Zi

« Alternative feedback techniques:
= FE for PET applications: OpAmp with input negative rail swing capability

= |CECAL chip (LHCb calo upgrade): current mode feedback
= Also used in BASIC chip for PET applications

* FE for PET applications
» High gain with fast leading edge current discriminator
* Low gain with TIA (on the long term, integrator)
* |Input impedance is 20 Ohm
* Input ref. noise is 2-3 UA rms
= Max. signal is > 9 mA peak
= Power conssumption about 5 m\W / ch
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l1l. Simulations with a FE designed for PET

» Simplified schematic of the input stage:

= OpAmp with input negative rail swing capability to decrease Zi and control SiPM cathode
= |Input impedance is about 20 Ohm
= SiPM cathode voltage can be tuned: 0 -1V
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l1l. Simulations with a FE designed for PET

 Transient response for 1 to 30 fired cells
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l1l. Simulations with a FE designed for PET

» Peak or integral measurements are ok
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l1l. Simulations with a FE designed for PET

* |s ToT feasible? What resolution (clock) is needed?
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lll. Simulations with ICECAL FE stage (LHCb Calo upgrade)

* Current mode feedback: Veo
= Inner loop: lower input impedance
= Current feedback (gain): mirror: K Ib2 i) MPC“——H‘;MPZ —HiM% —Himm
= Outer loop: control input impedance A : K : K
= Current feedback: mirror: m A A
. |O\]/O
* Current gain: m a
* Input impedance RS
1 /n- € Re K Re
Zi ] + me O P ’
1+ K 1+ K ﬁ N —~
* Current mode feedback used 01(L) M b VA IO
= Optical comunications - /\’/ee N
= SiPM readout o N

* For SciFi just remove outer loop

= SiPM cathode can be tuned from O to 1V
= Base of Q1
= Input impedance < 20 ohm POWER 5 mW



l1l. Simulations with ICECAL FE stage (LHCb Calo upgrade)

* Transient simulation (1 to 30 cells)
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lll. Simulations with ICECAL FE stage (LHCb Calo upgrade)

o peak

» Peak or integral measurements are ok as well

Expressions 2
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l1l. Simulations with a FE designed for PET

e Similar results for ToT
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V. Discussion

» Current mode input stage seems a good choice
= Low input impedance and fast: minimize pile-up
= Aslong as 5 mW/ch is ok

» Signal processing
= With peak detection / integration problem is pushed to ADC

» |s ToT feasible?

= Detector simulation
= Resolution needed? TDC implementation

« ADC, possible solutions:
» Maybe multiplexed SAR 5bits ADC
= Low power current mode cyclic ADCs
= See next slides
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V. Relevance of Free-Running ADCs

Feasibility — Fasisarancs

|
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Choi Deguchi Yoo Verbruggen | Paulus ! Draxelmayr Chen Ginsburg Liu
Precision 6 bit 6 bit 6 bit 5 bit 6 bit : Precision 6 bit 6 bit 5 bit 10 bit
Echantillonnage 5GS/s | 35GS/s | 1GS/s | 1.75 GS/s 4GS/s | Echantillonnage 600 MS/s | 600 MS/s 500 MS/s 50 MS/s
Technologie 65 nm 90 nm | 250 nm 90nm 130 nm | Technologie 90 nm 130 nm 180 nm 130 nm
Année 2008 2007 2001 2008 2004 |1 Année 2004 2006 2005 2009
Tension alimentation 1.3V 09V 25V 1V 1.5v |l Tension alimentation 1.2V 1.2V 1.2V / 18V 1.2V
Consommation 320 mW | 98 mW | 67 mW 7.6 mW 990 mW : Consommation 10 mW 5.3 mW 7.8 mW 0.92 mW
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> Development required to fit the
. p q B.E. Jonsson 2010, IEEE
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jan 27,2011 Workshop on Microelectronics Beyond the GHz, Clermont-Ferrand 16
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V. Discussion

» Current mode cyclic ADC:

= DCD chip (DEPFET readout): 180 nm CMOS
= ADC core is 40 um x 55 um and 1 mW
= Conversion time for 8 bits: 160 ns (fast version): 20 ns/bit

20

* To be improved for 5 bits @ 40 MHz, unless analogue sparsification is used
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