

Observation of Exclusive yy Production in CDF

Mike Albrow (Fermilab)

Ph.D. thesis of Erik Brucken (U. Helsinki)

$$p + \overline{p} \rightarrow p + \gamma \gamma + \overline{p}$$

3 Classes of Hadron-Hadron Collisions:

- >> Elastic Scattering: no particles produced
- >> Inelastic: multi- hadron production
- >> Inelastic, with no hadrons produced

ALMOST ELASTIC

Mike Albrow

Observation of Exclusive yy Production in CDF

Introduction

$$p + \overline{p} \rightarrow p + X + \overline{p}$$
 $X = e^+e^-, \mu^+\mu^-, J/\psi, \psi(2S), \chi_c$

CDF Detectors, Triggers & Data

Selection of Exclusive Events:

$$p + \overline{p} \rightarrow p + \{2EM \text{ showers}\} + \overline{p}$$

e+e-, $\gamma\gamma$, or $\pi^0\pi^0$ background ?, Cross sections

Other exclusive channels: $\mu^+\mu^-$, J/ ψ , $\psi(2S)$, χ_c , JJ

Summary & Conclusions

Implications for Exclusive Higgs at LHC

Executive Summary

In CDF we have observed ($>> 5 \sigma$) the new clean process:

$$p + \overline{p} \rightarrow p + \gamma \gamma + \overline{p}$$

Photons central, $E_T > 2.5 \text{ GeV}$

The cross section is about 2.5 pb, i.e. 1 per 25 billion inelastic collisions

Needed:

A good level 1 trigger (EM showers + Forward gap-seeds)

Extended rapidity coverage of CDF to $\eta = \pm 7.4$

Understand noise levels in all calorimeters and counters.

Demonstrate we understand "empty events" (non-interaction in 0-bias)

Use $p + \overline{p} \rightarrow p + e^+e^- + \overline{p}$ via $\gamma\gamma$ (QED) as a control (σ known)

Show that EM showers are from γ and not π^0

High Energy Hadron-Hadron Collisions

TWO DISTINCT CLASSES:

Elastic

 $\sigma(elastic) \sim 20 \text{ mb}$

Inelastic, multi-hadron production

 $\sigma(\text{inelastic}) \sim 60 \text{ mb}$ (at Tevatron)

NOT DISTINCT CLASSES:

Diffractive

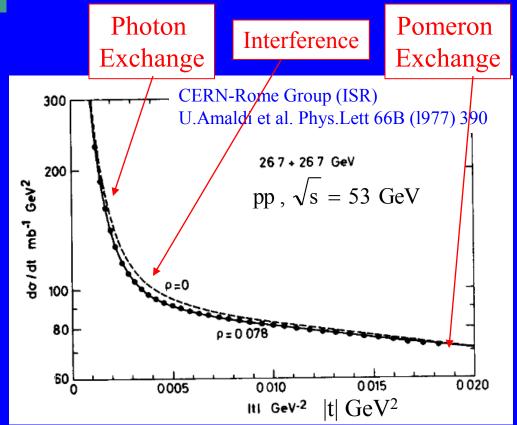
Non-diffractive

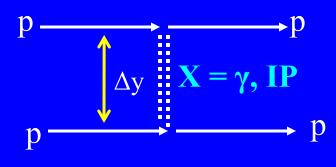
A "NEW" 3rd DISTINCT CLASS:

Almost elastic (99%), no hadrons produced:

 $e+e-(\mu+\mu-(\gamma+\gamma))$ & at LHC: W+W- H

Observed in CDF, σ ~ pb

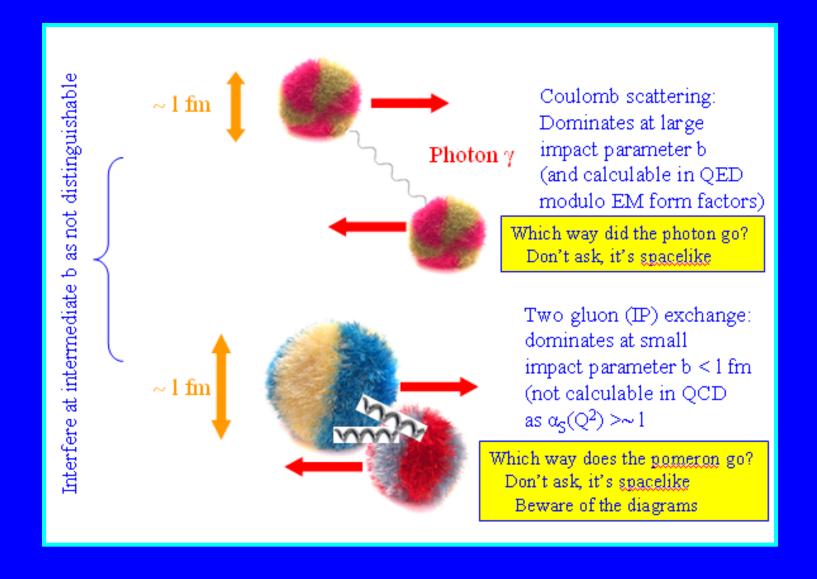

Observable at LHC, $\sigma \sim 10$'s fb



Mike Albrow

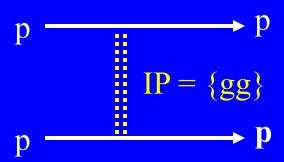
Elastic pp scattering at very small angles == large distances

The only allowed t-channel exchanges have Q = 0, Color = 0 and at high energy (Large Δy) spin J >= 1.

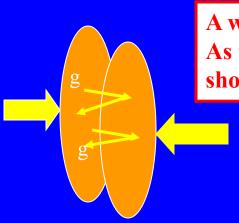

Photon dominates at small $|t| \sim p_T^2$

Strong Interaction: 2-gluons is simplest. Called the pomeron IP Effective spin $\alpha(t=0) > 1$... that's why total cross section σ_{TOT} rises.

Elastic Scattering by Electromagnetic and Strong Interactions



Elastic Scattering by strong interaction



MISLEADING PICTURE

Unlike the QED case, do not imagine this as the emission from one proton of a color singlet {gg} state (glueball) propagating freely like a hadron.

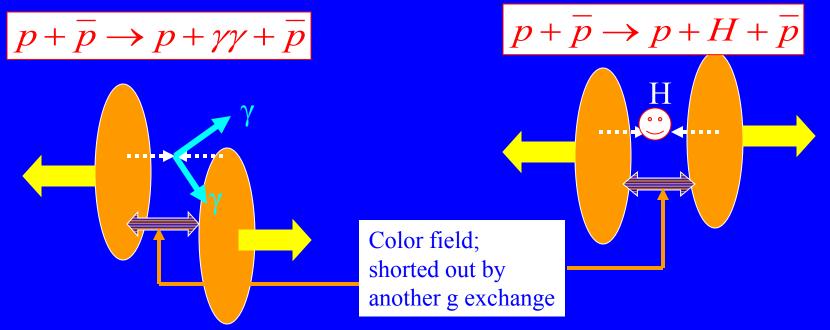
ANOTHER (BETTER) VISUALIZATION:

A wee x_{Bj} gluon is turned around. As the p separate ... color field ... shorted out by a 2^{nd} exchange

Or: a pair of gluons annihilate (→ H e.g.). As the p separate ... color field ... shorted out by a 2nd exchange (rarely)

From elastic scattering to exclusive γγ or H production

$$\begin{array}{c}
p \\
\hline
P \\
IP = \{gg\} \\
p
\end{array}$$


$$\begin{array}{ccc}
p & & & \\
& & & \\
p & & & \\
p & & & \\
\end{array}$$

$$= gluon$$

About 25% of σ_{TOT}

About
$$10^{-11} - 10^{-13}$$
 of σ_{TOT}

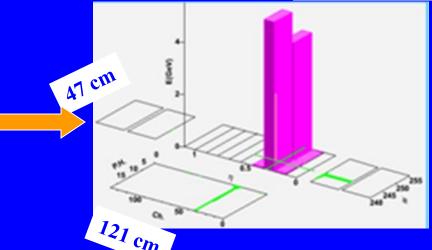
These are related processes!

CDF: The Collider Detector at Fermilab

CENTRAL:

Hadron Calorimeters

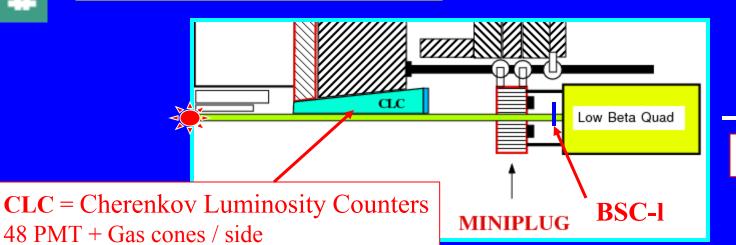
Muon chambers


Silicon tracker COT **Drift chamber tracker** Time-of-Flight barrel EM calorimeters w/ **CES** shower max PC

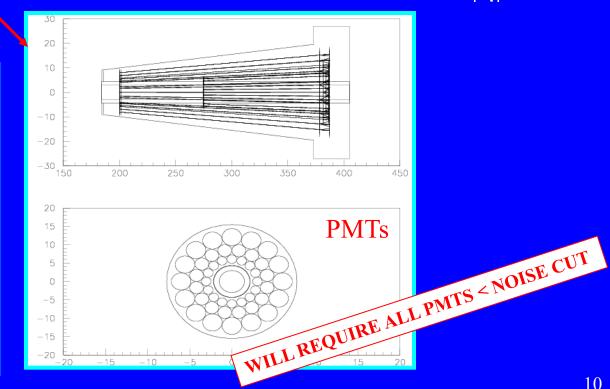
Tevatron: $p\bar{p} \sqrt{s} = 1.96 \text{ TeV}$

FORWARD NEXT slides (Important)

10 GeV electron


CES shower maximum proportional chambers at 6 X₀ 1.5 cm anode wires in φ 1.7 - 2.0 cm strips in η 92% active over $|\eta| < 1.1$

Forward Detectors in CDF 1: Cherenkov Luminosity Counters



55 m **BSC-2, -3**

 $3.7 < |\eta| < 4.7$

Univ. Florida

Very Forward Detectors in CDF II: MiniPlugs

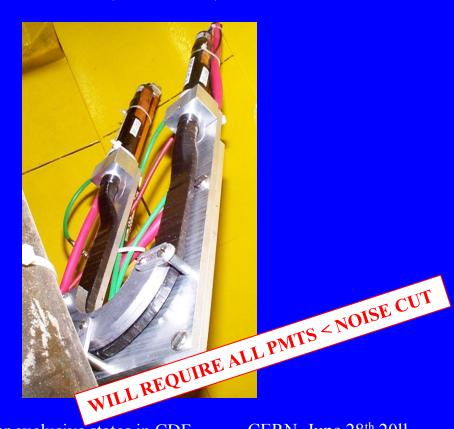
MiniPlug Calorimeters: $3.6 < |\eta| < 5.1$ Lead + Liquid Scintillator + WLS Fibers

Rockefeller Univ.



华

Very Forward Detectors in CDF III: BSC

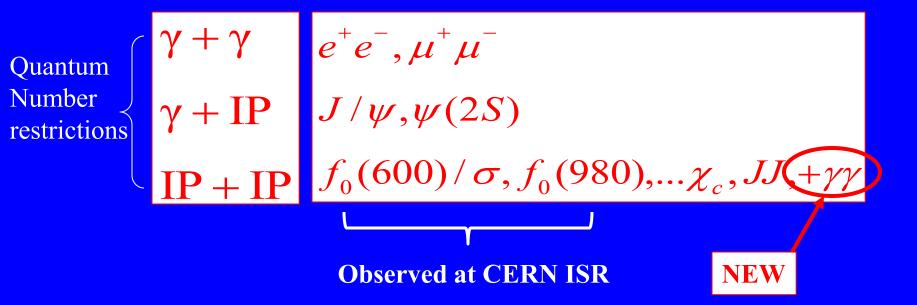


Beam Shower Counters (BSC)

 $5.5 < |\eta| < 7.4$ (Scintillators + PMT)

Rockefeller Univ.

BSC-1 (4 PMTs)


Central Exclusive Production, examples:

$$p+p \rightarrow p+X+p$$
where += true rapidity gap, no hadrons
and X = "simple" system fully measured.

 $\gamma \text{ or } IP$
exchange

States observed in CDF for first time in hadron-hadron collisions:

Previous exclusive $\gamma\gamma$ search paper, 3 candidates $E_T > 5$ GeV: PRL 99 (2007) 242002

Central Exclusive Production Diagrams

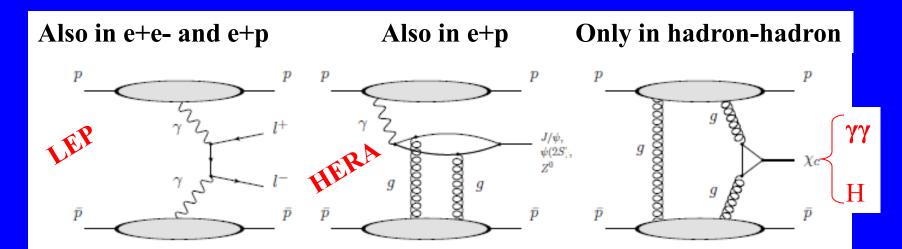


Figure 10: Feynman diagrams for processes contributing to the exclusive di-lepton signal. (a) $\gamma \gamma \to l^+ l^-$, (b) $\gamma I\!\!P \to J/\psi$, $\psi(2S)$, Z^0 , and (c) $I\!\!P I\!\!P \to \chi_{c0}$.

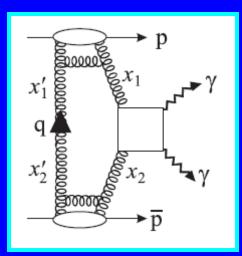
LPAIR MC:

J.A.M.Vermaseren, Nucl.Phys.B229 (1983) 347

Photoproduction

SuperCHIC MC: L.Harland-Lang et al,

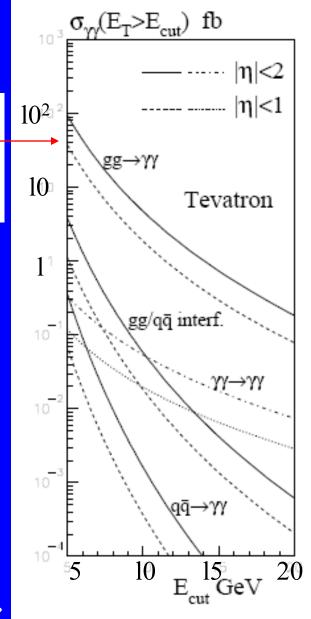
arXiv:1005.0695 [hep-ph]


- >>> Not essential to detect protons; can require all forward detectors to be at noise levels, for $|\eta| < \sim 7.4$
- >>> Quasi-elastic protons inferred.
- >>> No pile-up interactions allowed.

Theoretical prediction for exclusive yy

Khoze, Martin, Ryskin & Stirling Eur. Phys. J. C38 (2005) p.475

$$E_{T}(\gamma)_{min} = 5 \text{ GeV}$$
 $|\eta(\gamma)| < 1$
 $\sim 38^{\times 3}_{\div 3} \text{fb} @ 1.96 \text{ TeV}$


Factor 3 claimed > 0.8 events pred. 3 candidates seen '07

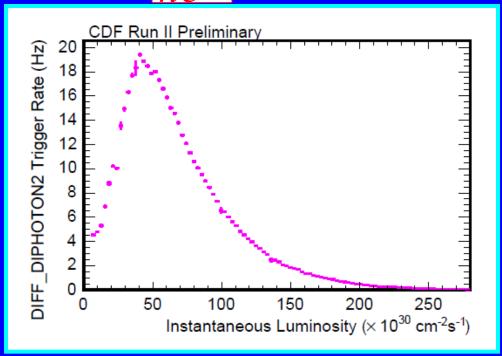
Ingredients:

Mike Albrow

$$\sigma(g + g \rightarrow \gamma + \gamma)$$

Unintegrated $g(x,x') \sigma \sim g^4$
Loop integral
No gluon/hadron radiation
No other parton-parton interaction
(Gap survival factor)

Later extended down to 2 GeV: L. Harland-Lang et al.


Trigger and Data Taking

Level 1 trigger: [1 EM Tower C&P > 2 GeV] * [BSC-1 (E & W) veto]

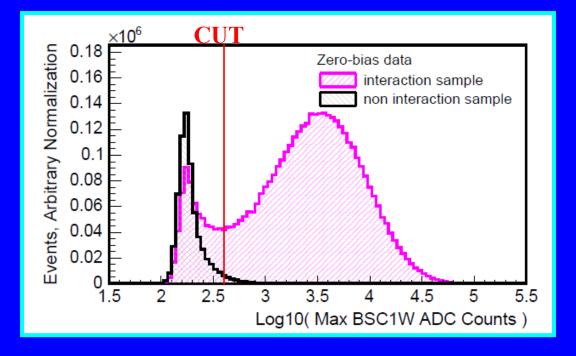
No prescale needed: Veto kills pile-up and most single interactions
Level 2+3: 2 EM Towers > 2, Clean up, e.g. Ratio (HAD/EM) < 0.125

One year 2006-2007, Integrated luminosity $1.11 \pm 0.7 \text{ /fb}$ Trigger rate peaks when $\frac{1}{n}e^{-\overline{n}}$ is maximum, $L = 40 \times 10^{30} \text{cm}^{-2}\text{s}^{-1}$

"Exclusive efficiency" = Prob. event not killed by P-U, calculated bunch x bunch.

Selection of Exclusive Events

Require no other particles detected in entire CDF, including forward to $|\eta| = 7.4$ p & pbar are not detectable: stay in beam pipe.

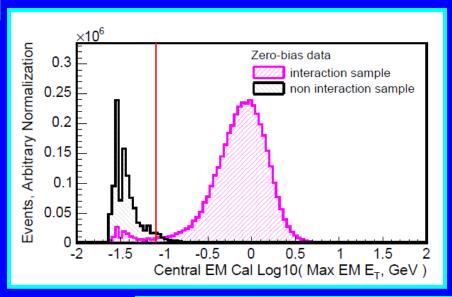

Study noise levels: ZERO-BIAS (bunch crossing) trigger (crucial).

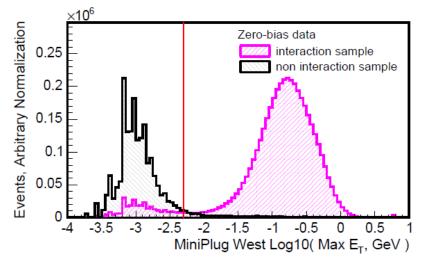
Make 2 classes: No COT tracks, no CLC hits, no muon stubs: NON-INTERACTION

All other events: INTERACTION (or several interactions)

For each sub-detector, plot "hottest" PMT signal or E_T signal (Log₁₀ scale handy) Choose cut separating noise from signals.

EXAMPLE:

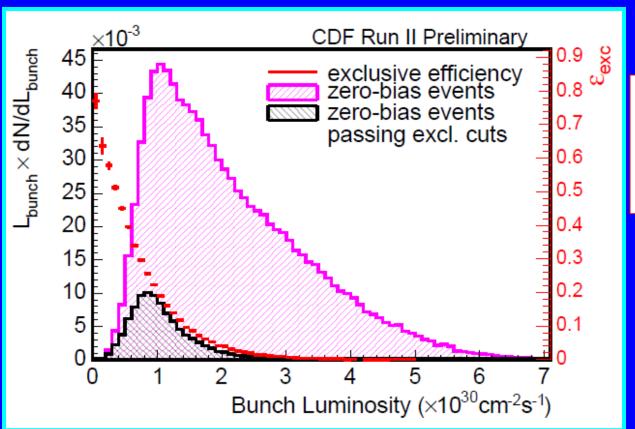



INTERACTION events below cut: interactions having no particles in BSC-l

Two more examples of noise studies and exclusive cuts:

Exclusive Filter Cuts				
Detector Part	max. Signal	$ \eta $ coverage		
Central EM Calorimeter (E_T):	80 MeV	0 - 0.66		
Central HAD Calorimeter (E_T):	200 MeV	0 - 0.66		
End Wall EM Calorimeter (E_T):	80 MeV	0.66 - 1.32		
End Wall HAD Calorimeter (E_T):	200 MeV	0.66 - 1.32		
Mid Plug Calorimeter (E_T):	80 MeV	1.32 - 2.11		
Forward Plug Calorimeter (E_T):	30 MeV	2.11 - 3.64		
Mini Plug Calorimeter (E_T):	5 MeV	3.6 - 5.2		
BSC-1 (ADC):	400 counts	5.4 - 5.9		
BSC-2 (ADC):	300 counts	6.4 - 7.1		
BSC-3 (ADC):	400 counts	6.7 - 7.4		
CLC (Sum of West and East) (ADC):	6300	3.7 - 4.7		

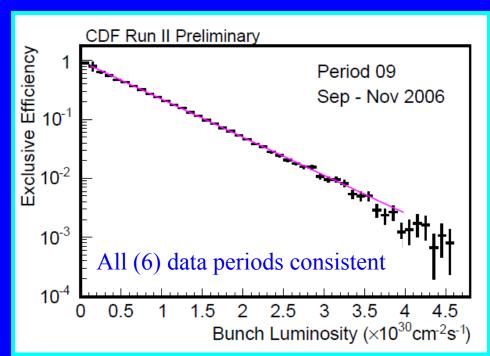
Apart from 2 EM towers, events pass all exclusive cuts


Exclusive Efficiency, and Empty Detector

Exclusive efficiency $\varepsilon_{\text{excl}}$:

Prob. good event not spoiled by another inelastic interaction (Pile-Up) Apply all noise cuts to **ZERO-BIAS** events (no EM towers). Measure P(0) = Prob(empty) vs Bunch luminosity (B x B)

[Not all the 36 bunch crossings have same Luminosity]


Red points:
Right scale
Ratio black:pink
(exponential)

Probability all CDF empty vs bunch luminosity

= exclusive efficiency

$$P(0) = \overline{n}.e^{-\overline{n}}$$

$$\overline{n} = \left(\frac{L_{bunch}}{46,500}\right) \times \sigma_{inel}$$

$$46,500 = \text{orbits / sec}$$

$$\Rightarrow \sigma_{inel}$$

Intercept should be 1.0

→at L = 0 all should pass

unless noise kills event

Total L = 1114 pb⁻¹ Intercept = 0.98 ± 0.02 ,

Slope =
$$67\pm 4$$
 mb $\epsilon_{excl} = 0.068\pm 0.004$; Leff = 75.8 pb⁻¹

Slope ~ "Inelastic Cross section": Not missing inelastic interactions

$$CDF: \sigma_{TOT} = 80.0 \pm 2.2 \text{ mb at } \sqrt{s} = 1800 \text{ GeV}$$
 $\sigma_{ELASTIC} = 19.7 \pm 0.9 \text{ mb}$ $\Rightarrow \sigma_{INEL} = 60.3 \pm 2.4 \text{ mb at } \sqrt{s} = 1800 \text{ GeV}$ We are at $\sqrt{s} = 1960 \text{ GeV}$

Confidence that exclusive efficiency method and normalization are good

Numbers of events, after sequential cuts:

Mullipel	or everits after	exclusive cuts	
Trigger:		200,143,2	239

Presel: (2EMO > 2 GeV, $|\eta|$ < 1.8): 93,976,483

Number of events after evaluative cuts

Empty BSC counters (all): 39,099,062

Empty Miniplug and CLC: 136,914

Empty Forward Plug Calorimeter: 13,974

Empty Mid Plug: 5,254

Empty Low Plug: 1,359

Empty Central Calorimeter: 421

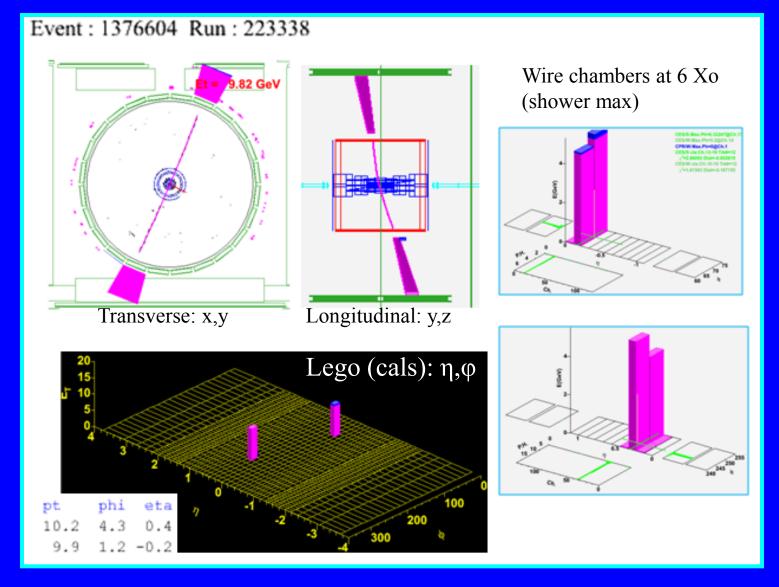
2 EMO Central $|\eta| < 1.0$:

2 EMO Central $|\eta|$ <1.0 and E_T > 2.5 GeV 82

Up to now NO TRACK REQUIREMENTS:

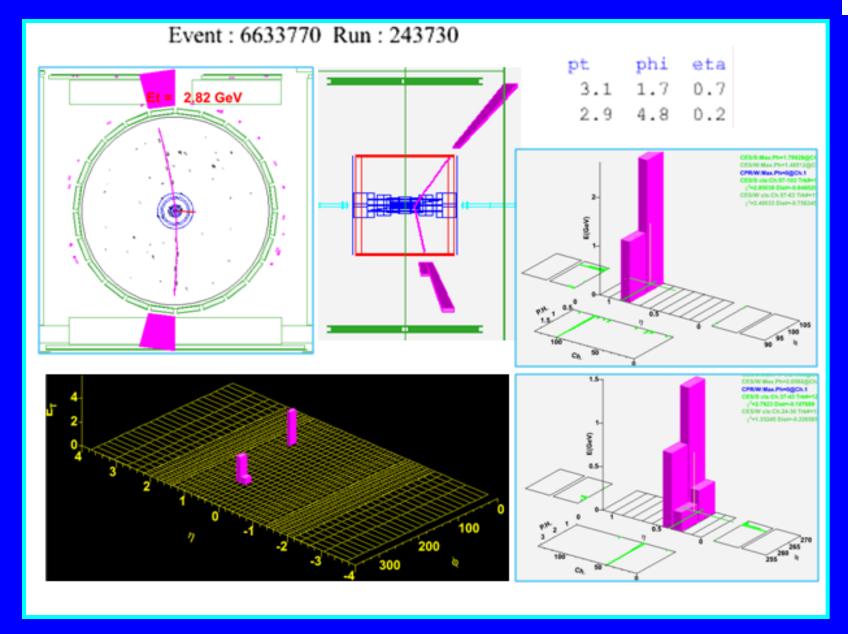
Blind to COT Drift Chamber (& Silicon, Muons). Now look at COT tracker:

2 Opposite charge tracks (e ⁺e⁻):34


No tracks at all ($\gamma\gamma$, or $\pi^0\pi^0$?) : 43

Ambiguous : $5 (scan \Rightarrow 2 + 2 + 1)$

Event display: the highest mass e^+e^- event: $M(e^+e^-) = 20 \text{ GeV/c}^2$



Tracking efficiency very high: hard to miss an isolated high p_T central track

Event display: a typical e^+e^- event: $M(e^+e^-) \sim 6 \text{ GeV}$

Checks and Efficiencies: Summary

Rate of final events (per effective luminosity) independent of run period.

Trigger efficiency (~ 92%)

Efficiency of HAD/EM cut vs E(e) (~ 93%)

Efficiency of track finding/fitting independent of η , p_T (~ 96%): Using J/ ψ data +MC Efficiency of event not being lost by radiation (CDFSIM, ~ 40%)

Reconstruction efficiency: Full Monte Carlo simulation including reconstruction of electrons or photons.

Values are low and more dependent on E_T and η (1–2)

because of bremstrahlung, conversions, δ -rays.

Decided to select $|\eta| < 1.0$ to minimize such dependence.

Scanning events confirmed more ambiguities there: " $e \rightarrow \gamma$ " and " $\gamma \rightarrow e$ "

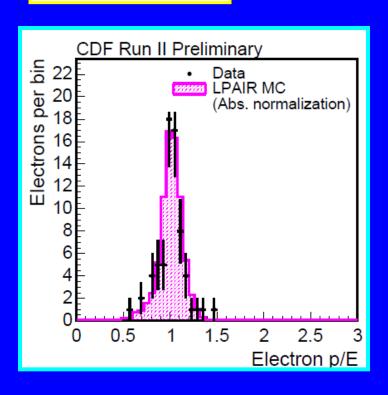
Reconstruction efficiency:

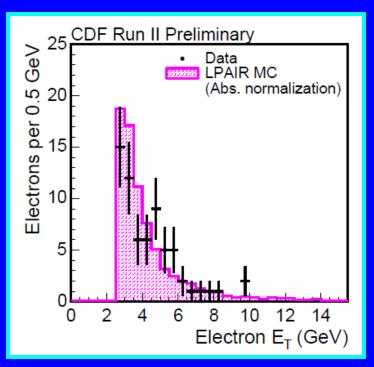
Electron pairs (LPAIR)

E _T cut (GeV)	2.5	5.0
$\varepsilon_{\rm rec}^{\rm e^+e^-}$	0.508	0.802
Stat Err	± 0.007	± 0.017
Syst Err	± 0.016	± 0.037

Photon pairs (SuperCHIC)

E _T cut (GeV)	2.5	
$\varepsilon_{\rm rec}^{\gamma\gamma}$	0.553	
Stat Err	± 0.005	
Syst Err	± 0.029	


Properties of single tracks cf LPAIR e+e- simulation + CDFSIM

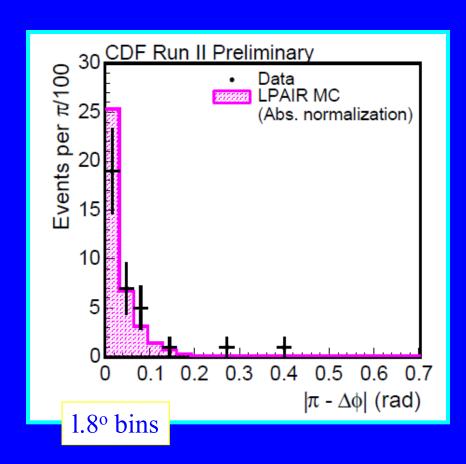


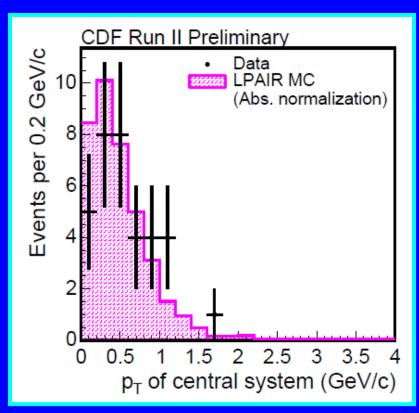
$$E_T(e) > 2.5 \text{ GeV}$$

 $\eta(e) < 1.0$
34 events,
>> 68 e's

$$\gamma + \gamma \rightarrow e^+ + e^-$$

Absolute normalization (to LPAIR/QED σ)

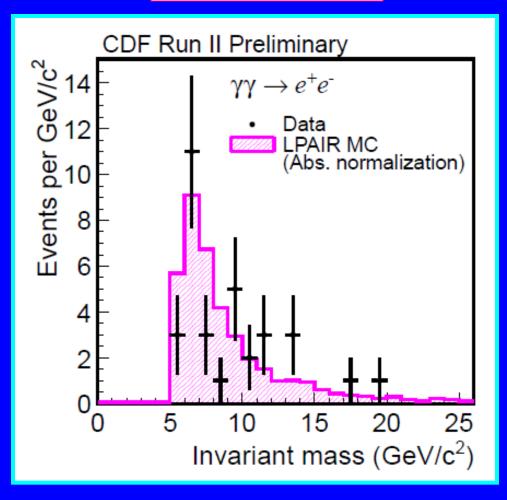

Distributions in $\eta(e)$ and $\varphi(e)$... flat ... also agree well with LPAIR + CDFSIM



Electron pair properties (34 events)

$$\gamma + \gamma \rightarrow e^+ + e^-$$

Photons ... Coulomb.. <p_T> very small.


Detector resolution (and Final State Radiation) dominates spread.

Mass spectrum (e+e-)

$$\gamma + \gamma \rightarrow e^+ + e^-$$

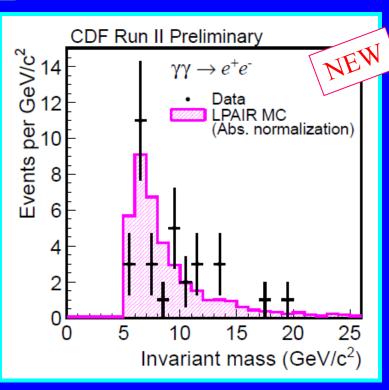
Final Results on $p + \overline{p} \rightarrow p + e^+e^- + \overline{p} \ via \ \gamma + \gamma (QED)$

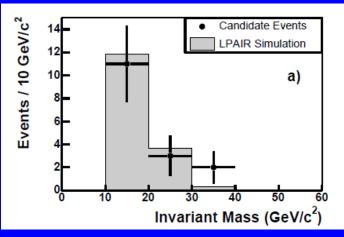
Table: Statistics summary of all relevant parameters for the measurement of the exclusive e^+e^- for an $E_{\rm T}$ cut of 2.5 GeV and $|\eta|<1.0$.

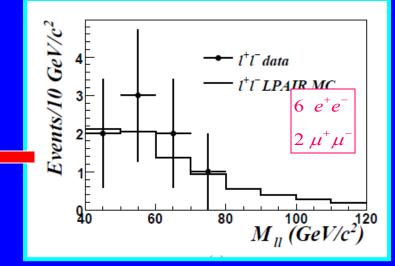
	Value	Stat. error	Syst. error
\mathcal{L}_{int}	1.11 fb ⁻¹	$\pm 0.7 \mathrm{pb}^{-1}$	
e ⁺ e ⁻ (events)	34		
Trigger efficiency	0.920	± 0.009	± 0.018
Reconstruction efficiency	0.508	± 0.007	± 0.016
Identification efficiency	0.912	± 0.017	± 0.013
Tracking efficiency	0.963	0.003	
Radiative acceptance	0.419	± 0.001	± 0.077
Exclusive efficiency	0.0680	negligible	0.004
Dissoc. B/G (events)	3.8	0.4	0.9

$$\sigma_{e^+e^-\text{excl.}}^{|\eta|<1,E_T>2.5\text{GeV}} = 2.88 \pm 0.59(\text{stat}) \pm 0.62(\text{sys})\,\text{pb}$$
 $\sigma_{\text{LPair}}^{|\eta|<1,E_T>2.5\text{GeV}} = 3.25 \pm 0.07\,\text{pb}$
 $\sigma_{e^+e^-\text{excl.}}^{|\eta|<1,E_T>5.0\text{GeV}} = 0.60 \pm 0.28(\text{stat}) \pm 0.14(\text{sys})\,\text{pb}$
 $\sigma_{\text{LPair}}^{|\eta|<1,E_T>5.0\text{GeV}} = 0.58 \pm 0.003\,\text{pb}$

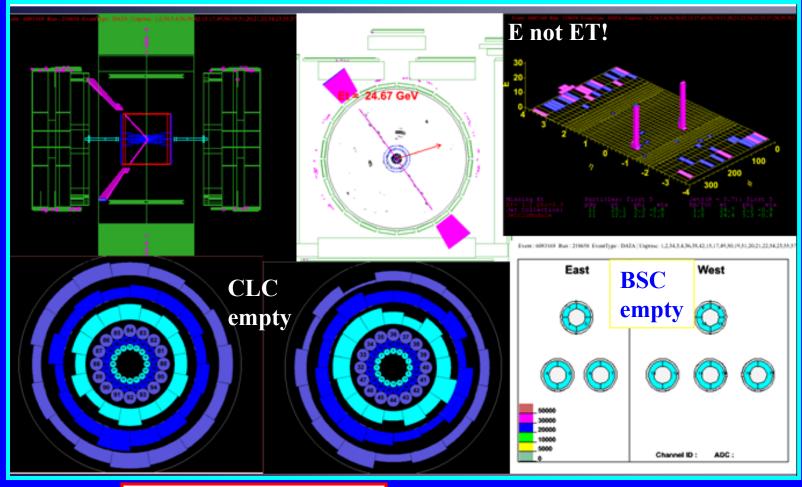
AGREE




Confidence that exclusive efficiency method and normalization are good


Mass spectra (e+e-): Other CDF results of QED (LPAIR)

CDF Phys.Rev.Lett. 98 (2007) 112001 (lst observation.)



All pairs have $180^{\circ} - \Delta \phi < 1^{\circ}$

CDF: Phys.Rev.Lett. 102 (2009) 222002 (Search for exclusive Z photoproduction)

$M(e^+e^-) = 49.3 \text{ GeV/c}^2$ $|\Delta \phi - \pi| = 6 \text{ mrad} = 0.34 \text{ deg}, p_T(e^+e^-) = 210 \text{ MeV}$

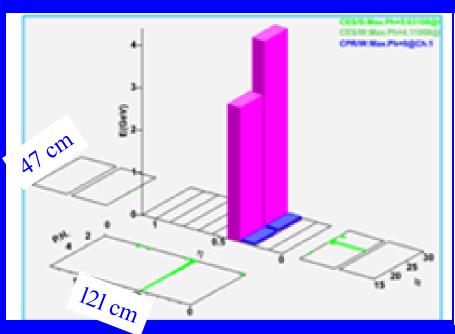
$$σ(p + \overline{p} \to p + e^+e^- + \overline{p})$$
 or μμ

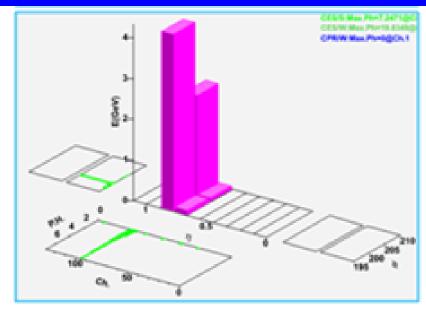
 $M > 40 \text{ GeV/c}^2$, $|η| < 4$
 $= 0.24^{+0.13}_{-0.10} \text{ pb}$

cf QED(LPAIR) = 0.256 pb

Mass reach Tevatron >~ HERA, LEP! At LHC: Allow pile-up: $N_{ass}=0$, $\Sigma p_{T} \sim 0$, $\Delta \phi \sim 180^{\circ}$

30

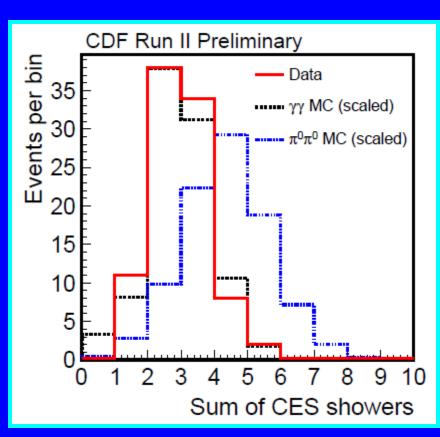

43 Events with no tracks in COT (yy candidates: $\pi^0\pi^0$?)

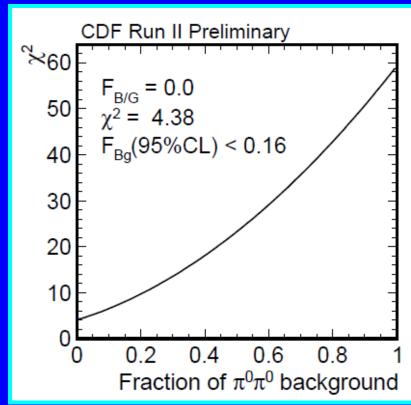


How do we know if they are $\gamma\gamma$ or $\pi^0\pi^0$? Note that exclusive $\mathbf{p} + \gamma \pi^0 + \mathbf{p}$ is forbidden (e.g. parity P) Count showers in CES strip chambers. Wires 1.45 cm, strips ~ 1.8 cm

Two photons cannot merge: $\theta(\gamma\gamma)_{\min} = 2 \times \left(\frac{m_{\pi}}{p_{\pi}}\right) = 3.2^{\circ} \text{ for } p_{\pi} = 5 \text{ GeV/c}$

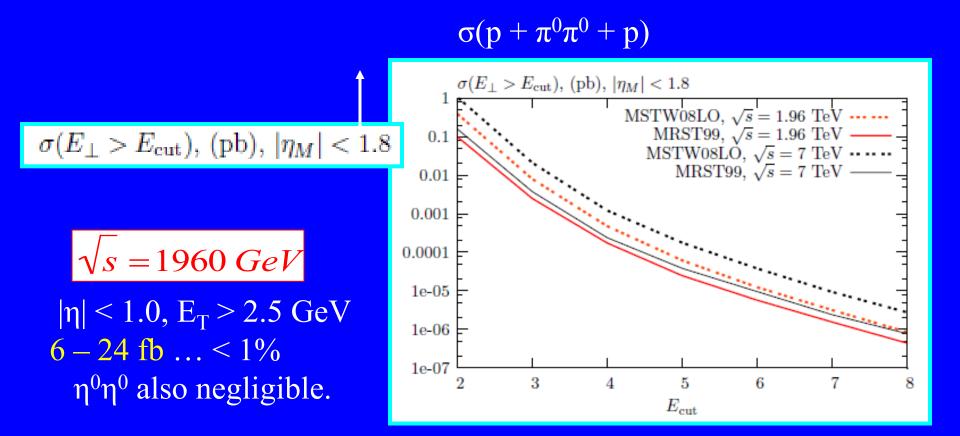
= 11.2 cm at 2 m.





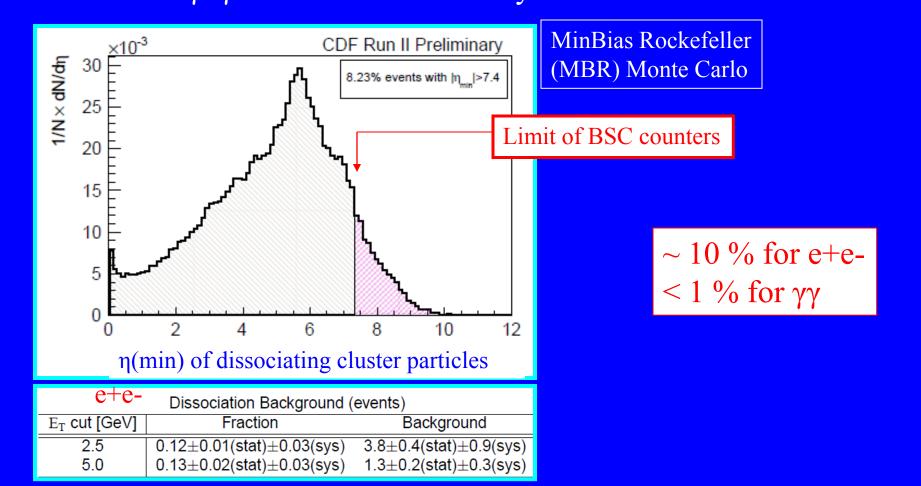
Are any events not $\gamma\gamma$ but $\pi^0\pi^0$?

Add # showers on both sides (there is no correlation)


Result: Best fit is with ZERO background from $\pi^0\pi^0 \to 4 \gamma$ Pearson's χ^2 test: fraction of $\gamma\gamma$ events in sample < 16% (95% C.L.)

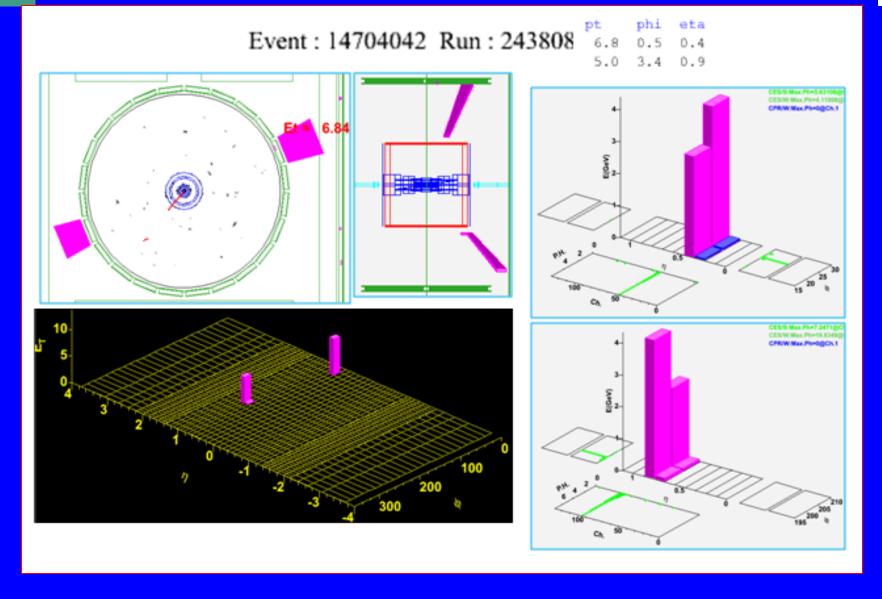
Theoretical Prediction of $p + \pi^0 \pi^0 + p$ (After our conclusion)

L.Harland-Lang, V.Khoze, M.Ryskin and W.J.Stirling, arXiv:1105.1626



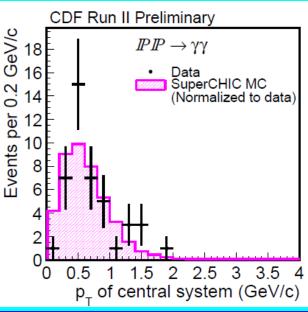
Theoretically exclusive $\pi^0\pi^0$ falls much faster with E_T or M than $\gamma\gamma$

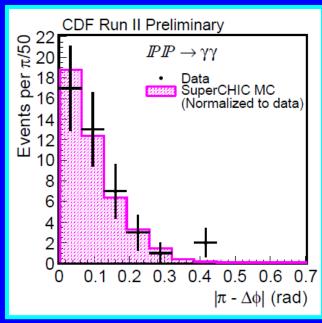
Undetected p-dissociation e.g. $p \rightarrow p \pi^+ \pi^-$ Still $\gamma+\gamma$ or IP + IP but not truly exclusive. Consider as B/G

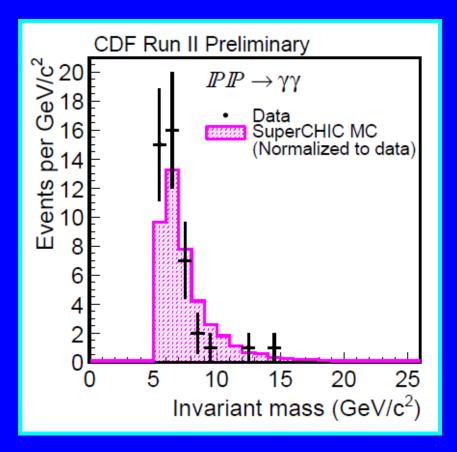


- Durham estimation using our selection rules with large rapidity gaps.
- • Dissociation background estimate for $E_{T,min}=2.5$ GeV: • 0.14 \pm 0.14(syst) events

Example of yy event






Kinematic distributions of photon pairs

Normalization to equal area (shape comparison)
Note differences: γ+γ vs IP+IP

Final results on

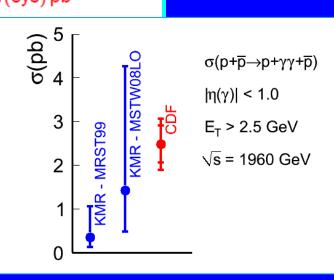

$p + \overline{p} \rightarrow p + \gamma \gamma + \overline{p} \text{ via } IP + IP \text{ (QCD)}$

Table: Statistics summary of all relevant parameters for the measurement of the exclusive photon pair cross section for an E_T cut of 2.5 GeV and $|\eta| < 1.0$.

	Value	Stat. error	Syst. error
\mathcal{L}_{int}	1.11 fb ⁻¹	$\pm 0.7 \mathrm{pb}^{-1}$	
$\gamma\gamma$ (events)	43		
Trigger efficiency	0.918	± 0.005	±0.018
Reconstruction efficiency	0.553	± 0.005	± 0.029
Identification efficiency	0.927	± 0.017	± 0.013
Exclusive efficiency	0.0680	negligible	0.004
Conversion acceptance	0.568	± 0.001	± 0.063
π^0 background	0.0		<16% (95% C.L.)
Dissoc. B/G (events)	0.14		0.14

$$\begin{array}{cccc} \sigma_{\gamma\gamma\text{excl.}}^{|\eta|<1,E_{T}>2.5\text{GeV}} &=& 2.48\pm0.42\text{(stat)}\pm0.41\text{(sys)}\,\text{pb} \\ \sigma_{\text{SuperCHIC (MSTW08LO)}}^{|\eta|<1,E_{T}>2.5\text{GeV}} &=& 1.42^{\times3}_{\div3}\,\text{pb} \\ \sigma_{\text{SuperCHIC (MRST99)}}^{|\eta|<1,E_{T}>2.5\text{GeV}} &=& 0.35^{\times3}_{\div3}\,\text{pb} \end{array}$$

Summary of Exclusive γγ

We have observed (43 events, $>> 5 \sigma$) the new clean process:

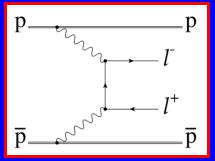
$$p + \overline{p} \rightarrow p + \gamma \gamma + \overline{p}$$

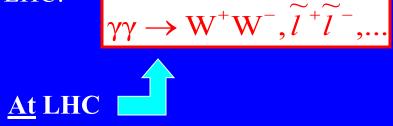
We needed:

A good level 1 trigger (EM showers + Forward gap-seeds with BSC-1)

Extended rapidity coverage of CDF to $\eta = \pm 7.4$

Understood noise levels in all calorimeters and counters.


Demonstrated understanding of "empty events" (non-interaction in 0-bias)

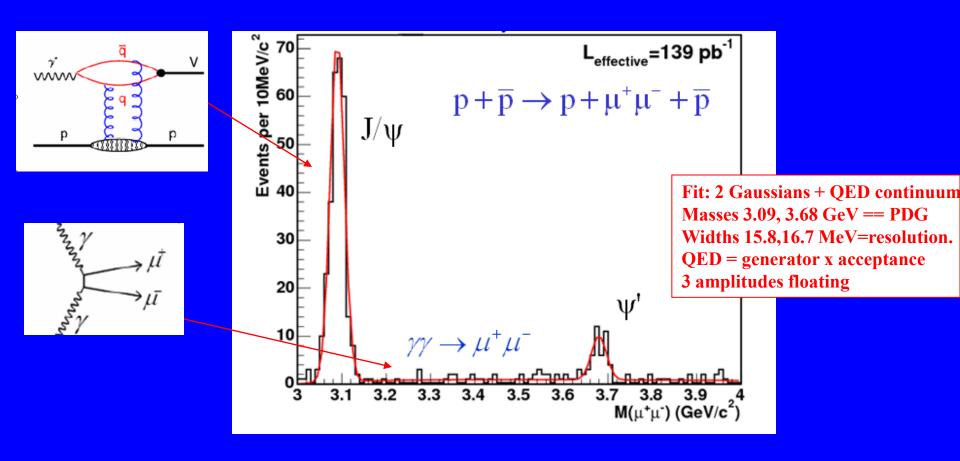

Used $p + \bar{p} \rightarrow p + e^+e^- + \bar{p} \text{ via } \gamma\gamma \text{ (QED)}$ as a control (σ known)

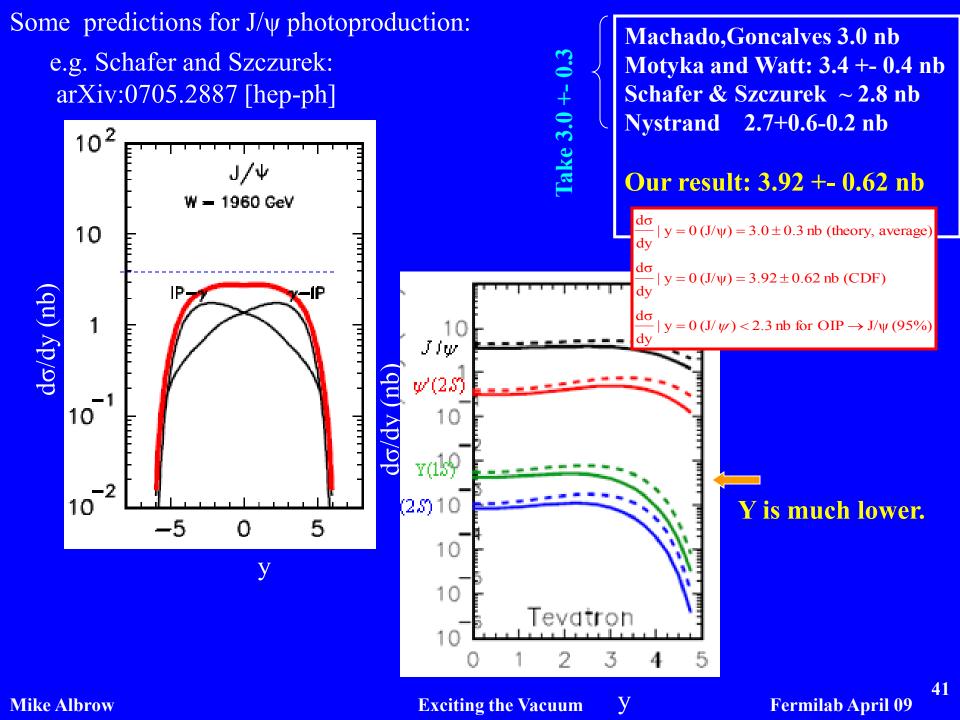
Showed that EM showers are from γ and not π^0 as theoretically expected

All our e^+e^- and $\mu^+\mu^-$ measurements agree with QED: So what?

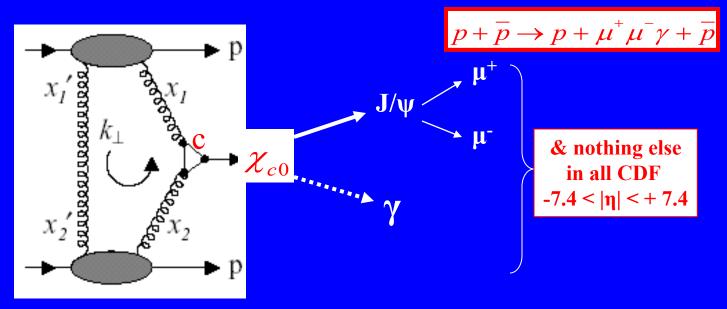
- 1) It shows we know how to select rare exclusive events in hadron-hadron environment
- 2) No other h-h cross section is so well known theoretically except Coulomb elastic (inaccessible).
- 3) Outgoing p-momenta extremely well-known (limited by beam spread). Calibrate forward proton spectrometers.
- 4) Practice for other γγ collisions at LHC:

Has been considered as a calibration of luminosity monitors at LHC. Theory precise but acceptance, efficiencies and background (including p-dissociation) probably limit uncertainty to $\sim 2-3\%$

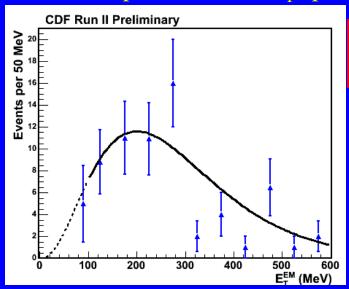



Van der Meer scans can probably reach that with improvements

Observation of Exclusive Charmonium Production and $\gamma\gamma \to \mu^+\mu^-$ in $p\bar{p}$ Collisions at \sqrt{s} =1.96 TeV.


CDF: PRL 102, 242001 (2009)

40

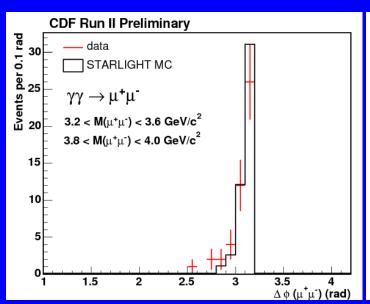


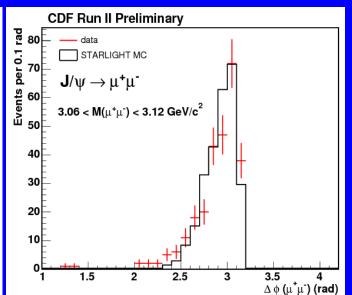
Exclusive $\chi_c \rightarrow J/\psi + \gamma \rightarrow \mu^+\mu^- \gamma$

Now allow photons: EM E_T spectrum with J/ψ mass cut:

J/ ψ have photons : 286 \rightarrow 352 ψ (2S) do not : 39 \rightarrow 40

$$\chi_c \longrightarrow J/\psi + \gamma$$

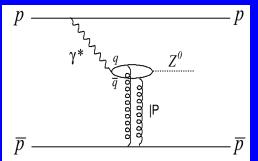

42


Kinematic fits of $\Delta \phi(\mu + \mu -)$ and pT($\mu + \mu -)$ for events with γ shower agree with χ_c simulations.

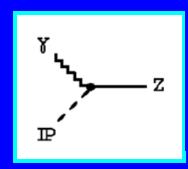
$$\# \chi_c = 65 + / - 8$$

Quantity	This analysis	Theory
•	3.92±0.62	3.0±0.3
$\frac{\frac{d\sigma}{dy}(y=0)J/\psi \text{ (nb)}}{\frac{d\sigma}{dy}(y=0)\psi(2S) \text{ (nb)}}$ $\frac{\frac{d\sigma}{dy}(y=0)\chi_c^{\circ} \text{ (nb)}}{}$	0.53 ± 0.14	$0.46^{+0.11}_{-0.04}$
$\frac{d\sigma}{du}(y=0)\chi_c^{\circ}$ (nb)	76±14	$130 \pm \approx 50$
$\sigma(box, QED, pb)$	2.7±0.5	2.18 ± 0.02
$\frac{d\sigma}{dy}(y=0)OIP \to J/\psi$	<2.3 nb (95% C.L.)	
$\frac{\tilde{J}/\psi}{\chi_c}$	$0.052 {\pm} 0.015$	No Prediction

No evidence for odderon

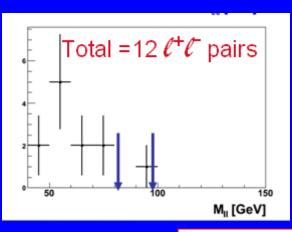


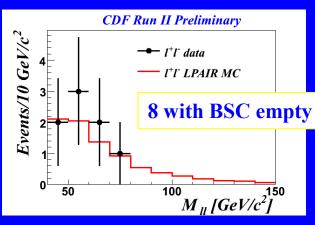
90 nb

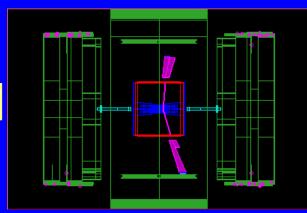

Search for Exclusive Z production

Allowed in SM (like V)

but $\sigma \sim 0.3$ fb (Motyka+Watt)




Could be enhanced by BSM loops



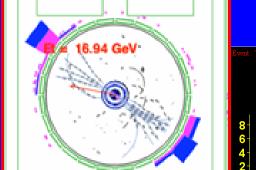
Interesting?!
γ-IP-Z eff.coupling.
ZOOM IN to see how!

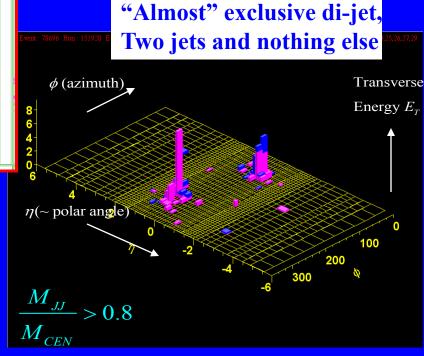
e⁺e⁻ and $\mu^+\mu^-$, M > 40 GeV; 2.2fb-1, 31K, 183K in Z window 82-98 GeV Require no other interaction, no additional tracks, all calorimeters in noise (E)

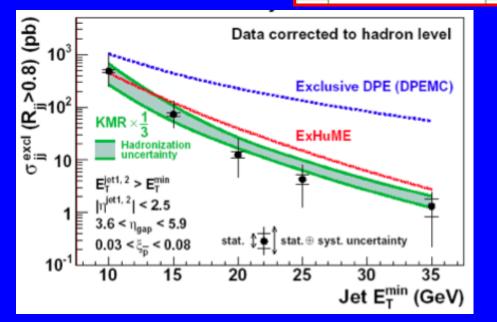
 $\sigma(Z_{\text{excl}}) < 0.96 \text{ pb } (95\% \text{ C.L.})$ $\sigma(Z_{\text{excl}}) \text{ Theory } = 0.3 \text{ fb}$ (13 fb a LHC)

 \sim record E($\gamma\gamma$)

Search was in "no-PU" events. Have 10 x data if PU allowed. Great LHC topic!


✓ JET
✓ JET


GAP


Observed in CDF, QCD tests

& related to p+H+p

$$R_{JJ} = \frac{M_{JJ}}{M_{x}} \approx 1.0$$

Interesting QCD: gap survival, Sudakov factor Nearly all jets should be gg qq suppressed by M(q)/M(JJ) (Jz=0 rule)

Gluon jet physics.

The Ultimate Vacuum Excitation

Above the χ_b , the only "known" heavier particle with vacuum Q.Nos. is the Higgs.

Vacuum is everywhere = Higgs field.

Hit the vacuum hard with a pair of weak probes, and you can promote them

from Virtual → Real

Top quarks work too (they have weak charges)

gg→H is the main production process at LHC

Sometimes: Another gluon cancels the color

No other parton-parton collisions occur

All gluon radiation is suppressed (Sudakov)

But if you see them, and measure both p, powerful benefits

$$M_{CEN} = \sqrt{(p_1 + p_2 - p_3 - p_4)^2}$$

 $\sigma(M_H) \sim 2 \text{ GeV/event}$

 J,C,P,Γ ?

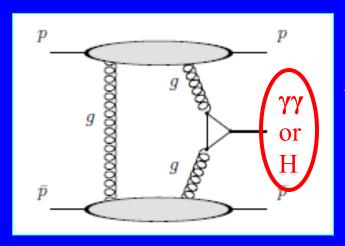
u-loop: $\gamma\gamma$ c-loop: χ_c^0

b-loop: χ_b^0 t-loop: H

Price $\sim 1/2000 - 1/10000$

 σ (excl) ~ 1 – 10 fb cf ~ 20 pb

Exciting the Vacuum


Fermilab April 09

Mike Albrow

Exclusive Higgs at LHC: Implications

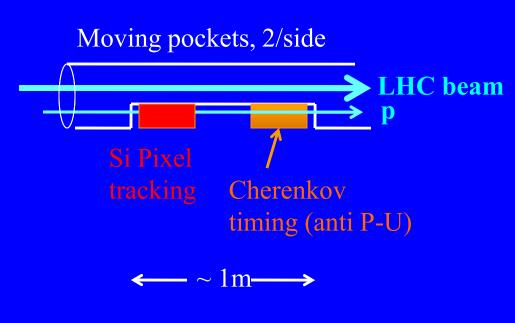
Same process from QCD perspective. u,d,s,c,b loops \rightarrow (b and) t loops Q² different. x(g) similar & χ_c , χ_b

 $\sigma(SMH \sim 120 \text{ GeV}) \sim 10 \text{ fb (MSSM bigger)}$

Measuring both protons at 240m & 420m : $\sigma(M) \sim 2$ GeV/event S:B only a few. \rightarrow J=0, CP = ++, $\Gamma(H)$, Γgg .

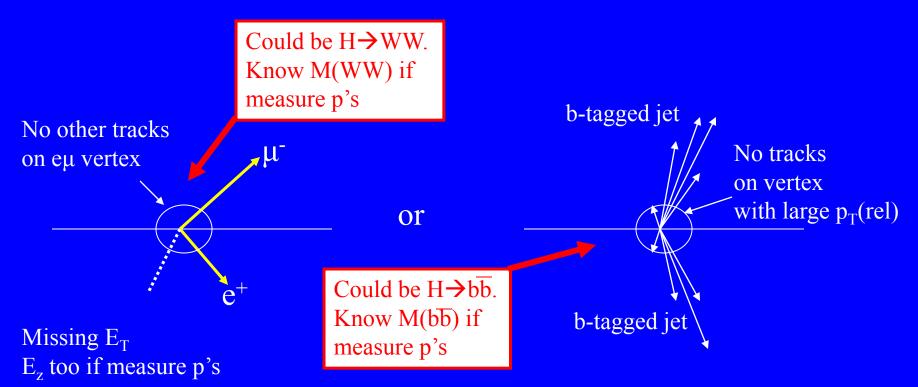
Technical Proposal being prepared to add very forward proton spectrometers to CMS & ATLAS in 2014

Technical proposals under development to add precision p-detection:


ATLAS : AFP = Atlas Forward Protons +/- 220m later 420m

(Joint R&D was called FP420 ... many common solutions)

Tracking: 1 µrad = 8 µm/8 m, Rad hard, edgeless, 2 cm² ~ 16 layers Timing: $\sigma(t) \sim 10$ ps: Cherenkov: gas with MCP-PMT; quartz with SiPMs. Precision mechanics, BPMs, reference time signals, ... $\sigma(t) = 10$ ps $\rightarrow \sigma(z) = 2.1$ mm cf $\sigma(z$, interactions) ~ 50 mm



The cleanest, simplest inelastic pp collisions.

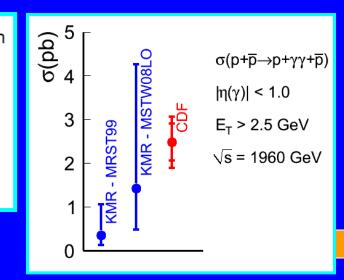
Class 3 Interactions at the LHC: "Inelastic, with no hadrons produced"

Consider WW + nothing (p's go down pipe, small p_T) $\sigma (\gamma \gamma \rightarrow W^+W^-) \sim 50 \text{ fb} \dots \text{ or } H + \text{ nothing}$

Conclusions: I

In CDF we have observed exclusive 2-photon production, i.e. $p + \overline{p} \rightarrow p + \gamma \gamma + \overline{p}$ with $E_T(\gamma) > 2.5$ GeV and with no hadrons.

43 events with background consistent with zero, and < 8 events (95% CL)


The cross section is ~ 2.5 pb, consistent with a theoretical prediction.

This confirms the picture of a hard pomeron as {gg}.

This is the first OBSERVATION of exclusive 2-photon production in hadron-hadron collisions.

Exclusive Photon-Pair Production		
Theoretical	$\sigma_{ ext{SuperCHIC}}^{ \eta <1, ext{E}_{ ext{T}}>2.5 ext{GeV}} = 0.35_{\div 3}^{ imes 3} ext{pb} ext{ (MRST99)}$	
	$\sigma_{\text{SuperCHIC}}^{ \eta <1,E_{\text{T}}>2.5\text{GeV}} = 1.42^{\times 3}_{-3}\text{pb} \text{ (MSTW08LO)}$	
Measured	$\sigma_{\gamma\gamma { m excl.}}^{ \eta <1,E_{T}>2.5{ m GeV}} = 2.48 \pm 0.42 { m (stat)} \pm 0.41 { m (sys)} { m pb}$	

Note: This corresponds to 1 in 25 billion inelastic collisions!

Conclusions: II

We have also (earlier) observed: Exclusive e+e- and $\mu+\mu$ - pairs (QED: $\gamma\gamma$ \longrightarrow) Exclusive J/ ψ and ψ (2S) ... photoproduction Exclusive IP + IP $\longrightarrow \chi_c$ (through c-quark loop) Exclusive IP + IP \longrightarrow Jet + Jet

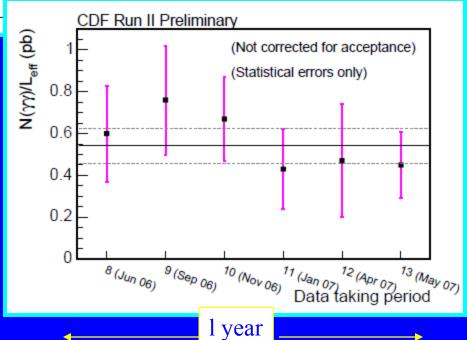
These processes, especially χ_c and $\gamma\gamma$, confirm that at the LHC, if there is a Higgs boson, p+p p+H+p exclusive must happen, with $\sigma(SMH-120) \sim 10$ fb. More in MSSM scenarios...

→ 1000 x Acc. x Eff. events /year at 10^{34} cm⁻²s⁻¹. A few dozen events : M (σ < 1 GeV), J, CP, Γ_{gg})

Need to install high precision spectrometers at 240m >>> 420 m from IP

Thank you for your attention

Rate of yy Events is constant over the data year


Table: $\gamma\gamma$ candidates

		E _T	> 2.5 GeV
Period	$\mathcal{L}_{ ext{eff}}[ext{pb}^{-1}]$	$\gamma\gamma$	$\div \mathcal{L}_{ ext{eff}}[ext{pb}]$
8	11.7	7	0.60
9	11.8	9	0.76
10	16.5	11	0.67
11	11.7	5	0.43
12	6.4	3	0.47
13	17.7	8	0.45
Tot:	75.8	43	

Rate consistent over time

Table: Conversion Acceptance

E _T cut (GeV)	2.5	
Acceptance	0.568	
Stat Err	± 0.001	
Syst Err	± 0.063	

