

Searches for BSM physics using long-lived signatures with the CMS detector

Shubham Dutta

On behalf of CMS Collaboration

Saha Institute of Nuclear Physics, Kolkata Homi Bhabha National Institute, Mumbai

BCVSPIN - 2024

December 9, 2024

What are LLPs?

- Particles that have relatively long lifetime (> O(ns)), that travel significant distances before decaying (0.01 1 m)
- Naturally arise in many BSM scenarios like SUSY, dark matter models and hidden sector theories
- Main signature: displaced origin
 - may have other signature depending on the analysis

distance travelled

From H. Russell's Slides

Why are they long-lived?

- \checkmark Small couplings to SM \rightarrow decay channels are suppressed
- \checkmark Kinematics \rightarrow small phase-space volume, suppressing decay
- $\checkmark\,$ Decays via Heavy Mediator \rightarrow the decay width is suppressed by a factor of $(m/M)^p$

Trigger and Dataset

LLP Searches at CMS

From H. Russell's Slides

Neutrino oscillations \Rightarrow Neutrinos are massive

Not explained by SM

Possible solution: Extend SM to vMSM

 \succ Add right-handed sterile neutrinos v_R

 $HNL \sim (\nu_R + \nu_R^C)$

> Gets mass by Seesaw mechanism

$$\mathcal{L}_{ ext{mass}} = -rac{1}{2} egin{pmatrix} ar{
u}_L & ar{
u}_R^c \end{pmatrix} egin{pmatrix} 0 & m_D \ m_D & M \end{pmatrix} egin{pmatrix}
u_L^c \
u_R \end{pmatrix} + ext{h.c}$$

Outcomes:

- > Mass eigenstates N_1 , N_2 , N_3 (ordered in mass)
- \succ Lightest neutrino N₁ serves as DM candidate

 \succ N₂ and N₃ are LLPs

BCVSPIN - 2024

5

EXO-22-019

SM

 $m_{\nu} =$

 $\nu \sim (\nu_L + \nu_L^C)$

$\ell_{P} = \mu \text{ or } e^{\pm}$ $\ell_{P} = \mu \text{ or } e^{\pm}$ $\psi_{\ell_{P}}$ $\psi_{\ell_{P}}$

- > Analysis performed using B-parking dataset
 - \checkmark Triggered by muon

В

- \checkmark 3 flavor channels explored in the analysis: $\mu\mu, \mu e, e\mu$
- > Strategy:
 - Reconstruct displaced vertex using l^{\pm} and π^{\pm} tracks
 - Bump hunt in $(l^{\pm}\pi^{\pm})$ mass spectrum
- > Event selection using parametric neural network (list of variables)
- > Background for training obtained by taking 1/1000 of events available in data

EXO-22-019

- > Signal rate = F(m_N, V_N) (link) $|V_N|^2 \equiv |V_{eN}|^2 + |V_{\mu N}|^2 + |V_{\tau N}|^2$ $r_{\ell} \equiv |V_{\ell N}|^2 / |V_N|^2 \quad \ell = (e, \mu, \tau)$
- \succ The limits are calculated in terms of the mass $m_{\rm N}$ and mixing $V_{\rm N}$
- \succ The best limit is obtained for muon exclusive mixing (0, 1, 0) at 95% CL

$(r_{ m e},r_{\mu},r_{ au})$	Scenario	$ V_{\rm N} ^2$	Mass~(GeV)
(0,1,0)	Majorana	2.0×10^{-5}	1.95
(0, 1/2, 1/2)	Majorana	4.0×10^{-5}	1.42
(1/2, 1/2, 0)	Majorana	3.3×10^{-5}	2.15
(1/3, 1/3, 1/3)	Majorana	5.0×10^{-5}	2.15
(0,1,0)	Dirac-like	3.2×10^{-5}	1.68
(0, 1/2, 1/2)	Dirac-like	6.5×10^{-5}	1.68
(1/2, 1/2, 0)	Dirac-like	5.7×10^{-5}	1.68
(1/3, 1/3, 1/3)	Dirac-like	8.5×10^{-5}	1.68

EXO-22-019

Heavy Stable Charged Particle Search

- > Model independent search for HSCPs
- \blacktriangleright Main signature \rightarrow Isolated high p_{T} track with Large energy loss per unit length (dE/dx)

> m_{HSCP} > 100 GeV ⇒ β = v/c significantly smaller than 1 ✓ Distinguishable from ultra-relativistic SM particles

- \succ Search performed using Run 2 data of 2017 and 2018 \rightarrow Total luminosity $101~{
 m fb^{-1}}$
- > Only barrel region of the tracker is used
 - 4 pixel detector layer (after upgrade in 2017) and 10 layers of strip detectors
 - Coverage: $|\eta| < 1.4$
 - Track resolution:
 - $p_T \! \rightarrow \! 2.8\%$ at 100 GeV
 - position \rightarrow 10(30) μm in transverse (longitudinal) IP

EXO-18-002

> For Pixel detector $F_{i}^{\text{Pixels}} = 1 - \prod_{j=1}^{n} P_{j}' \sum_{k=0}^{n-1} \frac{\left[-\ln(\prod_{j=1}^{n} P_{j}')\right]^{k}}{k!}$ $P_i \rightarrow \text{MIP}$ hit probability $n \rightarrow \text{number of pixel hits (excluding layer 1)}$ For Strip detector $G_{i}^{\text{Strips}} = \frac{3}{N} \left(\frac{1}{12N} + \sum_{i=1}^{N} \left| P_{j} \left(P_{j} - \frac{2j-1}{2N} \right)^{2} \right| \right)$ $P'_i \rightarrow MIP$ hit probability to produce charge $N \rightarrow$ number of hits equal or less than *i*th measured charge 5,0.9 CMSSimulation 5 0.9 CMS Simulation

0.6 0.5 0.5 0.4^E 0.4^E 0.3Ē 0.3E 10^{-2} 0.2 0.2E 0203040506070809 □Pixels -Pixels

Mass Method

> Ionization Estimator

$$I_{\rm h} = \left(\frac{1}{N}\sum_{j}^{N} (\mathrm{d}E/\mathrm{d}x_j)^{-2}\right)^{-1/2}$$

- ► Mass of HSCP $I_{\rm h} = K \frac{m^2}{p^2} + C$ $m \to \text{mass}$ $p \to \text{momentum}$
 - Constants K and C are determined from a sample of lowmomentum particles (link)
 - Equation is inverted to calculate the mass of the candidate particle from dE/dx measurement

BCVSPIN - 2024

Shubham Dutta

Heavy Stable Charged Particle Search

Results

 Particle Search
 EXO-18-002

 101 fb⁻¹ (13 TeV)
 101 fb⁻¹ (13 TeV)

 ber Limits
 95% CL Upper Limits

 it for g (inas)
 05. limit for pair prod. ₹ (mass)

 it for t (mass)
 05. limit for gMSB SPS7 ₹ (mass)

- Results interpreted based on many signal production scenarios
- Limits calculated for production cross-section vs. mass of HSCP at 95% CL

- Search for LLPs decaying to hadronic final state
- > Focusing on low mass LLP :

$$m_{LLP} = 10 - 60 \text{ GeV}$$

 $c\tau = 1 - 1000 \text{ mm}$

- \blacktriangleright Main signature \rightarrow displaced-jet vertex (DV) and tracks
- \blacktriangleright Benchmark Model \rightarrow Higgs portal to hidden sector
- Search performed using Run 3 data of 2022 (13.6 TeV)
 - \rightarrow Total luminosity 34.7 fb^-1
- > Dedicated displaced-jet triggers used to collect data

BCVSPIN - 2024

EXO-23-013

LLP Search with Displaced Jets

The tagger scores are used as variables for the ABCD method to estimate the background in SR.

Results

13

EX0-21-008

Η

р

22.8° producing shower in 20.7° the muon system 15.4° 14.0°

Search for LLPs

- > Main signature \rightarrow Cluster of hits in the muon system in the direction of missing transverse momentum (MET or $\vec{p}_{\rm T}^{\rm miss}$)
- \succ Benchmark Model \rightarrow Twin Higgs and Dark Shower Model
- Search performed using full Run 2 data (13.6 TeV)
 - \rightarrow Total luminosity $138~fb^{-1}$
- Events selected based on MET
 - ✓ MET > 120 GeV HLT
 - \checkmark MET $> 200~{\rm GeV}$ in offline selection

3 mutually exclusive search categories:

- Double Clusters: CSC-CSC, DT-DT and CSC-DT
- 1 DT Cluster
- 1 CSC Cluster

> Two discriminating variables defined for the analysis

- * $N_{hits} \rightarrow Number$ of hits in the cluster
- $\Delta \phi(\vec{\rho}_{\tau}^{\text{miss}}, \text{ cluster}) \rightarrow \text{Angular separation between MET and the cluster}$
- These are correlated for signal and uncorrelated for background. So, ABCD method employed to estimate background in SR

15

Results

 \succ Results interpreted with signal models with varying mass of S

 \blacktriangleright Limits calculated for BR of H \rightarrow SS vs. $c\tau$ of S at 95% CL

 \blacktriangleright Results interpreted with signal models with varying mass of S

 \blacktriangleright Limits calculated for BR of H \rightarrow SS vs. $c\tau$ of S at 95% CL

Future Outlook

- ✤ New ML triggers
 - ★ Auto-encoder based AXOL1TL trigger for selecting anomalous events
 - CNN based calorimeter trigger CICADA
- * Inclusion of tracker information at L1 trigger \rightarrow improved selection efficiency for events with displaced vertices
- Proposed detector upgrades at CMS like Massive Timing Hodoscope for Ultra Stable neutral pArticles (MATHUSLA), a surface based dedicated detector for neutral LLPs

More LLP searches coming-up, STAY TUNED!

Thank you for your attention!

ABCD Method

CMS Detector

22

BCVSPIN - 2024

Shubham Dutta

SINP, Kolkata

List of Input Variables for pNN

- 1. Transverse momenta: $p_{\rm T}(\ell_{\rm B}), p_{\rm T}(\ell^{\pm}), p_{\rm T}(\pi^{\mp}).$
- 2. Invariant-masses: $m(\ell_{\rm B}\pi^{\mp}), m(\ell_{\rm B}\ell^{\pm}), m(\ell_{\rm B}\ell^{\pm}\pi^{\mp}).$
- 3. Track separation in the η - φ space (where φ is the azimuthal angle) $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2} \approx \Delta R(\ell_{\rm B}, \ell^{\pm}), \Delta R(\ell_{\rm B}, \pi^{\mp})$
- 4. Displaced vertex properties: $\cos \theta$, fit *p*-value.
- 5. Displacement-related quantities: $L_{xy}/\sigma_{L_{xy}}$ and $d_{xy}/\sigma_{d_{xy}}$ of the pion.
- 6. Track-related information: number of layers of the CMS silicon pixel and strip tracker traversed by the lepton(s) and pion from the DV.
- 7. Lepton isolation, defined in a cone of ΔR smaller than 0.3 around the lepton momentum vector

<u>back to main</u>

Shubham Dutta

pNN Validation

Invariant Mass distribution

Estimation of Signal Events

$$N_{\rm sig}\left(\ell_{\rm B}\ell, m_{\rm N}, c\tau_{\rm N}, \vec{r}\right) = \frac{\sigma_{\rm B}^{\rm eff}}{f_u} \mathcal{L}\sum_{\rm q} F_{\rm N}^{\rm q}\left(\ell_{\rm B}\ell, m_{\rm N}, c\tau_{\rm N}, \vec{r}\right)\epsilon_{\rm sig}^{\rm q}\left(\ell_{\rm B}\ell, m_{\rm N}, c\tau_{\rm N}\right)$$

$$\frac{1}{c\tau_{\rm N}} = |V_{\rm N}|^2 \left(r_{\rm e} \widetilde{\Gamma}_{\rm e} \left({\rm N} \right) + r_{\mu} \widetilde{\Gamma}_{\mu} \left({\rm N} \right) + r_{\tau} \widetilde{\Gamma}_{\tau} \left({\rm N} \right) \right)$$

back to main

Control Region and Signal Region for Mass Method

control region A defined as $G_{i}^{\text{Strips}} < 0.018$ and $55 < p_{T} < 70 \text{ GeV}$ control region B defined as $G_{i}^{\text{Strips}} > 0.22$ and $55 < p_{T} < 70 \text{ GeV}$ control region C defined as $G_{i}^{\text{Strips}} < 0.018$ and $p_{T} > 70 \text{ GeV}$ signal region D is defined as $G_{i}^{\text{Strips}} > 0.22$ and $p_{T} > 70 \text{ GeV}$.

$$N_{bkg}(D) = \frac{N(B)N(C)}{N(A)}$$

Determining constants K and C

Parameter	Da	ata	Simulation		
(MeV/cm)	2017	2018	2017	2018	
K	2.54 ± 0.01	2.55 ± 0.01	2.50 ± 0.01	2.49 ± 0.01	
С	3.14 ± 0.01	3.14 ± 0.01	3.18 ± 0.01	3.18 ± 0.01	

back to main

Mass Spectrum

Pass and Fail Region for Ionization Method

Exclusion Limits

Model	Ionizatio	n method	Mass method		
	Exp. (TeV)	Obs. (TeV)	Exp. (TeV)	Obs. (TeV)	
ĝ	2.06 ± 0.06	2.06	2.08 ± 0.02	2.08	
ĩ	1.43 ± 0.05	1.40	1.47 ± 0.02	1.47	
GMSB SPS7 $\tilde{\tau}$	0.86 ± 0.07	0.85	0.87 ± 0.05	0.85	
pair-prod. ${\widetilde au}_{ m R}$	0.53 ± 0.03	0.52	0.50 ± 0.07	0.51	
pair-prod. $\tilde{\tau}_{\rm L}$	0.66 ± 0.04	0.64	0.67 ± 0.06	0.61	
pair-prod. $\tilde{\tau}_{L/R}$	0.71 ± 0.04	0.69	0.75 ± 0.08	0.64	
τ' ($Q = 1e$) from DY prod.	1.05 ± 0.05	1.02	1.14 ± 0.03	1.14	
τ' ($Q = 2e$) from DY prod.	1.35 ± 0.05	1.32	1.41 ± 0.02	1.41	
$Z'_\psi o au' au'$	3.99 ± 0.21	3.95	4.03 ± 0.01	4.03	
$Z'_{ m SSM} ightarrow au' au'$	4.53 ± 0.23	4.38	4.56 ± 0.01	4.57	

Control Region and Signal Region

- Region A: events with $0.95 < g_{\text{displaced}} < 0.9985$, $0.95 < g_{\text{prompt-veto}} < 0.985$;
- Region B: events with $0.95 < g_{\text{displaced}} < 0.9985, 0.985 < g_{\text{prompt-veto}} < 1.0;$
- Region C: events with $0.9985 < g_{displaced} < 1.0, 0.95 < g_{prompt-veto} < 0.985$; and
- Region D, the signal region (SR): events with $0.9985 < g_{\text{displaced}} < 1.0, 0.985 < g_{\text{prompt-veto}} < 1.0.$

Sdisplaced	Predicted background	Observation	Z-value	
(0.96, 0.97)	68.39 ± 12.60	52	-1.06	
(0.97, 0.98)	67.55 ± 9.46	77	0.80	
(0.98, 0.99)	76.18 ± 8.95	72	-0.27	
(0.99, 0.995)	38.82 ± 5.08	45	0.84	$g_{\rm prompt-veto} > 0.985$
(0.995, 0.998)	25.41 ± 3.87	26	0.22	
(0.998, 0.9985)	2.83 ± 1.17	5	1.25	
(0.9985, 1.0)	3.34 ± 1.28	3	0.19	

Exclusion Limit Plots

Exclusion Limit Plots

3 mutually exclusive search categories:

- Double Clusters: CSC-CSC, DT-DT and CSC-DT
- 1 DT Cluster
- 1 CSC Cluster

Control Region and Signal Region

Double Clusters

Bin A includes events with the CSC cluster with $N_{\rm hits}>100$ and the DT cluster with $N_{\rm hits}>80;$

Bin B includes events with the CSC cluster with $N_{\rm hits} > 100$ and the DT cluster with $N_{\rm hits} \leq 80$;

Bin C includes events with the CSC cluster with $N_{\rm hits} \leq 100$ and the DT cluster with $N_{\rm hits} \leq 80;$

Bin D includes events with the CSC cluster with $N_{\rm hits} \leq 100$ and the DT cluster with $N_{\rm hits} > 80.$

Category	Validation region	$N_{\rm B}$	N _C	$N_{\rm D}$	$N_{\rm BD}$	$\lambda_{\mathbf{A}}$	$N_{\rm A}$
DT-DT	Inverted $\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{cluster})$ Inverted N_{hits}		11 2		1 1	$0.02 + 0.05 \\ 0.12 + 0.27$	0 0
CSC-CSC	Inverted $\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{cluster})$ Inverted N_{hits}		8 4		2 2	$0.12 + 0.18 \\ 0.25 + 0.38$	0 0
DT-CSC	Inverted $\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{cluster})$ Inverted N_{hits}	0 2	19 11	3 1		$0+0.3 \\ 0.18+0.23$	0 0

Single Clusters

Bin A includes events with $\Delta \phi(\vec{p}_{T}^{\text{miss}}, \text{cluster}) < 0.75 \text{ and } N_{\text{hits}} > 130;$ bin B includes events with $\Delta \phi(\vec{p}_{T}^{\text{miss}}, \text{cluster}) \ge 0.75$ and $N_{\text{hits}} > 130;$ bin C includes events with $\Delta \phi(\vec{p}_{T}^{\text{miss}}, \text{cluster}) \ge 0.75$ and $N_{\text{hits}} \le 130;$ bin D includes events with $\Delta \phi(\vec{p}_{T}^{\text{miss}}, \text{cluster}) < 0.75$ and $N_{\text{hits}} \le 130$.

Validation region	$N_{\rm B}$	$N_{\rm C}$	N_{D}	$\lambda_{ m A}$	$N_{\rm A}$
Out-of-time region	8	442	121	2.2 + 0.8	3
In-time region	8	317	87	2.2 + 0.8	2

Double Cluster Results

Single Cluster Results

Shubham Dutta