

Recent results and prospects from the ALICE experiment

Amrit Gautam For the ALICE Collaboration The University of Kansas

Overview

- The physics program of the ALICE experiment
- The ALICE detectors and systems
- Recent Run 2 results
- ALICE Run 3 upgrades, and results from the Run 3 data
- ALICE Run 4 upgrades and ALICE3

Physics motivation

Heavy ion collisions and the QGP evolution

Hot and cold QCD matter

Hot QCD

Re-creating the quark-gluon plasma (QGP) with very hot temperate and energy densities that existed in the early Universe. <u>Deconfined state of</u> <u>quarks and gluons</u>

The ALICE experiment

39 countries, 162 institutes, 1889 members

ALICE is located at the LHC point 2

ALICE: A Large Ion Collider Experiment

Heavy ion collisions and the QGP evolution

Probing gluon dynamics with UPCs

UPCs: Ultra Peripheral Collisions Exploring photon-induced processes at high energies

Energy dependence of coherent J/ ψ meson in UPC Bjorken-*x* 10^{-2} 10^{-3} Bjorken-x 10^{-4} 10^{-5} 10^{-2} 10^{-3} 10^{-5} 10^{-4} $\mathcal{S}_{\mathsf{Pb}}$ • ALICE, Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV (qn) (qdλ) ο 1.8 CMS, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV (arXiv:2303.16984) ALICE, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV (arXiv:2305.19060) CMS, Pb-Pb $\sqrt{s_{\text{NN}}}$ = 5.02 TeV (arXiv:2303.16984) Guzey et al., using ALICE Pb–Pb $\sqrt{s_{NN}}$ = 2.76 TeV (PLB 726 (2013) 290-295) 1.6 Contreras, using ALICE Pb–Pb $\sqrt{s_{_{\rm NN}}}$ = 2.76 TeV (PRC 96 (2017) 015203) Guzey et al., using ALICE Pb–Pb $\sqrt{s_{NN}}$ = 2.76 TeV (PLB 726 (2013) 290-295) Contreras, using ALICE Pb–Pb $\sqrt{s_{NN}}$ = 2.76 TeV (PRC 96 (2017) 015203 Impulse approximation - · - · LTA 1.4 Impulse approximation - - STARlight ---- GG-HS --- STARlight 1.2 EPS09 LO ---- b-BK-A 10^{2} - EPS09 LO · • • • • • ···· LTA ---- GG-HS 0.8 ---- b-BK-A 0.6 10 0.4 0.2 10² 2×10² 10^{3} 20 30 40 50 10^{2} 20 30 40 50 2×10^{2} 10^{3} $W_{\rm vPb,n}$ (GeV) $W_{\rm vPb,n}$ (GeV) ALI-DER-544599 ALI-DER-543433

<u>JHEP 10 (2023) 119</u>

Low-x gluon regime consistent with gluon saturation or shadowing

Incoherent J/ ψ in UPC Pb-Pb

Phys. Rev. Lett. 132 (2024) 16

First observation of subnucleonic hot spots in the Pb target

Exclusive four pions in UPC

Coherent events are at low pT

UPCs provide a clean laboratory for vector meson spectroscopy

ALICE data confirm two resonances $\rho(1450)$ and $\rho(1700)$

arXiv:2404.07542

the Himalayas

Azimuthal correlation of UPC ρ^0

Azimuthal asymmetry due to interference

13

Isolated photon production

The nuclear modification in agreement with unity in all centrality classes Result extended to lower p_T than previous measurements by ATLAS and CMS

arXiv:2409.12641

ALI-PUB-582805

Heavy ion collisions and the QGP evolution

First e^+e^- production at low mass at 5.02 TeV central Pb-Pb

arXiv:2308.16704

Low masses: probe in medium modified spectra from vector mesons Inter median masses: probe thermal radiation from QGP

J/ψ re-generation Pb-Pb collision

Evidence of J/ ψ re-generation at low p_T Measurement of nuclear modification factor R_{AA} extend to 1.5 GeV/c

Heavy ion collisions and the QGP evolution

First measurement of A = 4(anti)hypernuclei

Antiparticle-to-particle ratios in agreement with unity

arXiv:2410.17769

Masses are compatible with the world-average values within the uncertainties

ALICE 2

TPC upgrade

Upgraded with GEM and continuous readout

pp data taking at 500 kHz Pb-Pb data taking at 50 kHz

ALICE TPC collaboration et al 2021 JINST 16 P03022

-1

0

-2

BCVSPIN Conference 2024: Particle Physics and Cosmology in

the Himalayas

800F

700

600

500

400

300

200

100

ALI-PERF-542847

 $0 \frac{1}{3}$

dE/dx (arb. units)

21

3

p / *Z* (GeV/*c*)

ALICE Performance Run 3 pp, $\sqrt{s} = 13.6 \text{ TeV}$ 524.3 × 10⁹ events

ALICE LS2 Upgrades: MFT

Add vertexing capacity to muon chamber

Extend the precision measurement of

QGP fundamental studies

Pixel size: 27 µm x 29 µm Spatial resolution of 5 µm 5 µs integration time

CERN-LHCC-2015-001; ALICE-TDR-018

Muon Forward Tracker

22

ALICE LS2 Upgrades: ITS2

	Obs		Current, $0.1 \mathrm{nb}^{-1}$		Upgrade, $10 \mathrm{nb}^{-1}$	
		Observable	$p_{\mathrm{T}}^{\mathrm{min}}$ (GeV/c)	statistical uncertainty	$p_{\mathrm{T}}^{\mathrm{min}}$ (GeV/c)	statistical uncertainty
			Heavy Flavour			
		D meson R_{AA}	1	10 %	0	0.3%
		\square D _s meson R_{AA}	4	15 %	< 2	3%
and the statement of th		D meson from B $R_{\rm AA}$	3	30~%	2	1%
		$\int J/\psi$ from B R_{AA}	1.5	15% (p _T -int.)	1	5%
		B^+ yield	not a	accessible	2	10%
		$\Lambda_{\rm c} R_{\rm AA}$	not a	accessible	2	15%
	1. NA 15 11 MANN 2 74 9 50	$\Lambda_{\rm c}/{\rm D}^0$ ratio	not a	accessible	2	15%
		$\Lambda_{\rm b}$ yield	not a	accessible	7	20%
		D meson v_2 ($v_2 = 0.2$)	1	10 %	0	0.2%
		D _s meson v_2 ($v_2 = 0.2$)	not a	accessible	< 2	8%
		D from B v_2 ($v_2 = 0.05$)	not a	accessible	2	8%
	CARLE LE ON C	J/ψ from B v_2 ($v_2 = 0.05$)	not a	accessible	1	60%
IP/		$\Lambda_c v_2 (v_2 = 0.15)$	not	accessible	3	20%
		0.2(12)			-	
もろ	lavors of innor harrol an	d 1 lavers of outer l	narral			

Inner Tracking System

Reduced pixel size: from 50 x 425 μm^2 to 29 x 27 μm^2

CERN-LHCC-2013-024 ; ALICE-TDR-017

Beam pipe

Performance of the ITS2 and MFT

Improved pointing resolution at midrapidity by factors of 2 in transverse plane and factor of 6 in beam direction

BCVSPIN Conference 2024: Particle Physics and Cosmology in

the Himalayas

Run 3 data taking

ALICE 2024 pp run completed

ALICE Pb-Pb run in November 2024

Run 3 results

Promising UPC program in Run 3

New type of UPC topology possible in Run 3

meson

D-meson elliptic flow in Pb-Pb collisions

Four times larger data than Run 2 First measurement of prompt D-meson v_2 measured using Run 3 Pb-Pb data sample No Significant difference between D⁰ and D_s

Lots of new exciting Run 3 results coming up

ALICE upgrades for Run 4

High granularity forward Calorimeter: FoCal

Pseudo rapidity coverage: $3.4 < \eta < 5.8$ Study isolated direct photon, π^0 , J/ψ , ... in forward region Sensitive to low-x gluon dynamics

Prototypes produced and tested with beams at PS and SPS

Electromagnetic calorimeter FoCal-E:

High Granularity Pixel and low granularity Si pad sensors tungsten as absorber

Hadronic calorimeter FoCal-H: Cu tube with scintillating fibers

Inner Tracking System : ITS 3

ALICE 3 for Run 5

Large acceptance $|\eta| < 4$

Retractable vertex detector

- Enhanced particle identification
- Continuous redout and online processing
- R&D for possible sensors ongoing
- Test beams for TOF, RICH, MID ongoing.

arXiv:2211.02491

Summary

• ALICE Physics Program:

Extensive coverage of various colliding systems and energies for heavy-ion physics research Probing key QCD questions like deconfinement and low-x gluon dynamics

• ALICE 2:

Introduction of new detectors and upgrades and implementation of streaming readout from Run 3 Smooth and successful Run 3 data collection so far Potential for several new measurements

• Future Upgrades:

Progress on Run 4 upgrades (ITS3 and FoCal) from 2030 (ALICE 2.1) Plans for ALICE 3 are ongoing Exciting developments in physics and detector technology ahead

Join us to continue advancing the physics of strong interactions!

Additional slides

Proton emission in UPC PbPb

ALI-PUB-587894

First measurement of proton emission cross section in UPC Pb nuclei Production of Pb, Ti, Hg and Au isotopes determined using proton emission cross-section

arXiv:2411.07058

spin alignment of prompt and non-prompt D*+ mesons

Polarization of coherent J/ψ

ALI-PUB-542093

Data consistent with transverse polarization

arXiv: 2304.10928

BCVSPIN Conference 2024: Particle Physics and Cosmology in

the Himalayas

Energy-energy correlation in Jets in pp and p-Pb collision

Separation of perturbative and non perturbative QCD

Modification of energy-energy correlator observed in p-Pb collisions

the Himalayas