Recent results from Belle and Belle II for exotic hadrons

Youngjoon Kwon (Yonsei U.) on behalf of Belle & Belle II Dec. 10, 2024 @ BCVSPIN 2024

Overview

- Quick intro. to Belle & Belle II
- Charmed Pentaquark searches
 - $\checkmark P_c^+ \rightarrow pJ/\psi$ in $\Upsilon(1S)$ and $\Upsilon(2S)$
 - $\checkmark P_{cs}(4459)^0 \rightarrow \Lambda J/\psi \text{ in } \Upsilon(1S)$ and $\Upsilon(2S)$

• Updates on $\Upsilon(10753)$

Closing

from Yuan & Olsen, Nature Rev. Phys. 1 (2019) no.8, 480-494

Baryon

Non-standard hadrons

Tetraguark

Hadro-quarkonium

Pentaquark

Luminosities of Belle II and Belle

Belle (1999-2010) Luminosity

$$\int \mathscr{L}_{\text{total}} dt = 1039 \text{ fb}^{-1}$$
$$\int \mathscr{L}_{\Upsilon(4S)} dt = 711 \text{ fb}^{-1}$$
$$\int \mathscr{L}_{\Upsilon(1S)} dt = 5.8 \text{ fb}^{-1}$$
$$\int \mathscr{L}_{\Upsilon(2S)} dt = 24.5 \text{ fb}^{-1}$$
$$\int \mathscr{L}_{\Upsilon(5S)} dt = 121 \text{ fb}^{-1}$$

Search for P_c^+ states in pJ/w

Recent results from Belle and Belle II for exotic hadrons

Youngjoon Kwon

motivation

- discovered by LHCb.
 - $\Lambda_h \to K + pJ/\psi$

- $\Upsilon(2S).$
- $\Upsilon(2S)$ at Belle.

Charmed pentaquark (P_c) states have been

• $P_c(4312)^+$, $P_c(4440)^+$, and $P_c(4457)^+$ in

not possible to confirm with e^+e^- B factory,

• not enough energy to produce Λ_b pair

• OTOH, deuterons are observed in $\Upsilon(nS)$ by ARGUS, CLEO and BaBar.

• Why not then look for P_c in $\Upsilon(nS)$?

Belle has world-largest sample of $\Upsilon(1S)$ and

• We search for $P_c^+ \to pJ/\psi$ from $\Upsilon(1S)$ and

Analysis procedure **Event selection**

- 3 well-measured charged tracks
- Identification of e^{\pm} , μ^{\pm} and p
- A veto for p candidates
- sideband for non- J/ψ bkg.
- to suppress non- J/ψ bkg. with $M_{\rm recoil}^2(pJ/\psi) > 10 \ {\rm GeV}^2$
- Study $M(pJ/\psi)$ distributions (next page)
- in continuum ($\sqrt{s} = 10.52 \text{ GeV}$)

	$\Upsilon(1S)$ decays			$\Upsilon(2S)$ decays			
	$P_c(4312)^+$	$P_c(4440)^+$	$P_c(4457)^+$	$P_c(4312)^+$	$P_c(4440)^+$	$P_c(4457)^+$	
$N_{ m fit}^{ m A}$	10 ± 8	14 ± 12	-3 ± 9	30 ± 16	33 ± 15	0 ± 3	
$N_{ m fit}^{ m A,UL}$	26	37	14	52	60	6	
$N_{ m fit}^{ m B}$	10 ± 8	12 ± 11	3 ± 9	29 ± 12	31 ± 15	0 ± 3	
$N_{ m fit}^{ m B,UL}$	26	33	17	50	57	7	
$N_{ m sic}^{ m UL}$	31	47	34	56	77	26	
$\mathcal{B}^{\mathrm{UL}}$ (×10 ⁻⁶)	4.5	6.8	4.9	5.3	7.2	2.4	

Recent results from Belle and Belle II for exotic hadrons

Youngjoon Kwon

arXiv:2403.04340 submitted to PRD

no significant P_c^+ signals in any place

major sources of systematic uncertainties

• particle ID (2.1 %)

• MC modeling (2.2 %, 2.8 %)

• N_{1S}, N_{2S} (~2.2 %)

We set upper limits on P_c^+ productions from $\Upsilon(1,2S)$

Evidence for $P_{cs}(4459)^0$ in $\Lambda J/\psi$

Recent results from Belle and Belle II for exotic hadrons

Youngjoon Kwon

motivation and procedure

Similar motivation as the previous paper (arXiv:2403.04340)

• for neutral charmed pentaquark $P_{cs}(4459)^0$ in $\Upsilon(1S)$ and $\Upsilon(2S)$

We search for $P_{cs}(4459)^0 \rightarrow \Lambda J/\psi$ from $\Upsilon(1S)$ and $\Upsilon(2S)$ at Belle.

- $J/\psi \to \ell^+ \ell^-, \Lambda \to p\pi$
- 2D sideband for $M_{p\pi}$ vs. $M_{\ell^+\ell^-}$

(a) $\Upsilon(1S)$ sample (b) $\Upsilon(2S)$ sample

$\Lambda J/\psi$ Yield

Assess signal yield in $M(\Lambda J/\psi)$ \bigcirc

- use $M_{\Lambda J/\psi} = M_{\ell^+ \ell^- p\pi} M_{\ell^+ \ell^-} M_{p\pi} + m_{J/\psi} + m_{\Lambda}$ to improve mass resolution σ_M (11.6 \rightarrow 2.8 MeV)
- excess seen near 4.46 GeV in both $\Upsilon(1S)$ and $\Upsilon(2S)$ data

Results

• determined by a binned max. likelihood fit, with

 $f_{\rm PDF} =$

 $\Delta(-2\ln\mathscr{L}) = 13.01 \ (3.4\sigma \text{ evidence})$ by pseudo-experiment technique)

- Systematic uncertainty
 - A selection (determined by $B^{\pm} \to K^{\pm} \Lambda \overline{\Lambda}$) ~ O(5%); BF of $\Upsilon(2S) \to \Upsilon(1S) \sim O(6\%)$
 - for M_R , Γ_R parameters: fit range (2.5, 3.5 MeV), N(bins) (3.2, 5.2 MeV)

Recent results from Belle and Belle II for exotic hadrons

Youngjoon Kwon

Entries/10 MeV/c²

Signal yield of $M(\Lambda J/\psi)$

$$= f_{\rm R} + f_{{\rm no}P_{cs}} + f_{\rm SB}$$

• fit with fixed mass, width (from LHCb value) gives

 $N_{P_{cs}} = 19 \pm 5$

- Fit result with free mass, width
 - $M_{\rm R} = 4469.5 \pm 4.1 \pm 4.1 \,\,{\rm MeV}$
 - $\Gamma_{\rm R} = 14.3 \pm 9.2 \pm 6.3 \,\,{\rm MeV}$

Updates regarding $\Upsilon(10753)$

Recent results from Belle and Belle II for exotic hadrons

Youngjoon Kwon

Energy scan for $\Upsilon(10753)$

• $\Upsilon(10753)$ — a reminder

- first observed by Belle, [JHEP 10 (2019) 220] with 5.2σ
- in the energy dependence of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$
- \exists several competing interpretations
- Belle also had exotic candidates $Z_b(10610)^{\pm}$, $Z_b(10650)^{\pm}$ [PRL 108, 122001 (2012)]

Belle II added scan points

• JHEP 07 (2024) 116

Recent results from Belle and Belle II for exotic hadrons

Youngioon Kwon

Confirmation of $\Upsilon(10753)$ signal

- Left-column figures for all events
- Right-column figures for $p(\pi\pi\mu\mu) < 0.1$ GeV to suppress events from ISR
- Red dash (----)
 corresponding to Υ(nS)

Energy scan for

• $\Upsilon(10753)$ — a reminder

- first observed by Belle, [JHEP 10 (2019) 220] v
- in the energy dependence of $e^+e^- \rightarrow \Upsilon(nS)$
- \exists several competing interpretations
- Belle also had exotic candidates $Z_b(10610)^{\pm}$ $Z_b(10650)^{\pm}$ [PRL 108, 122001 (2012)]

Belle II added scan points

- JHEP 07 (2024) 116
- $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ with $\Upsilon(nS) \rightarrow \mu^+\mu^-$
- confirms Belle results of $\Upsilon(10753)$

Cross-section ratios, etc.

	$\mathcal{R}^{\Upsilon(10753)}_{\sigma(1S/2S)}$	$\mathcal{R}^{\Upsilon(10753)}_{\sigma(3S/2S)}$	$\mathcal{R}^{\Upsilon(5S)}_{\sigma(1S/2S)}$	$\mathcal{R}^{\Upsilon(5S)}_{\sigma(3S/2S)}$	$\mathcal{R}^{\Upsilon(6S)}_{\sigma(1S/2S)}$
Ratio	$0.46\substack{+0.15\\-0.12}$	$0.10\substack{+0.05 \\ -0.04}$	$0.45\substack{+0.04\\-0.04}$	$0.32\substack{+0.04 \\ -0.03}$	$0.64^{+0.23}_{-0.13}$

Table 2. Cross-section ratios at resonance peaks above the $\Upsilon(4S)$. Uncertainty in this table combines statistical and systematic uncertainties.

Mode	$N_{Z_{b1}}$	$N_{Z_{b1}}^{\mathrm{UL}}$	$\sigma_{Z_{b1}}$ (pb)	$\sigma_{Z_{b1}}^{\mathrm{UL}} \; (\mathrm{pb})$	$N_{Z_{b2}}^{\mathrm{UL}}$	$N_{Z_{b2}}$	$\sigma_{Z_{b2}} (\mathrm{pb})$	$\sigma_{Z_{b2}}^{\mathrm{UL}} \; \mathrm{(pb)}$
$10.746\mathrm{GeV}$								
$\pi\Upsilon(1S)$	$0.0^{+1.6}_{-0.0}$	< 4.9	$0.00\substack{+0.04 \\ -0.00}$	< 0.13	_			
$\pi\Upsilon(2S)$	$5.8^{+5.9}_{-4.6}$	<13.8	$0.06\substack{+0.06\\-0.05}$	< 0.14	—	—	_	
$10.805{ m GeV}$								
$\pi\Upsilon(1S)$	$2.5^{+2.4}_{-1.6}$	$<\!5.2$	$0.21_{-0.13}^{+0.20}$	< 0.43	$0.0\substack{+0.7 \\ -0.0}$	$<\!5.8$	$0.00\substack{+0.03\\-0.00}$	< 0.28
$\pi\Upsilon(2S)$	$5.2^{+3.8}_{-3.0}$	<12.3	$0.15\substack{+0.11 \\ -0.09}$	< 0.35	$0.0\substack{+0.8 \\ -0.0}$	< 6.0	$0.00\substack{+0.04 \\ -0.00}$	< 0.30

Signal yields and upper limits at 90% credibility for $e^+e^- \rightarrow \pi Z_b(10610, 10650)$, Table 3. $Z_b(10610, 10650) \rightarrow \pi \Upsilon(1S, 2S)$ processes and corresponding Born cross-section measurement limits. Uncertainties for the numbers of signal events are statistical only. Here we use Z_{b1} and Z_{b2} as shorthand for $Z_b(10610)$ and $Z_b(10650)$, respectively.

Recent results from Belle and Belle II for exotic hadrons

Youngjoon Kwon

 $\mathcal{R}^{\Upsilon\overline{(6S)}}$ $\sigma(3S/2S)$

$$\sigma) \sigma_{Z_{b2}}^{\mathrm{UL}} \ \mathrm{(pb)}$$

Di-pion mass distribution for $\Upsilon(10753)$

JHEP 07(2024)116

$\Upsilon(10753) \rightarrow \chi_{b0}\omega \text{ and } \eta_b\omega$

- Tetraquark interpretation of this state predicts enhancement of $\Upsilon(10753) \rightarrow \eta_b(1S)\omega$
- we measure η_b indirectly by using recoil mass $M_{\text{recoil}}(\omega) = \sqrt{(E_{\text{cm}} E_{\omega})^2 p_{\omega}^2}$
- no signals observed in either modes \rightarrow set upper limits

Recent results from Belle and Belle II for exotic hadrons

Youngjoon Kwon

PRD 109, 072013 (2024)

 $\frac{\Gamma(\omega\eta_b)}{\Gamma(\Upsilon\pi^+\pi^-)} \sim 30$

$\sigma_{\rm B}(e^+e^- \to \eta_b(1S)\omega) < 2.5\,{\rm pb},$ $\sigma_{\rm B}(e^+e^- \to \chi_{b0}(1P)\omega) < 8.7 \,\mathrm{pb}.$

Summary

- As a B-factory, Belle II continues being a strong player in the study of exotic hadrons as well as spectroscopy of conventional ones.
- In this talk, we present the searches of charmed pentaguark states by Belle
 - Search for $P_c^+ \to pJ/\psi$ in $\Upsilon(1S)$ and $\Upsilon(2S)$
 - Evidence of $P_{cs}(4459)^0 \rightarrow \Lambda J/\psi$ in $\Upsilon(1S)$ and $\Upsilon(2S)$
- We also show Belle II results regarding $\Upsilon(10753)$, a new *bb*-like state first observed by Belle in 2019.
 - Confirmation of $\Upsilon(10753)$
 - New decays channel $\Upsilon(10753) \rightarrow \chi_{hI}\omega$
- Run 2 is underway with goal of collecting a several ab^{-1} data in the next few years. Please stay tuned!

