Latest and Near-Future Highlights from DUNE

Alessandro Minotti – Università di Milano-Bicocca

on behalf of the DUNE Collaboration

Present and Future of Neutrino Physics

- Neutrino physics is entering the precision era
- The remaining parameters hold the key to break the Standard Model and unlock fundamental conundrums
	- \circ CP-violation in the leptonic sector (δ_{CP})
	- o Neutrino masses (nature, order, scale)
	- \circ Octant of ϑ_{23} ($\vartheta_{23} \ge 45^{\circ}$?)

- o Matter-antimatter asymmetry
- o Mass scale problem
- o New fundamental symmetries

The Deep–Underground Neutrino Experiment

- A large mass, high precision, Deep-Underground accelerator Neutrino Experiment (DUNE) ..for a wide physics program
	- \circ Powerful wide-band v (and \overline{v}) beam w/ long baseline
		- *1.2 MW proton beam, upgradable to 2.4 MW*
	- o Near detector complex for beam characterization *movable (NDLAr, TMS) + on-axis (SAND) detectors*
	- o Huge far detector w/ superior PID capability *4 X 17kt total mass LArTPCs, 1.5 km underground*
- o Discovery of lepton Yukawa sector missing parameters *v* mass ordering, CP-violating phase δ_{*CP*}
- o Measurement of PMNS parameters *octant of θ23, Δm² ¹³, precision measurement of δCP*
- o Physics with natural ν sources
	- *1 st observation of HEP, galactic SN bursts & SNNB, θ¹²*
- o BSM physics

neutrino anomalies, proton decay, dark matter, …

Beam

The DUNE Experiment

٠

23.8879 The DUNE Photon Detection System @ EPS-

- 1. Point an intense (MW) proton beam towards SURF
- 2. Smash those high-energy (~120 GeV) protons onto a graphite target $\rightarrow \pi$, K
- 3. Focus positive (negative) π, K, by means of a 1 MW focusing horn with forward (reverse) current polarity
- 4. Let them decay and absorb remaining charged particles (μ)
- 5. You got an (anti)neutrino beam

The Long Baseline Neutrino Facility (LBNF)

- LBNF produces a pure, wide-band beam: energy covers two oscillation peaks
	- \circ Slightly different dependence from the involved parameters in the two peaks \rightarrow enhances sensitivity
- 1.2 MW and 1.1×10^{21} POT/year in Phase-I

Purpose of a Near Detector

• Observed v rate is measured as a function of the reconstruction energy, which is connected to E_{ν} by a smearing matrix (detector response, neutrino interactions)

- A near detector can constrain many of the systematic uncertainties related to the E_{v} extrapolation (beam flux and spectrum , ν-Ar interaction and cross-section, detector response, beam fluctuations)
- Also, pursue an independent physics program (cross-section measurements, BSM searches)

The DUNE ND

- Three detectors with complementary purposes
	- o ND-LAr, same target technology as far detector to maximize 'cancelation' of systematics
	- o TMS (then ND-Gar) for downstream tracking (PID, high-performance calorimetry)
	- o SAND, on-axis magnetized detector for beam monitoring
- Neutrino Pile-up is a challenge
	- o Pixelated readout (3D reconstruction)
	- o Optical modularity (charge-light matching)
- PRIMS concept: detectors move on-off axis to match oscillated spectrum and construct an energy-dependent model of crosssection and response

The LArTPC

- A charged particle in liquid argon produces two signals, proportional to its energy deposit: o Free electrons; drifted from a cathode to an anodic readout (500 V/cm) inside a field cage \circ Luminescence VUV photons (λ = 128 nm); shifted to UV, trapped and collected by photosensors
- A DUNE Far Detector LArTPC has two systems, one for each of these signals

A Song of Charge and Light

- The charge signal is the true force the LArTPC visual tracks & showers, like an online could chamber
	- Good energy resolution (42k e/MeV) 15-20% (10-15%) for quasi-elastic v_μ (v_e) interactions
	- **•** Precise mm imaging best available technology at the kt scale \rightarrow PID via dE/dx (e/ μ & e/ γ separation)
- LAr VUV light $(\lambda = 128 \text{ nm})$ is an independent (anticorrelated) signal
	- \bullet τ_{fast} = 7ns \rightarrow provides event t_0 , crucial for triggering/locating non-beam events
	- Can enhance calorimetry (40k photons/MeV) and has background rejection capabilities

The DUNE FD Complex

- 4 chambers, each can host a 17 kt LArTPC (≳10 kt fiducial volume, 40kt total)
- Possibility to mix different types of detector
- Phase-I foresees 2 different LArTPC
	- \circ FD-I horizontal drift

 \circ FD-II – vertical drift

• 2 additional modules (& upgraded ND) in Phase-II

The cryostats: 65*.*8m long by 17*.*8m wide by 18*.*9m high

FD-I and -II

- Horizontal drift well-established technology
	- 150 6 X 2.3m² Anode Plane Assembly (APA) with wire charge readout
	- 1500 X-ARAPUCA light trap bars inside APAs
	- \blacksquare 4 X 3.5m drift (180 kV, 500 V/cm, 1.6mm/μs)
- Vertical drift cheaper, simpler, longer drift
	- 160 3 X 3.4m² Charge Readout Planes (CRP)
	- 750 X-ARAPUCA modules inside the cathode (with power-over fiber) and on the field cage, Xe doping?
	- 2 X 6.5m drift (294 kV, 450 V/cm)

The CERN Prototypes

- Two 6 X 6 X 6 m³ Module-0 at the CERN Neutrino Platform, CERN hadronic beam in the North Area
- ProtoDUNE Phase-I (2016-20)
	- o Successfully demonstrated the horizontal drift technology, reaching or exceeding DUNE specifications
	- o Several analyses ongoing (h-Ar cross-sections, calibrations, detector response)
- ProtoDUNE Phase-II (2020-)
	- o Two modules, an upgraded horizontal and a vertical drift, constructed
	- o Run-II of the HD ended last Friday! Run-I for the VD starting in early 2025 (with transferred argon)

ProtoDUNE-HD **ProtoDUNE-VD**

Highlights from DUNE @ BCVSPIN 14 12/12/2024 14 14

TAG TITLES

Highlights of ProtoDUNE Runs

- Beam (0.3-7 GeV hadrons, 4×10⁶ triggers) & cosmics collected in ProtoDUNE-HD (formerly -SP)
	- \circ High $\varepsilon_{\text{reco}}$ (~100%) & beam particle ID (~80%), excellent e/ γ and μ /p separation
	- o First measurement of K-Ar inelastic cross-section
	- o Xenon doping run (20 ppm) to test light yield increase
	- o ARAPUCA established as photon detection technology
- Current Phase-II establishing Module-0(s)
	- production and methods
	- o Beam data will allow to complete/improve hadron cross-section measurements on Argon

B. Abi *et al* 2020 *JINST* 15 [P12004](https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12004)

DUNE Physics

Long-Baseline Oscillation Physics

- v_{μ} oscillation in matter is sensitive to matter effect, δ_{CP} , octant of $\vartheta_{23} \to$ can measure all these parameters, but the effects mix up!
- Long-baseline and high statistics are crucial to break current degeneracy o DUNE takes advantage of the longest (1300 km) baseline in accelerator neutrino history
	- \circ v_e & $\overline{v}_{\rm e}$ yields are order of magnitude increases relative to NOvA, T2K

Oscillation Physics in DUNE

- High flux between oscillation min (1.27 GeV) & max (2.54 GeV); coverage of 2nd max (0.80 GeV)
- If $\delta_{CP} \simeq -\pi/2$, DUNE will measure an enhancement (reduction) in v_e($\overline{\mathsf{v}}_{\mathsf{e}}$) appearance
- If the mass ordering is normal, DUNE will measure a much larger enhancement (reduction) in $v_{e}(\overline{v}_{e})$ appearance
- Different parameters affect spectra in different ways \rightarrow handle on resolving degeneracies
- If new physics is present, there may be no combination of mass ordering, δ_{CP} , and θ_{23} that fits data

Sensitivity to Oscillation Parameters

- Sensitivity goals depend on nature kindness
- For best-case scenarios, DUNE has \circ > 5 σ mass ordering sensitivity after 1 year \circ > 3 σ δ_{CP} sensitivity in 5 years
- For worse-case scenarios, DUNE has \circ > 5 σ mass ordering sensitivity in 3 years
- In the long run, DUNE can establish CPV over 75% of δ_{CP} values at > 3 σ

Precision Measurement of Oscillation Parameters

- Best precision for δ_{CP} in the 6-16^o range, & the most 'interesting' δ_{CP}
- World leading precision for Δm^{2}_{23} , ϑ_{23} , and ϑ_{23} for accelerator neutrino experiments
	- o Sub-percent precision, DUNE is in the game for the PMNS precision era
	- o Comparison with reactor measurements especially powerful to unveil new physics

336 kt-MW-y \approx 7 years, 1104 kt-MW-y \approx 15 years

BSM Searches

- Huge mass, low threshold and directionality in FD \rightarrow sensitive to other rare processes \circ E.g., proton decay (best channel p \rightarrow k \overline{v})
- Broad L/E range covered at both ND and FD → new physics (BSM oscillations, CPT violation, NSI)
- High-intensity ν beam \rightarrow exotic physics @ ND (light DM, HNL), BSM contributions to v interactions

Supernovae

- SN explosion in the center of the MilkyWay o *O*10³ neutrinos in the FD over a few tens of seconds o Energy spectrum peaked around 10 MeV, up to 30MeV
- LAr detectors sensitive to the v_e component
	- o DUNE uniquely positioned to study the neutronization burst (first few tens of milliseconds) \rightarrow mass ordering
- Evolution of the (flavor-dependent) flux & spectrum can be sensitive to astrophysical properties of the supernova and its progenitor
- Pointing resolution of better than 5° (from v+e \rightarrow v+e)

Other Natural Sources

- Solar neutrinos
	- \circ Good sensitivity to ${}^{8}B$ neutrinos and discovery potential for hep
	- o Can improve day-night asymmetry measurements
	- o Background is the main challenge, capability for low-energy physics can be expanded in FD-III,IV
- Atmospheric neutrinos
	- o Improved angular resolution with reconstructed hadrons
	- o Can combine in the oscillation analysis
- FD-I,II alive before the beam, an opportunity to explore these physics

Phase-II of DUNE

- Two additional modules (40kt total fiducial volume) o VD is the baseline design for the Phase II FD modules
	- o Phased construction allows to reap off technological developments to expand the physics reach of DUNE (solar and supernova neutrinos, DM, etc.)
	- o Pursuing improvements to light collection for FD3

- o For FD4 (the "Module of Opportunity") more ambitious designs are being considered (pixel readout, integrated charge-light readout, low backgrounds, Xe doping, non-LAr options, etc.)
- More capable Near Detector (ND-GAr) repurposed KLOE solenoid & ECAL o Magnetized high-pressure gaseous argon TPC surrounded by ECAL and μ tagger o B field and the ECAL allow for PID and momentum/sign reconstruction o Low tracking threshold and uniform acceptance

Going Low in Energies

• Strong drive within DUNE to exploit FD Modules 3 and 4 to extend low-energy physics program \circ Improved solar v and SN physics, SN CEvNS, even 0νββ (136 Xe doping) and WIMP searches o All possible in upgraded FD modules w/o losing sensitivity to neutrino mixing parameters *arxiv:2203.08821 arxiv:2203.14700 arxiv:2203.07501*

- These extensions take advantage of enhanced PDS (trigger, PID, calorimetry) \rightarrow vigorous R&D and design/simulation programs \circ Lower threshold wrt baseline DUNE design (10 MeV \rightarrow 0 100 keV)
	- \circ Rejection of background (n, Rn, ⁴²Ar, ³⁹Ar) is a major challenge, can be achieved via topology and PSD
	- \circ Better E_{res} via charge + light calorimetry (i.e. with ARAPUCA-style modules and novel VUV SiPMs that are under study)

DUNE Timeline

- Far site excavation is complete!
- 'Til mid-2025 Building & infrastructure works
- 2025-26 cryostat structure installation (recently arrived from CERN)
- 2026-27 far detector installation
- 2028 Purging and Ar filling
- Early 2029 First physics at the far detector
- 2031 Beam physics with ND and two FD modules (total fiducial mass of 20 kt, 1.2 MW beam)
- 2032 One more FD module, for total fiducial mass of 30 kt
- 2034 **Another FD module, for total fiducial mass of 40 kt**
- 2037 Upgrade to a 2.4 MW beam

The DUNE Collaboration

- Over 1400 collaborators from over 200 institutions in over 30 countries and CERN
- We meet three times a year (CERN, Fermilab, +1 institution)

Conclusions

- DUNE is a next-generation long-baseline neutrino oscillation experiment and neutrino observatory
- It has the potential to deliver ground-breaking results, like the unambiguous determination of the neutrino mass hierarchy, the discovery of CP violation in the leptonic sector, and many more
- DUNE rich scientific programme includes neutrinos of astrophysical origin, as well as BSM searches, both at its ND and FD
- An active large-scale prototype program at CERN validated the technology for the first two, and potentially all four far detectors
- Meanwhile, a rich R&D program is focused on expanding DUNE physics for Phase-II
- DUNE physics starts in this decade, so stay tuned!

