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Conformal(-ish) Dark Sector
• Conformal field theories seem ubiquitous, 

appear at interacting fixed points of RG flows


• Consider a dark sector described by a CFT 
(below some UV cutoff >> weak scale)


• Can dark matter arise from such a DS?


• Conformal symmetry fixes scaling of CFT 
energy density in FRW universe: 


• However DS is generically coupled to the SM, 
which is not conformal


• This may produce an interesting DM candidate

 

the Standard Model (SM) in Section 2.1. We describe the mechanism that generates the gap

scale and the physics at and below that scale in Section 2.2. For completeness, we outline

a possible UV completion above ⇤UV in Section 2.3, although that theory is not directly

relevant for the discussion of dark matter.

2.1 Conformal Dark Sector

At energy scales between Mgap and ⇤UV, the Dark Sector is described by a CFT. We assume

that the CFT contains an operator OCFT with a scaling dimension d < 4, i.e. a relevant

operator. Generically the CFT is strongly coupled, and d need not be integer. Further, we

assume that OCFT is charged under a global symmetry G (for example a discrete Z2), which

forbids a Lagrangian term of the form cOCFT . Standard Model (SM) fields are not charged

under G.

We consider a coupling between the SM and the dark CFT of the form

Lint =
�CFT

⇤D�4
CFT

OSMOCFT . (2.1)

where OSM is an operator made out of SM fields. Here �CFT is a dimensionless constant, while

⇤CFT is a mass scale. Further,

D = d+ dSM , (2.2)

where dSM is the scaling dimension of OSM . The interaction term (2.1) explicitly breaks both

conformal symmetry (since the SM is not conformal), and the global symmetry G. We consider

the regime where this interaction is small enough to consider this breaking perturbatively,

and work to leading order in the interaction strength.

Since the dark sector does not carry SM gauge charges, OSM must be gauge-invariant,

but there are a priori no other restrictions on this operator. For simplicity, we assume that

at tree level, there is a single SM operator interacting with the CFT via Eq. (2.1). (Of course,

couplings between OCFT and other SM operators will generically be induced by quantum

corrections, as discussed below.) To illustrate the range of possibilities, we consider several

possible portal operators OSM , which couple the CFT to quark, lepton, and gauge sectors

of the SM. We can classify these operators into two types: Type-I operators that acquire a

non-zero vacuum expectation value (VEV) in the IR, and Type-II operators that do not. We

consider three Standard Model operators in the class of type-I operators:

• Higgs portal, H†
H,

• Quark portal, HQ
†
LqR, and

• Gluon portal, Gµ⌫
Gµ⌫ .

The Higgs portal operator gets a VEV at the weak scale, while the quark and gluon portals

get VEVs at the QCD confinement scale. Further, we consider three examples of type-II

operators:
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Conformal Dark Sector 
• In the deep UV, dark sector is a gauge theory, coupled to SM e.g. via


• DS flows to an interacting IR fixed point (Banks-Zaks) at   


• Below            , the dark sector is a CFT, coupled to SM via


• “Natural” parameters:  


• CFT is generically strongly coupled, so     is a continuous (non-integer) 
parameter (              from unitarity)

for a vector mediator ⇢µ, and

L ⇠
g?

Mgap
� (@�)2 , (2.9)

for a scalar mediator �. The characteristic coupling can be estimated in the large-N limit as

g? ⇠
4⇡
p
N

. (2.10)

In a generic theory (such as QCD), both vector and scalar mesons will be present with

comparable masses.

The interactions of � with the SM are obtained by matching the interaction Lagrangian

in the CFT phase, Eq. (2.1), to the low-energy e↵ective theory. Dimensional analysis and

large-N arguments suggest

OCFT �!
M

d�1
gap

g?
� , (2.11)

while contributions from ⇢
µ and � are subdominant. This is seen by first noting that OCFT

is a scalar operator with scaling dimension d. Once the CFT confines, it is expected to

“interpolate” a scalar operator made up of canonically normalized field operators of composite

states. A single trace interpolation is given by the above equation where � is a gauge invariant

operator for a composite scalar. The factor Md�1
gap is fixed by the dimensional analysis, while

the factor 1/g? is determined by the large-N counting. Explicitly, in the large-N limit,

hOCFTOCFTi ⇠
N

16⇡2 = 1
g2?
, suggesting that OCFT /

1
g?
. For ⇢µ or �, the interpolation relation

is either that of a “descendant” or multi-trace. This is simply because OCFT ⇠ @µ⇢
µ by

Lorentz invariance and OCFT ⇠ (@�)2 by the shift symmetry of �. This amounts to raising

the e↵ective dimension with more suppression by inverse powers of Mgap, rendering them

subdominant in the low-energy e↵ective theory.

2.3 Ultraviolet Completion

There exists a natural UV completion of a dark-sector CFT considered above: SU(N) gauge

theories with fixed points in the infrared a la Banks-Zaks [16, 17].3 In the UV, an operator

of this gauge theory, for example, a fermion bilinear, is coupled to the SM. At some scale

⇤CFT , there is a fixed point and the UV gauge theory has a phase transition into the (gener-

ically strongly coupled) conformal phase. OCFT is the operator in the conformal phase that

corresponds to the original operator of the gauge theory. The matching for the example of a

fermion bilinear operator is,

LUV =
�BZ

M
dSM�1
BZ

OSM ̄ 
⇤CFT
���!

�CFT

⇤D�4
CFT

OSMOCFT ) �CFT ⇡ �BZ

✓
⇤CFT

MBZ

◆
dSM�1

, (2.12)

where MBZ is the UV cuto↵ scale of the gauge theory, �BZ is the coupling and  is a fermion

in the UV. We impose �BZ ⇠ O(1) as a naturalness condition in all the models we consider

3
The UV theory may be any gauge theory with an interacting IR fixed point. The gauge group need not

be SU(N) and also we do not require the fixed point to be weakly interacting.
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where MBZ is the UV cuto↵ scale of the gauge theory, �BZ is the coupling and  is a fermion

in the UV. We impose �BZ ⇠ O(1) as a naturalness condition in all the models we consider

3
The UV theory may be any gauge theory with an interacting IR fixed point. The gauge group need not

be SU(N) and also we do not require the fixed point to be weakly interacting.
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in the paper. Since dSM > 1 and ⇤CFT < MBZ , it is natural for �CFT to be very small. The

dark sector is never in equilibrium with the Standard Model, and dark sector energy density

is produced through the freeze-in mechanism. In the next section, we will show that this

mechanism can provide dark matter with the observed relic density.

3 Cosmology and Relic Density

In this section, we outline the cosmological history of the dark sector, and estimate the

resulting dark matter relic density for the six portal operators in Table 1. We find that

each portal operator can provide a phenomenologically viable dark matter candidate. The

key features of these candidates are summarized in Table 2. Further, Figures 5 - 10 and 12

below illustrate the parameter space consistent with the observed dark matter density for

each portal. Phenomenological and theoretical constraints on the model will be discussed in

detail in Section 4.

3.1 Cosmological History of the Dark Sector

We consider the regime where the coupling between the SM and the dark sector is su�ciently

small that the two sectors are not in thermal equilibrium at any time. At the end of inflation,

the Standard Model sector is reheated to temperature TR. We assume that the inflaton does

not couple to the dark sector, so that the energy in the dark sector is zero at that time.

(Without this assumption, the dark matter density receives a contribution depending on

the details of the inflaton couplings and dynamics, and the model loses predictivity.) After

reheating, SM collisions and decays can populate dark sector states via the interaction (2.1).

We consider the “Conformal Freeze-In” (COFI) scenario where

Mgap < TR < ⇤CFT , (3.1)

so that the dark sector is described by a CFT in this epoch. This allows us to calculate energy

transfer rates using the “unparticle” approach of Georgi [18, 19]. The energy transferred

to CFT quickly thermalizes due to strong coupling among the CFT states, but the CFT

temperature TD always remains below the SM plasma temperature TSM . The transfer of

energy from the SM plasma to the conformal dark sector continues until either the SM

states coupled to the CFT become non-relativistic and drop out of equilibrium, or the SM

temperature drops below the gap scale Mgap. In either case, the dark sector eventually

undergoes a confining phase transition at TD ⇠ Mgap. The energy stored in the CFT degrees

of freedom is transferred to the particle-like bound states of the dark sector, which then

rapidly (compared to Hubble timescale) decay down to stable dark matter states. Given

the small coupling of the dark sector to the SM, such decays would typically not involve

SM states, so that essentially all of the energy stored in the CFT at the time of the phase

transition ends up in dark matter.

Quantitative predictions of dark matter relic density in the COFI scenario are obtained

as follows. Energy transfer between the SM and CFT degrees of freedom is described by a
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3
The UV theory may be any gauge theory with an interacting IR fixed point. The gauge group need not

be SU(N) and also we do not require the fixed point to be weakly interacting.
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the Standard Model (SM) in Section 2.1. We describe the mechanism that generates the gap

scale and the physics at and below that scale in Section 2.2. For completeness, we outline

a possible UV completion above ⇤UV in Section 2.3, although that theory is not directly

relevant for the discussion of dark matter.

2.1 Conformal Dark Sector

At energy scales between Mgap and ⇤UV, the Dark Sector is described by a CFT. We assume

that the CFT contains an operator OCFT with a scaling dimension d < 4, i.e. a relevant

operator. Generically the CFT is strongly coupled, and d need not be integer. Further, we

assume that OCFT is charged under a global symmetry G (for example a discrete Z2), which

forbids a Lagrangian term of the form cOCFT . Standard Model (SM) fields are not charged

under G.

We consider a coupling between the SM and the dark CFT of the form

Lint =
�CFT

⇤D�4
CFT

OSMOCFT . (2.1)

where OSM is an operator made out of SM fields. Here �CFT is a dimensionless constant, while

⇤CFT is a mass scale. Further,

D = d+ dSM , (2.2)

where dSM is the scaling dimension of OSM . The interaction term (2.1) explicitly breaks both

conformal symmetry (since the SM is not conformal), and the global symmetry G. We consider

the regime where this interaction is small enough to consider this breaking perturbatively,

and work to leading order in the interaction strength.

Since the dark sector does not carry SM gauge charges, OSM must be gauge-invariant,

but there are a priori no other restrictions on this operator. For simplicity, we assume that

at tree level, there is a single SM operator interacting with the CFT via Eq. (2.1). (Of course,

couplings between OCFT and other SM operators will generically be induced by quantum

corrections, as discussed below.) To illustrate the range of possibilities, we consider several

possible portal operators OSM , which couple the CFT to quark, lepton, and gauge sectors

of the SM. We can classify these operators into two types: Type-I operators that acquire a

non-zero vacuum expectation value (VEV) in the IR, and Type-II operators that do not. We

consider three Standard Model operators in the class of type-I operators:

• Higgs portal, H†
H,

• Quark portal, HQ
†
LqR, and

• Gluon portal, Gµ⌫
Gµ⌫ .

The Higgs portal operator gets a VEV at the weak scale, while the quark and gluon portals

get VEVs at the QCD confinement scale. Further, we consider three examples of type-II

operators:

– 4 –



CFT Breaking: Higgs Portal
• For example, consider the “Higgs portal” coupling:


• Below the weak scale: 


• If              is relevant (d<4), this perturbation grows in the IR, eventually 
breaking conformal symmetry. 


• If no other sources of conformal breaking, the CFT breaking “gap” scale is


• Generically, bound states form below this scale. Cosmologically, bound 
states behave as particles. If one or more are stable, can be DM. 

OSM DM Mass DM Mass Dominant CFT Dominant

(Scalar Mediator) (Vector Mediator) Deformation Production Mode

H
†
H 0.4 - 1.2 MeV 40 - 400 keV Tree-level h ! CFT

HQ
†
q

1st: ��SN
All: 0.1 - 1 MeV

MFV: 0.5 - 5 MeV

1st: ��SN
All: 50 - 200 keV

MFV: 0.1 - 1 MeV

Radiative mixing qq̄ ! CFT

HL
†
`R

1st: ⇠⇠⇠⇠WDM

All: 3 - 10 keV

MFV: 10 - 100 keV

1st: ⇠⇠⇠⇠WDM

All: ⇠⇠⇠⇠WDM

MFV: ⇠⇠⇠⇠WDM

Radiative mixing `¯̀! CFT

G
µ⌫
Gµ⌫ 0.2 - 2 MeV 50 - 400 keV Radiative direct gg ! CFT

B
µ⌫
Bµ⌫ 0.1 - 10 MeV 0.05 - 1 MeV Radiative direct �� ! CFT

Table 2: Summary table for each SM operator portal considered. In this table, ��SN stands

for models that are ruled out by supernova cooling constraints, and ⇠⇠⇠⇠WDM stands for models

that are ruled out by warm dark matter constraints.

is subdominant to production in the CFT regime, with the exception of a small region in the

parameter space of the lepton-portal model.

We note that in the COFI scenario, it is possible that at some time in the cosmological

history TSM > Mgap > TD . In this regime, the thermal bath of the dark sector is described by

particle-like bound-state excitations. However, the energy transfer from the SM to the dark

sector can still be described within the unparticle approach, since the energy transferred in

a single collision is above Mgap. This is analogous to using the parton model to calculate

(inclusive) rates of hadron production at the LHC, even though no quark-gluon plasma is

produced.

With the low-temperature modifications outlined above, Eq. (3.5) remains valid to present

day. Integrating this equation, with energy transfer rates evaluated separately for each portal,

provides predictions for current dark matter relic density which can be compared with the

observed value, ⌦h
2 = 0.1. These predictions will be discussed in the rest of this section.

3.2 Higgs Portal: OSM = H
†
H

There are multiple mechanisms of SM! dark sector energy transfer in theH†
H portal model.

For TSM between the reheating temperature (TR) and the weak scale, the leading mechanism

is the scattering process HH ! CFT. After the electroweak phase transition, one Higgs in

the interaction term can be replaced with its VEV and dark energy density will be produced

through Higgs decay. Additionally, there is production from quark and gluon fusion through
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• Lepton portal HL
†
`R,

• Weak-gauge portal Wµ⌫
Wµ⌫ , and

• Hypercharge-gauge portal Bµ⌫
Bµ⌫ .

All our examples involve relevant or marginal SM operators, which are expected to be domi-

nant at low energies. Also, all operators we consider are Lorentz scalars. For an example of

a non-scalar portal, namely OSM = Bµ⌫ which results in a composite dark photon, see Ref. [?

].

In the case of quark and lepton portals, the flavor structure of the CFT coupling to the

SM needs to be specified. We will assume that the portal operators are flavor-diagonal in the

SM mass eigenbasis. The coupling to CFT can then be written in this basis as

Lint =
�CFT

⇤D�4
CFT

OCFT ·

 
X

i

iO
i

Yuk

!
, (2.3)

where the sum runs over the six flavors of SM quarks or three flavors of charged leptons,

and O
i

Yuk is the SM Yukawa operator for each flavor. The constants i encode the flavor

dependence of the CFT-SM interactions. Specifically, we will consider three cases:

• Minimal Flavor Violation (MFV), with entries proportional to SM Yukawas: i = yi,

i = 1 . . . 6 for quarks and 1 . . . 3 for charged leptons.

• Democratic, with all entries the same: i = 1.

• First-Generation Only: i = 1 for the first-generation quarks or electrons, and 0 for the

second and third generations.

2.2 CFT Breaking in the Infrared

Since the Dark Sector CFT contains a relevant operator OCFT , the generic expectation is

that the conformal symmetry is broken in the infrared (IR). Specifically, if the Lagrangian

contains a term

L = cOCFT , (2.4)

where c is a constant of mass dimension 4� d > 0, the conformal symmetry is broken at the

“gap” mass scale

Mgap ⇠ c
1/(4�d)

. (2.5)

Here and below, we make use of Naive Dimensional Analysis (NDA) to estimate various

quantities of interest up to order-one factors. In most cases, more precise analytic results are

not available due to the strongly-coupled nature of the underlying theory. NDA estimates

will be su�cient to establish the basic features of the dark matter model and establish its

viability. At energy scales below Mgap, the theory is no longer conformal. In this subsection,

we will first estimate the gap scale for each of the six SM portals, and then describe the

physics at low energies below Mgap.
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in the Higgs, quark/lepton and gluon/weak boson portals respectively. Blue circles indicate
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2.2.1 Estimates of the Gap Scale

Global symmetry G forbids the deformation (2.4) within the CFT itself, and the infrared

breaking of the CFT is entirely due to its interaction with the SM, Eq. (2.1). For each portal

operator OSM , there are several distinct contributions to Mgap, with the NDA estimates for

each of them summarized in Table 1. Below, we will discuss each of these contributions.

For type-I operators, a non-zero VEV directly leads to an e↵ective Lagrangian of the

form (2.4), with a coe�cient

c =
�CFT

⇤D�4
CFT

hOSMi. (2.6)

An estimate of the corresponding contribution to the gap scale Mgap for each of the three

type-I portals is listed in the first column of Table 1. We refer to this contribution as “tree-

level”. Note that since these are NDA-level estimates, all QCD condensates are simply taken

to be ⇤QCD to the appropriate power.

For both type-I and type-II operators, the deformation (2.4) is induced by quantum

corrections. For example, the leading contributions of this type for Higgs, quark/lepton and

gluon/weak boson/hypercharge boson portals are illustrated in Fig. 1. We refer to these

contributions as “radiative direct”. The Feynman diagrams that contribute are generally

UV-divergent, and the NDA estimates of their contributions are proportional to powers of

the scale ⇤SM which serves as the UV cuto↵ of the SM loops. The LHC constraints generally

imply ⇤SM >
⇠ 1 TeV. Note that if ⇤SM � 4⇡v, the observed weak scale requires strong fine-

tuning. A similar fine-tuning may or may not occur in the SM loop contributions to (2.4),

and the gap scale in this scenario is strongly model-dependent. For concreteness, we will use

⇤SM = 2⇡v ⇠ 1.5 TeV in the estimates of this paper. The NDA estimates of this contribution

to Mgap for each portal are collected in the second column of Table 1.

Quantum corrections in the SM also introduce mixing among the SM operators. In ef-

fect, for each choice of the portal operator in Eq. (2.1), interactions of OCFT with all other

gauge-invariant SM operators are induced, with loop-suppressed coe�cients. In particular, a
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sector as ⇢CFT ⌘ Am
4
DM

. We have used the mass gap formula from Table 1 to convert the

interaction coupling dependence to mass gap dependence as,

Mgap =

✓
�CFT

⇤d�2
CFT

v
2

◆ 1
4�d

.

The ratios in each bracket are O(1) for 1 < d < 2.5 and A ⇠ O(1). Thus, we expect

a mass-gap for the Higgs portal model at the MeV scale. For details of this calculation,

see Appendix A.1. This result is in good agreement with the numerical integration of the

Boltzmann equation.

The dark matter mass mDM and the dimension d of the CFT operator that produce the

correct observed relic density are shown in Fig. 5. Since the dark sector is mostly populated

through Higgs decays which occur at temperatures below the weak scale, the relic density

is independent of the reheating temperature or any other UV-scale parameters. Fig. 5 also

shows phenomenological and theoretical constraints on the model, which will be discussed in

detail in Section 4. We observe that the model produces a viable DM candidate with masses

mDM ⇠ 0.1�1 MeV. In these figures, we have fixed the value of r = mDM/Mgap (see Section 2.2

for the discussion of this parameter). The ratio r is tightly constrained by the combination

of bounds from large-scale structure (warm dark matter) and dark matter self-interactions.

Given these bounds, r can only be varied by a factor of at most a few relative to the values

shown. Such variation does not have a strong e↵ect on the predicted dark matter mass range.

3.3 Quark & Lepton Portals: OSM = HQ
†
q, HL

†
`R

Above the weak scale, energy transfer from the SM to the dark sector occurs via scattering

processes Hff̄ ! CFT and Hf ! f + CFT, where f refers to quarks or leptons depending

on the SM operator used. The energy transfer rate in these channels peaks at high tempera-

tures, introducing dependence on the reheat temperature TR. Below the weak scale, OSM is

matched onto a dimension-3 bilinear fermion operator. The dominant process contributing

to production of CFT energy density is fermion annihilation ff̄ ! CFT. We find that for

TR
<
⇠ few TeV, production below the weak scale is dominant and the resulting DM relic

density is independent of TR. For D < 4.5 ) d < 1.5, the energy transfer through fermion

annihilation peaks at low temperatures, while for d > 1.5, temperatures of order the weak

scale dominate.

For the quark portal, conformal freeze-in continues until T = ⇤QCD or T = Mgap,

whichever happens first. For the lepton portal, it continues until T = me or T = Mgap.

Again, we assume that there are dark pions that form the dark matter relic density we ob-

serve today, that are a factor r ⇠ 0.01 (with scalar mediator) or r ⇠ 0.001 (with vector

mediator) lighter than the mass gap induced by the Standard Model deformation. The dark

sector energy density redshifts as radiation until TD hits mDM = m�, and redshifts as matter

afterwards, until today.

Notably, in the lepton portal, it is possible for the SM temperature at which TD hits

mDM to be higher than the stopping temperature. In the short period when the universe
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Table 1: Standard Model operators and corresponding mass gaps generated through di↵erent sources. ⇤SM is the SM cuto↵

scale.
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Figure 1: Contributions to conformal symmetry breaking via “radiative direct” diagrams,

in the Higgs, quark/lepton and gluon/weak boson portals respectively. Blue circles indicate

CFT operator insertions.

2.2.1 Estimates of the Gap Scale

Global symmetry G forbids the deformation (2.4) within the CFT itself, and the infrared

breaking of the CFT is entirely due to its interaction with the SM, Eq. (2.1). For each portal

operator OSM , there are several distinct contributions to Mgap, with the NDA estimates for

each of them summarized in Table 1. Below, we will discuss each of these contributions.

For type-I operators, a non-zero VEV directly leads to an e↵ective Lagrangian of the

form (2.4), with a coe�cient

c =
�CFT

⇤D�4
CFT

hOSMi. (2.6)

An estimate of the corresponding contribution to the gap scale Mgap for each of the three

type-I portals is listed in the first column of Table 1. We refer to this contribution as “tree-

level”. Note that since these are NDA-level estimates, all QCD condensates are simply taken

to be ⇤QCD to the appropriate power.

For both type-I and type-II operators, the deformation (2.4) is induced by quantum

corrections. For example, the leading contributions of this type for Higgs, quark/lepton and

gluon/weak boson/hypercharge boson portals are illustrated in Fig. 1. We refer to these

contributions as “radiative direct”. The Feynman diagrams that contribute are generally

UV-divergent, and the NDA estimates of their contributions are proportional to powers of

the scale ⇤SM which serves as the UV cuto↵ of the SM loops. The LHC constraints generally

imply ⇤SM >
⇠ 1 TeV. Note that if ⇤SM � 4⇡v, the observed weak scale requires strong fine-

tuning. A similar fine-tuning may or may not occur in the SM loop contributions to (2.4),

and the gap scale in this scenario is strongly model-dependent. For concreteness, we will use

⇤SM = 2⇡v ⇠ 1.5 TeV in the estimates of this paper. The NDA estimates of this contribution

to Mgap for each portal are collected in the second column of Table 1.

Quantum corrections in the SM also introduce mixing among the SM operators. In ef-

fect, for each choice of the portal operator in Eq. (2.1), interactions of OCFT with all other

gauge-invariant SM operators are induced, with loop-suppressed coe�cients. In particular, a
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Figure 2: Diagrams that contribute to conformal symmetry breaking via mixing with the

Higgs, in the quark/lepton portal, the gluon portal and the electroweak boson portal respec-

tively. Blue circles indicate CFT operator insertions.
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Figure 3: Diagrams that contribute to conformal symmetry breaking via generation of O2
CFT

,

in the Higgs portal, quark/lepton portal, and the gluon/weak boson portal respectively. Blue

circles indicate CFT operator insertions.

coupling of the CFT to the Higgs portal operator is always generated. The leading contribu-

tions to this coupling for lepton, quark, gluon, weak and hypercharge portals are illustrated

in Fig. 2. Below the weak scale, this coupling induces the deformation (2.4). We refer to this

mechanism as “radiative mixing”. The NDA estimates of the corresponding contribution to

the gap scale for each portal are summarized in the third column of Table 1. Mixing with the

other two type-I operators is also generically present, but their e↵ect is subdominant since

⇤QCD ⌧ v.

Another potential source of radiative breaking of conformal symmetry is the deformation

L = c
0
O

2
CFT

, (2.7)

which can also be generated through SM loops. For example, the relevant diagrams for

each portal are shown in Fig. 3. If O2
CFT

is a relevant operator (which in the large-N limit

corresponds to OCFT having d . 2), this leads to IR breaking of the conformal symmetry and

generation of the gap scale. The NDA estimates of the resulting contribution to the gap scale

are listed in the last column of Table 1.

Depending on the parameters �CFT , ⇤CFT and d, each of the conformal symmetry-breaking

contributions listed in Table 1 may be dominant. We found that in the parameter space where

the models successfully reproduce the observed dark matter relic density via freeze-in, O2
CFT
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coupling of the CFT to the Higgs portal operator is always generated. The leading contribu-

tions to this coupling for lepton, quark, gluon, weak and hypercharge portals are illustrated

in Fig. 2. Below the weak scale, this coupling induces the deformation (2.4). We refer to this

mechanism as “radiative mixing”. The NDA estimates of the corresponding contribution to

the gap scale for each portal are summarized in the third column of Table 1. Mixing with the

other two type-I operators is also generically present, but their e↵ect is subdominant since

⇤QCD ⌧ v.

Another potential source of radiative breaking of conformal symmetry is the deformation
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, (2.7)

which can also be generated through SM loops. For example, the relevant diagrams for

each portal are shown in Fig. 3. If O2
CFT

is a relevant operator (which in the large-N limit

corresponds to OCFT having d . 2), this leads to IR breaking of the conformal symmetry and

generation of the gap scale. The NDA estimates of the resulting contribution to the gap scale

are listed in the last column of Table 1.

Depending on the parameters �CFT , ⇤CFT and d, each of the conformal symmetry-breaking

contributions listed in Table 1 may be dominant. We found that in the parameter space where

the models successfully reproduce the observed dark matter relic density via freeze-in, O2
CFT
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Hadronic Phase EFT
• Below the gap scale, dark sector has particle-like excitations. To be 

specific, we assume the following (partly QCD-inspired) features:


• Lightest hadron is a pseudo-scalar particle, “dark pion”


• Dark pion is a pNGB,                        is a free (radiatively stable) parameter


• Dark pion is stable, plays the role of DM (no anomaly w.r.t. SM)


• Scalar or vector “dark rho” with mass            


• Rho-pion interactions from symmetry: e.g.

deformations are sub-leading to OCFT deformations for all operators studied here. For the

Higgs portal, the tree-level contribution to the gap scale dominates. For quark and lepton

portals, the dominant source of conformal symmetry breaking is radiative mixing. For gauge-

boson portals (gluon, weak and hypercharge), the radiative direct contribution is dominant.

Note that for the quark and gluon portals, radiative contributions dominate over the tree-level

one; this is primarily due to the hierarchy v � ⇤QCD.

2.2.2 Physics Below the Gap Scale

Below the conformal symmetry breaking scale Mgap, the dark sector is populated by particle-

like excitations which are hadronic composite states of the original CFT degrees of freedom.2

Predicting the spectrum of these excitations in a given CFT requires non-perturbative anal-

ysis, which is outside the scope of this paper. Instead, we will make a few simple, realistic

assumptions about the properties of the low-energy theory, which will be su�cient to estimate

the dark matter density and other quantities of interest up to order-one factors.

We assume that the lightest of the CFT composite states � is stable on cosmological time

scales. This particle plays the role of dark matter. Stability may be due to a conserved global

(discrete or continuous) symmetry under which � (and possibly some other CFT composites)

are charged, but SM states are all neutral. Further, as in [8], we posit that the DM particle is

a pseudo-Goldstone boson (PGB) of an approximate global symmetry spontaneously broken

at Mgap. In this case, mDM ⌧ Mgap is natural, with the DM mass dictated by the amount of

explicit symmetry breaking.This is necessary to satisfy self-interaction constraints [12, 13], as

will be discussed in Section 4. Notably, both the PGB property and a Z2 global symmetry are

in fact realized for pions in QCD, although in that case the would-be stabilizing symmetry is

anomalous leading to ⇡
0
! 2� decay. (For other examples of models with dark pion playing

the role of dark matter, see e.g. [14, 15].)

Note that the ratio r = mDM/Mgap is a free parameter of the theory. Phenomenologically,

the value of r is bounded from above by the self-interaction bound and from below by the

warm dark matter constraint (since very light DM states can disrupt structure formation).

It turns out that these considerations restrict r to a parametrically narrow range, so that the

theory remains highly predictive with respect to the DM mass and other relevant quantities.

Fig. 14 illustrates this for one of the models studied in this paper, while Section 4 explains

these constraints in detail.

In addition to �, the low-energy theory generically contains a set of bound states with

masses ⇠ Mgap. These states will couple to � and mediate both DM self-interactions and its

interactions with the Standard Model. We model these couplings as

L ⇠ g?⇢
µ

⇣
�
†
@µ�+ h.c.

⌘
, (2.8)

2
While a hadronic phase seems generic, another possible IR phase suggested by certain five-dimensional

CFT duals is a “gapped continuum” [9]. For a recent example of viable dark matter models with gapped

continuum, see [10, 11].
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anomalous leading to ⇡
0
! 2� decay. (For other examples of models with dark pion playing

the role of dark matter, see e.g. [14, 15].)
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L ⇠ g?⇢
µ

⇣
�
†
@µ�+ h.c.

⌘
, (2.8)

2
While a hadronic phase seems generic, another possible IR phase suggested by certain five-dimensional

CFT duals is a “gapped continuum” [9]. For a recent example of viable dark matter models with gapped

continuum, see [10, 11].

– 9 –



Hadronic Phase EFT
• DM elastic self-scattering is mediated by dark rho exchanges:


• Recall that SM-CFT coupling is


• Symmetries restrict which states can be created by    :


• Dark rho mediates DM-SM interactions: for example for lepton portal


for a vector mediator ⇢µ, and

L ⇠
g?

Mgap
� (@�)2 , (2.9)

for a scalar mediator �. The characteristic coupling can be estimated in the large-N limit as

g? ⇠
4⇡
p
N

. (2.10)

In a generic theory (such as QCD), both vector and scalar mesons will be present with

comparable masses.

The interactions of � with the SM are obtained by matching the interaction Lagrangian

in the CFT phase, Eq. (2.1), to the low-energy e↵ective theory. Dimensional analysis and

large-N arguments suggest

OCFT �!
M

d�1
gap

g?
� , (2.11)

while contributions from ⇢
µ and � are subdominant. This is seen by first noting that OCFT

is a scalar operator with scaling dimension d. Once the CFT confines, it is expected to

“interpolate” a scalar operator made up of canonically normalized field operators of composite

states. A single trace interpolation is given by the above equation where � is a gauge invariant

operator for a composite scalar. The factor Md�1
gap is fixed by the dimensional analysis, while

the factor 1/g? is determined by the large-N counting. Explicitly, in the large-N limit,

hOCFTOCFTi ⇠
N

16⇡2 = 1
g2?
, suggesting that OCFT /

1
g?
. For ⇢µ or �, the interpolation relation

is either that of a “descendant” or multi-trace. This is simply because OCFT ⇠ @µ⇢
µ by

Lorentz invariance and OCFT ⇠ (@�)2 by the shift symmetry of �. This amounts to raising

the e↵ective dimension with more suppression by inverse powers of Mgap, rendering them

subdominant in the low-energy e↵ective theory.

2.3 Ultraviolet Completion

There exists a natural UV completion of a dark-sector CFT considered above: SU(N) gauge

theories with fixed points in the infrared a la Banks-Zaks [16, 17].3 In the UV, an operator

of this gauge theory, for example, a fermion bilinear, is coupled to the SM. At some scale

⇤CFT , there is a fixed point and the UV gauge theory has a phase transition into the (gener-

ically strongly coupled) conformal phase. OCFT is the operator in the conformal phase that

corresponds to the original operator of the gauge theory. The matching for the example of a

fermion bilinear operator is,

LUV =
�BZ

M
dSM�1
BZ

OSM ̄ 
⇤CFT
���!

�CFT

⇤D�4
CFT

OSMOCFT ) �CFT ⇡ �BZ

✓
⇤CFT

MBZ

◆
dSM�1

, (2.12)

where MBZ is the UV cuto↵ scale of the gauge theory, �BZ is the coupling and  is a fermion

in the UV. We impose �BZ ⇠ O(1) as a naturalness condition in all the models we consider

3
The UV theory may be any gauge theory with an interacting IR fixed point. The gauge group need not

be SU(N) and also we do not require the fixed point to be weakly interacting.
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direct, indirect, and collider searches for DM. However, there are important phenomenological

constraints on the model from dark matter self-interaction and large-scale structure (which are

independent of the DM-SM coupling), as well as stellar cooling rates (where the small coupling

is compensated by large amount of SM particles in the stellar bodies). These constraints

will be considered in this section. We will also outline theoretical constraints on the model

parameter space related to naturalness and CFT bootstrap bound.

4.1 Dark Matter Self-Interaction Bound

Observations of galactic clusters, such as the Bullet cluster, place an upper bound on the

cross-section of elastic scattering of non-relativistic DM particles, �SI/m� . 4500 GeV�3

[12, 13]. One generally expects that the hadronic phase of our dark sector has characteristic

coupling g? ⇠
4⇡p
N
. If the dark matter is a generic composite state, the elastic scattering

cross-section is of the order

�SI ⇠
g
4
?

8⇡M2
gap

. (4.2)

For the values of Mgap that produce the observed DM relic density, N ⇠ 104 would be

required for consistency with the observational bound. Such large values of N are possible,

but theoretically unattractive. This leads us to consider an alternative possibility that g? ⇠ 1

but the DM state is not a (or a collection of) generic composite particle(s), but rather is a

derivatively-coupled PNGB. DM elastic scattering is mediated by exchanges of a scalar or

vector resonance with mass of order Mgap. Using the e↵ective theory (2.9), the cross-section

for the case of a scalar mediator is estimated to be

�SI ⇠
r
6

8⇡M2
gap

, r = m�/Mgap (4.3)

while for a vector mediator (using (2.8)),

�SI ⇠
r
2

8⇡M2
gap

. (4.4)

Here r = mDM/Mgap ⌧ 1 is a model-dependent parameter. If both vector and scalar media-

tors are present with similar masses, the vector exchange will dominate. This is the case in

QCD where ⇢ exchange is the main contribution to pion elastic scattering. However, for com-

pleteness, we consider both scalar and vector mediator-dominated cases in our phenomeno-

logical analysis. We find that in the scalar case, r ⇠ 0.01–0.1 is su�cient for consistency

with observational bounds, while in the vector case r <
⇠ 10�2 is required. See Fig. 14 for

an illustration of allowed values of r and its e↵ect on the value of mDM that produces the

observed relic density, in one particular model.

4.2 Warm Dark Matter Bound

Since dark matter in COFI models is light as well as relativistic in the early universe, they

can free-stream, leading to suppression of structure/inhomogeneity below a certain length
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(vector rho)

scalar model cancels out since Q(�) / g
2. Here, dofCFT

dof�
denotes the ratio of the internal

degrees of freedom of the final state produced in the CFT and the benchmark scalar model,

while h!iCFT

h!i� is the ratio of the average energy carried by the corresponding final states.

Explicit expressions for the e↵ective coupling Ge↵ in quark and gluon portals are given in the

Appendix B.3 (see Eqs. (B.23) and (B.24)). The factors dofCFT
dof�

and h!iCFT

h!i� can be determined

only if CFT is fully specified, but we expect that they will take values within the range 1 ⇠ d.

We use 1 in the constraint plots of Section 3.

4.3.2 Higgs Portal

For Higgs portal, the COFI dark matter candidate has mass of order MeV, and can only be

produced in supernovae. Comparing Mgap in the Higgs portal model to TSN, we learn that

the production is in the CFT regime. Again, the dominant production mechanism for dark

states is Bremsstrahlung in nucleon collisions. The relevant part of the Lagrangian is

L ⇠
�CFT v
p
2⇤d�2

CFT

hOCFT +
↵s

12⇡v
hG

a

µ⌫G
µ⌫a (4.16)

where the second term is the top-loop induced coupling between the Higgs and gluon (see

for example e.g. [29, 30]). Integrating out the Higgs and using Eq. (4.7) yields the e↵ective

coupling

L ⇠ C
(N)
G

✓
↵s

6
p
2⇡

◆ 
M

4�d
gap

v2m2
h

!
N̄N OCFT . (4.17)

To get this form, we used the mass gap formula for the Higgs portal model. The energy loss

rate in the SN is calculated as in the gluon portal (see Appendix B.3) and is given by

✏(CFT) ⇠
G

2
e↵(mNT )d

g2

1

(2⇡)2d�2

dofCFT

dof�

h!iCFT

h!i�

Q(�)

⇢
(4.18)

where

Ge↵ = C
(N)
G

✓
↵s

6
p
2⇡

◆ 
M

4�d
gap

v2m2
h

!
. (4.19)

Numerically, emission from the SN core in the region of the model parameter space relevant

for COFI dark matter is well below the observational bound, so that the Higgs portal scenario

is unconstrained by stellar cooling considerations.

4.3.3 Lepton Portal

Dark sector states are produced through their interactions with electrons in the stellar

medium. In all star systems other than the supernova, the electron temperature is below

Mgap, so that the production is in the hadronic phase of the dark sector. The e↵ective theory

of electron-dark hadron interactions has the form

L ⇠
�CFT

⇤d

CFT

⇣
HL

†
`R

⌘
OCFT !

�CFT vM
d�1
gap

p
2g⇤ ⇤d

CFT

(ēe)�+
g⇤

Mgap
� (@�)2 . (4.20)
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the Standard Model (SM) in Section 2.1. We describe the mechanism that generates the gap

scale and the physics at and below that scale in Section 2.2. For completeness, we outline

a possible UV completion above ⇤UV in Section 2.3, although that theory is not directly

relevant for the discussion of dark matter.

2.1 Conformal Dark Sector

At energy scales between Mgap and ⇤UV, the Dark Sector is described by a CFT. We assume

that the CFT contains an operator OCFT with a scaling dimension d < 4, i.e. a relevant

operator. Generically the CFT is strongly coupled, and d need not be integer. Further, we

assume that OCFT is charged under a global symmetry G (for example a discrete Z2), which

forbids a Lagrangian term of the form cOCFT . Standard Model (SM) fields are not charged

under G.

We consider a coupling between the SM and the dark CFT of the form

Lint =
�CFT

⇤D�4
CFT

OSMOCFT . (2.1)

where OSM is an operator made out of SM fields. Here �CFT is a dimensionless constant, while

⇤CFT is a mass scale. Further,

D = d+ dSM , (2.2)

where dSM is the scaling dimension of OSM . The interaction term (2.1) explicitly breaks both

conformal symmetry (since the SM is not conformal), and the global symmetry G. We consider

the regime where this interaction is small enough to consider this breaking perturbatively,

and work to leading order in the interaction strength.

Since the dark sector does not carry SM gauge charges, OSM must be gauge-invariant,

but there are a priori no other restrictions on this operator. For simplicity, we assume that

at tree level, there is a single SM operator interacting with the CFT via Eq. (2.1). (Of course,

couplings between OCFT and other SM operators will generically be induced by quantum

corrections, as discussed below.) To illustrate the range of possibilities, we consider several

possible portal operators OSM , which couple the CFT to quark, lepton, and gauge sectors

of the SM. We can classify these operators into two types: Type-I operators that acquire a

non-zero vacuum expectation value (VEV) in the IR, and Type-II operators that do not. We

consider three Standard Model operators in the class of type-I operators:

• Higgs portal, H†
H,

• Quark portal, HQ
†
LqR, and

• Gluon portal, Gµ⌫
Gµ⌫ .

The Higgs portal operator gets a VEV at the weak scale, while the quark and gluon portals

get VEVs at the QCD confinement scale. Further, we consider three examples of type-II

operators:
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Cosmological History
• Phase transition (conformal plasma -> bound 

states) in the dark sector at 


• Assume that 100% of energy in the dark sector 
before the transition is converted to DM


• If dark sector is in thermal equilibrium with SM 
before the phase transition, observed DM 
density requires                          - hot DM!


• Freeze-in scenario: 


• As always with freeze-in, assume that dark 
sector is not reheated after inflation, populated 
slowly by SM interactions  

 



Conformal Freeze-In
• Energy transfer from SM to dark sector occurs when dark sector is 

conformal


• CFT energy evolves according to


• Dimensional analysis (if        >> all mass scales): 


• Solution to Boltzmann equation:


• IR-dominated (“true freeze-in”) for                 , otherwise (mildly) depends 
on 

Boltzmann equation,

d⇢SM

dt
+ 3H(⇢SM + PSM) = ��E(SM ! CFT), (3.2)

where H is the Hubble expansion rate, ⇢SM and PSM are the energy density and pressure of

the SM plasma, respectively, and �E is the energy transfer rate per unit volume given by

�E(SM ! CFT) =
X

i,j

ninjh�(i+ j ! CFT)vrelEi+
X

i

nih�(i ! CFT)Ei . (3.3)

Here the sums run over all SM degrees of freedom coupled to the CFT. The cross-sections and

decay rates can be evaluated using the “unparticle” technique of Georgi [18, 19]; an explicit

example of such a calculation is given in Appendix A.1. In the COFI scenario, the dark

sector temperature TD remains well below the SM temperature, TD ⌧ TSM , throughout the

cosmological history. For this reason, we have neglected the reverse energy transfer, from the

CFT back to the SM sector, in Eq. (3.2). Conformal symmetry of the dark sector guarantees

that its energy-momentum is traceless, PCFT = 1
3⇢CFT , and thus its energy density redshifts

as radiation, ⇢CFT / a
�4, as the universe expands. At the time when the CFT sector is

populated, the energy density in the SM sector is dominated by relativistic matter, so that

SM and CFT energy densities redshift in the same way. The total energy of the two sectors

can only change due to work done against the expansion of the universe:

d

dt
(⇢CFT + ⇢SM) + 4H (⇢CFT + ⇢SM) = 0. (3.4)

Subtracting Eq. (3.2), we find that the CFT energy density evolves according to

d⇢CFT

dt
+ 4H⇢CFT = �E(SM ! CFT) . (3.5)

Solving this equation, with the initial condition ⇢CFT = 0 at TSM = TR, yields the CFT energy

density as a function of the SM temperature T .
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Figure 4: Dark sector energy density (normalized by SM energy density) vs. temperature of

the Standard Model plasma, for two di↵erent values of D. The red curve (D < 9/2) shows

IR-dominant production, while the blue curve (D > 9/2) shows UV-dominant production.

where Mpl is the Planck mass.

For values of D below the critical dimension D = dSM + d = 4.5, most of the dark sector

energy density is produced at low temperature (“in the infrared”) and the dark matter relic

density can be predicted without knowledge of UV physics and the reheating temperature.

(See Fig. 4.) This is similar to the original freeze-in scenario of Hall et.al. [21]. For D > 4.5,

most of the dark sector energy density is produced soon after the reheating. In this case, the

predicted dark matter relic density does depend on TR. However, in practice this dependence

is weak, due to the low powers in the exponent for TR compared to the dependence on the

mass gap, as will be shown later in this section.

The Boltzmann equation (3.5), with energy transfer rates calculated within the ‘unpar-

ticle’ approach, is valid as long as TSM > Mgap (required for the validity of the collision term)

and TD > mDM (required for radiation-like Hubble term). As the universe expands and cools,

both conditions may become invalid, requiring modifications to the Boltzmann equation. For

TD < mDM, we simply replace 4H ! 3H in the Hubble term, since at these temperatures the

dark sector is populated by non-relativistic dark matter particles. For Mgap > TSM > mDM,

we consider dark matter production in the “hadronic phase”. The corresponding collision

term is calculated within the low-energy e↵ective theory discussed in Section 2.2. Note that

production in the hadronic phase only occurs if the SM particles interacting with the CFT

are light (electrons or photons); in all other cases, the relevant SM particles drop out of the

thermal bath at TSM > Mgap and all production is in the CFT regime. Moreover, we find

that for all portal interactions considered here, dark matter production in the hadronic phase
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Conformal Freeze-In: Higgs Portal
• A more detailed calculation can be performed using Georgi’s “unparticle” 

approach


• For example, in the Higgs portal:
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A Details of Calculations in Cosmology

A.1 Analytical Estimates of Relic Densities

Higgs Portal:

In this section, we show a brief derivation of Eq. (3.9), that relates observed dark matter

relic density to parameters in the theory in the Higgs portal. In addition, the computation

for Eq. (3.8) is shown in more detail. Using the same procedure, analytical results for relic

density can be computed for all portals considered in this paper, and the results for other

portals are summarised at the end without going into technical details.

In the Higgs portal case, as mentioned before, below the critical dimension d⇤ = 5/2,

dark matter production is dominated by the Higgs decay process. At temperatures below the

electroweak phase transition, the e↵ective interaction between the dark sector and the SM

becomes,
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Here and below, P = pCFT is the momentum carried by the dark sector. The phase space

for the CFT sector is chosen to be identical to that of “unparticles” as prescribed by Georgi

in [18]. Using Georgi’s notation, we have,
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where,
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Setting p ⌘ |~ph| and simplifying gives
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This integral represents a Bessel function of the second kind. Additionally, in our notation,

fd = Ad/16⇡2. Thus, on simplifying, we get,
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The CFT energy density at any point in time (as a function of the Standard Model bath tem-

perature) can be obtained by integrating the Boltzmann equation given in Eq. (3.5). To get

a simple estimate, it su�ces to do this calculation in the relativistic approximation where the

Higgs is assumed to be massless and is described by a Maxwell-Boltzmann distribution. The

process roughly starts around the electroweak scale ⇠ v and continues till the SM temperature

reaches the Higgs mass.

In the relativistic approximation (i.e., taking the limit mh ! 0 in the thermal average

calculation), the energy transfer rate in this process is given by,
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We integrate the Boltzmann equation with this collision term, ignoring the temperature

dependence of g⇤ for now, and enforcing the condition that decays are inactive above the

electroweak scale. Thus, we have,
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where M⇤ = 3
p
5/(2⇡3/2)Mpl, comes from the definition of Hubble as H =

p
g⇤ T

2
/M⇤.

At T ⇠ mh, as the Higgs falls out of the thermal bath, this process becomes exponentially

suppressed, and further production of dark sector energy can be neglected for this analysis.

The energy density present in the dark sector then redshifts like radiation (⇢ / a
�4) until its

temperature TD becomes comparable to the mass of the dark matter candidate. After this

point, it redshifts like matter (⇢ / a
�3) as required.

Thus,
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This integral represents a Bessel function of the second kind. Additionally, in our notation,
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The CFT energy density at any point in time (as a function of the Standard Model bath tem-

perature) can be obtained by integrating the Boltzmann equation given in Eq. (3.5). To get

a simple estimate, it su�ces to do this calculation in the relativistic approximation where the

Higgs is assumed to be massless and is described by a Maxwell-Boltzmann distribution. The

process roughly starts around the electroweak scale ⇠ v and continues till the SM temperature

reaches the Higgs mass.

In the relativistic approximation (i.e., taking the limit mh ! 0 in the thermal average

calculation), the energy transfer rate in this process is given by,
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We integrate the Boltzmann equation with this collision term, ignoring the temperature

dependence of g⇤ for now, and enforcing the condition that decays are inactive above the
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where M⇤ = 3
p
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At T ⇠ mh, as the Higgs falls out of the thermal bath, this process becomes exponentially

suppressed, and further production of dark sector energy can be neglected for this analysis.
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Conformal Freeze-In: Higgs Portal
• Strong interactions in the CFT thermalize the transferred energy: 


• Freeze-in stops when                           : 


• Current DM energy density: 
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where Tm is the SM temperature at which the dark sector temperature (TD) drops to the mass

of the dark matter candidate. We also define the CFT energy density at this temperature as

⇢CFT ⌘ Am
4
DM

, where A represents a model-dependent measure of the number of degrees of

freedom of the CFT (times a constant = ⇡
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/30). Thus, the relic density is given by
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where T0 is the current CMB temperature. Additionally, from Eq. (A.10), Tm is given by,
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Using Eq. (A.12) in Eq. (A.11) gives the relic density of dark matter from the Higgs portal

in terms of other parameters in the theory.

Note that we use g⇤(T0) ⇠ g⇤(Tm) ⇠ O(1). This is a reasonable approximation, as both

temperatures are below the QCD scale. g⇤(mh), denoted as just g⇤ below, is approximately

O(100). We also replace
⇣

v
3

m
3
h
� 1

⌘
! O(1) for this order-of-magnitude estimate. Addi-

tionally, we substitute Mgap in the equation instead of �CFT and ⇤CFT using the mass gap

equations. Taking the ratio of ⇢DM(T0) and the present critical energy density gives Eq. (3.9):

⌦DMh
2

0.1
=

h
mDM

1 MeV

i
2

64

⇣
Af

3
d
g
�9/2
⇤

⌘1/4

10�5

3

75

2

664

⇣
Mgap

mh

⌘(6� 3d
2 )

10�12

3

775 . (A.13)

This simple estimate is in good agreement with the results of numerical integration of Eq. (3.5).

Following the same procedure, the relic density can be calculated for each of the other

three portals. These equations are given below, neglecting derivatives of g⇤, but keeping all

scales intact.

For the quark and lepton portals, the primary production process is that of fermion

annihilation below the weak scale, where the Higgs is replaced by its VEV. The thermal

averaging process can be repeated for 2 ! CFT processes as,

n1n2h�(f1f2 ! CFT)vrelEi = g
2
f

�
2
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⇤2d
CFT

4d(d2 � 1)

(2⇡)2d+1
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T
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where gf is the number of degrees of freedom of the fermion (considered massless in this

limit).
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scales intact.
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where gf is the number of degrees of freedom of the fermion (considered massless in this

limit).
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where gf is the number of degrees of freedom of the fermion (considered massless in this

limit).
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Conformal Freeze-In: Higgs Portal3

SM particles gradually populate the dark sector. As-
suming Mgap ⌧ TR < ⇤CFT, this process occurs via
production of CFT stu↵ (“unparticles”). The dark sec-
tor cannot be described by Boltzmann equations, since
the concept of particle number density is not applicable
in the CFT. However, since the dark sector has many
degrees of freedom and they interact strongly among
themselves, it will be in a spatially isotropic thermal
state. Rotational symmetry dictates that the energy-
momentum tensor of this state has the form T

µ⌫ =
diag(⇢CFT ,�PCFT ,�PCFT ,�PCFT), while conformal in-
variance further requires PCFT = 1

3⇢CFT . The CFT en-
ergy density is given by

⇢CFT = AT
4
D, (6)

where TD is the temperature of the CFT sector, and A is
an order-one model-dependent constant. We will study
a scenario where TD ⌧ T at all times, where T is the
SM plasma temperature; at the same time, TD > Mgap

during the period when the dark sector is populated, so
that the CFT description is appropriate.

On the SM side, the particle number is well-defined and
the Boltzmann equations have the usual form, with colli-
sion terms describing the loss of SM particles due to anni-
hilations (SM+SM! CFT) and decays (SM! CFT), and
their creation due to inverse processes. The evolution of
the SM energy density ⇢SM follows from the Boltzmann
equations:

d⇢SM

dt
+ 3H(⇢SM + PSM) =

��E(SM ! CFT) + �E(CFT ! SM) , (7)

where H is the Hubble expansion rate, and �E are energy
transfer rates per unit volume. In our scenario, the CFT
sector will always remain at densities far below equilib-
rium with the SM, and �E(CFT ! SM) can be safely
neglected. The energy transfer rate from SM to CFT is
given by

�E(SM ! CFT) =
X

i,j

ninjh�(i+ j ! CFT)vrelEi

+
X

i

nih�(i ! CFT)Ei, (8)

where the sums run over all SM degrees of freedom cou-
pled to the CFT. The cross sections and decay rates can
be evaluated using the technique of Georgi [2, 19]. For
example, with the Higgs portal, the Higgs decay contri-
bution is given by

nhh�(h ! CFT)Ei =
fd�

2
CFT

v
2
m

2(d�1)
h T

⇤2d�4
CFT

K2(mh/T )

(9)
where mh is the Higgs boson mass, fd =
2�2d

⇡
1/2�2d�(d + 1/2)/(�(d � 1)�(2d)), and K2(x)
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FIG. 1: Top panel: Energy density in the CFT plasma or dark
matter particles, as a function of the SM plasma temperature
T , in the Higgs portal scenario with ⇤CFT = 1.2⇥108 GeV and
MU = 1017 GeV. Bottom panel: Evolution of the CFT plasma
temperature, as a function of T , for the same parameters. At
all times, TD ⌧ T , as required for the self-consistency of our
calculations.

is the modified Bessel function of the second kind. The
annihilation contribution (when T � mh) is given by

n
2
hh�(hh ! CFT) vrel Ei = �

2
CFT

d

2(2⇡)2d+1

T
2d+1

⇤2d�4
CFT

.

(10)
The CFT sector is populated at the time when the energy
density is dominated by relativistic SM matter, PSM =
1
3⇢SM , so that SM and CFT energy densities redshift in
the same way. The total energy of the two sectors can
only change due to work done against the expansion of
the universe:

d

dt
(⇢CFT + ⇢SM) + 4H (⇢CFT + ⇢SM) = 0. (11)

Subtracting Eq. (7), we find that the CFT energy density
evolves according to

d⇢CFT

dt
+ 4H⇢CFT = �E(SM ! CFT) , (12)

with the initial condition ⇢CFT = 0 at T = TR.
With minor simplifying assumptions, such as ignoring

the masses of colliding SM particles and the tempera-
ture dependence of the e↵ective number of SM degrees of



Results: Higgs Portal
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Figure 5: Dark matter relic density contours (red) and observational/theoretical constraints,

in the Higgs portal model, with a scalar mediator (left) and a vector mediator (right). The

solid red line indicates parameters where the observed dark matter abundance is reproduced.

a Higgs portal. Quark fusion continues until the quarks fall out of the thermal bath. Other

contributing processes include heavy quark to light quark + CFT decay and pion annihilation

below ⇤QCD . These are subdominant due to phase space factors and can be neglected. It

can be shown that the Higgs decay process is the dominant production mechanism, provided

that production is IR dominated with D < 4.5 (or equivalently the CFT operator dimension

d < d⇤ = 2.5).

An analytic approximation for the relic density can be obtained by considering only the

dominant mode of production: Higgs decay. The collision term in the Boltzmann equation is

given by,

�E(SM ! CFT) = nhh�(h ! CFT)Ei =
fd�

2
CFT

v
2
m

2(d�1)
H

T

⇤2d�4
CFT

K2(mH/T ), (3.8)

where fd = 2�2d
⇡
1/2�2d�(d + 1/2)/(�(d � 1)�(2d)), v is the Higgs VEV, mH is the Higgs

boson mass and K2(x) is the modified Bessel function of the second kind.

Using Eqs. (3.8) and (3.5), the current relic density of dark matter can be calculated.

This yields
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Here, g⇤ ⌘ g⇤(mH) is the e↵ective number of SM degrees of freedom when TSM = mH and A

is a model-dependent constant that represents the number of degrees of freedom of the dark
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scalar rho dominant vector rho dominant

OSM DM Mass DM Mass Dominant CFT Dominant

(Scalar Mediator) (Vector Mediator) Deformation Production Mode

H
†
H 0.4 - 1.2 MeV 40 - 400 keV Tree-level h ! CFT

HQ
†
q

1st: ��SN
All: 0.1 - 1 MeV

MFV: 0.5 - 5 MeV

1st: ��SN
All: 50 - 200 keV

MFV: 0.1 - 1 MeV

Radiative mixing qq̄ ! CFT

HL
†
`R

1st: ⇠⇠⇠⇠WDM

All: 3 - 10 keV

MFV: 10 - 100 keV

1st: ⇠⇠⇠⇠WDM

All: ⇠⇠⇠⇠WDM

MFV: ⇠⇠⇠⇠WDM

Radiative mixing `¯̀! CFT

G
µ⌫
Gµ⌫ 0.2 - 2 MeV 50 - 400 keV Radiative direct gg ! CFT

B
µ⌫
Bµ⌫ 0.1 - 10 MeV 0.05 - 1 MeV Radiative direct �� ! CFT

Table 2: Summary table for each SM operator portal considered. In this table, ��SN stands

for models that are ruled out by supernova cooling constraints, and ⇠⇠⇠⇠WDM stands for models

that are ruled out by warm dark matter constraints.

is subdominant to production in the CFT regime, with the exception of a small region in the

parameter space of the lepton-portal model.

We note that in the COFI scenario, it is possible that at some time in the cosmological

history TSM > Mgap > TD . In this regime, the thermal bath of the dark sector is described by

particle-like bound-state excitations. However, the energy transfer from the SM to the dark

sector can still be described within the unparticle approach, since the energy transferred in

a single collision is above Mgap. This is analogous to using the parton model to calculate

(inclusive) rates of hadron production at the LHC, even though no quark-gluon plasma is

produced.

With the low-temperature modifications outlined above, Eq. (3.5) remains valid to present

day. Integrating this equation, with energy transfer rates evaluated separately for each portal,

provides predictions for current dark matter relic density which can be compared with the

observed value, ⌦h
2 = 0.1. These predictions will be discussed in the rest of this section.

3.2 Higgs Portal: OSM = H
†
H

There are multiple mechanisms of SM! dark sector energy transfer in theH†
H portal model.

For TSM between the reheating temperature (TR) and the weak scale, the leading mechanism

is the scattering process HH ! CFT. After the electroweak phase transition, one Higgs in

the interaction term can be replaced with its VEV and dark energy density will be produced

through Higgs decay. Additionally, there is production from quark and gluon fusion through
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Supernova Bounds
• Effective Lagrangian relevant for SN core: 


• Production: Use Georgi’s trick to evaluate inclusive production rate if                  , 
or use hadronic CFT to compute DM pair-production in nucleon collisions if


• Trapping: Use hadronic EFT to evaluate DM mean free path in the SN core

scalar model cancels out since Q(�) / g
2. Here, dofCFT

dof�
denotes the ratio of the internal

degrees of freedom of the final state produced in the CFT and the benchmark scalar model,

while h!iCFT

h!i� is the ratio of the average energy carried by the corresponding final states.
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only if CFT is fully specified, but we expect that they will take values within the range 1 ⇠ d.

We use 1 in the constraint plots of Section 3.
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where the second term is the top-loop induced coupling between the Higgs and gluon (see
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To get this form, we used the mass gap formula for the Higgs portal model. The energy loss

rate in the SN is calculated as in the gluon portal (see Appendix B.3) and is given by
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Numerically, emission from the SN core in the region of the model parameter space relevant

for COFI dark matter is well below the observational bound, so that the Higgs portal scenario

is unconstrained by stellar cooling considerations.

4.3.3 Lepton Portal

Dark sector states are produced through their interactions with electrons in the stellar

medium. In all star systems other than the supernova, the electron temperature is below

Mgap, so that the production is in the hadronic phase of the dark sector. The e↵ective theory

of electron-dark hadron interactions has the form
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(ēe)�+
g⇤

Mgap
� (@�)2 . (4.20)

– 28 –

scalar model cancels out since Q(�) / g
2. Here, dofCFT

dof�
denotes the ratio of the internal

degrees of freedom of the final state produced in the CFT and the benchmark scalar model,

while h!iCFT

h!i� is the ratio of the average energy carried by the corresponding final states.

Explicit expressions for the e↵ective coupling Ge↵ in quark and gluon portals are given in the

Appendix B.3 (see Eqs. (B.23) and (B.24)). The factors dofCFT
dof�

and h!iCFT

h!i� can be determined

only if CFT is fully specified, but we expect that they will take values within the range 1 ⇠ d.

We use 1 in the constraint plots of Section 3.

4.3.2 Higgs Portal

For Higgs portal, the COFI dark matter candidate has mass of order MeV, and can only be

produced in supernovae. Comparing Mgap in the Higgs portal model to TSN, we learn that

the production is in the CFT regime. Again, the dominant production mechanism for dark

states is Bremsstrahlung in nucleon collisions. The relevant part of the Lagrangian is

L ⇠
�CFT v
p
2⇤d�2

CFT

hOCFT +
↵s

12⇡v
hG

a

µ⌫G
µ⌫a (4.16)

where the second term is the top-loop induced coupling between the Higgs and gluon (see

for example e.g. [29, 30]). Integrating out the Higgs and using Eq. (4.7) yields the e↵ective

coupling

L ⇠ C
(N)
G

✓
↵s

6
p
2⇡

◆ 
M

4�d
gap

v2m2
h

!
N̄N OCFT . (4.17)

To get this form, we used the mass gap formula for the Higgs portal model. The energy loss

rate in the SN is calculated as in the gluon portal (see Appendix B.3) and is given by

✏(CFT) ⇠
G

2
e↵(mNT )d

g2

1

(2⇡)2d�2

dofCFT

dof�

h!iCFT

h!i�

Q(�)

⇢
(4.18)

where

Ge↵ = C
(N)
G

✓
↵s

6
p
2⇡

◆ 
M

4�d
gap

v2m2
h

!
. (4.19)

Numerically, emission from the SN core in the region of the model parameter space relevant

for COFI dark matter is well below the observational bound, so that the Higgs portal scenario

is unconstrained by stellar cooling considerations.

4.3.3 Lepton Portal

Dark sector states are produced through their interactions with electrons in the stellar

medium. In all star systems other than the supernova, the electron temperature is below

Mgap, so that the production is in the hadronic phase of the dark sector. The e↵ective theory

of electron-dark hadron interactions has the form

L ⇠
�CFT

⇤d

CFT

⇣
HL

†
`R

⌘
OCFT !

�CFT vM
d�1
gap

p
2g⇤ ⇤d

CFT
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Figure 6: Dark matter relic density contours (red) and observational/theoretical constraints,

in the quark portal model with minimal flavor violation couplings, with a scalar (vector)

mediator on the left (right).

Figure 7: Dark matter relic density contours (red) and observational/theoretical constraints,

in the quark portal model with democratic couplings, with a scalar (vector) mediator on the

left (right).

cools from the former temperature to the latter, the DM energy density is produced in the

CFT phase, but hadronizes quickly to matter and redshifts as matter. Additionally, in parts

of the parameter space of the lepton portal, production can also be dominated by hadronic
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Figure 6: Dark matter relic density contours (red) and observational/theoretical constraints,

in the quark portal model with minimal flavor violation couplings, with a scalar (vector)

mediator on the left (right).
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Figure 7: Dark matter relic density contours (red) and observational/theoretical constraints,

in the quark portal model with democratic couplings, with a scalar (vector) mediator on the

left (right).

cools from the former temperature to the latter, the DM energy density is produced in the

CFT phase, but hadronizes quickly to matter and redshifts as matter. Additionally, in parts

of the parameter space of the lepton portal, production can also be dominated by hadronic
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MFV couplings Flavor-diagonal couplings

sector as ⇢CFT ⌘ Am
4
DM

. We have used the mass gap formula from Table 1 to convert the

interaction coupling dependence to mass gap dependence as,

Mgap =

✓
�CFT

⇤d�2
CFT

v
2

◆ 1
4�d

.

The ratios in each bracket are O(1) for 1 < d < 2.5 and A ⇠ O(1). Thus, we expect

a mass-gap for the Higgs portal model at the MeV scale. For details of this calculation,

see Appendix A.1. This result is in good agreement with the numerical integration of the

Boltzmann equation.

The dark matter mass mDM and the dimension d of the CFT operator that produce the

correct observed relic density are shown in Fig. 5. Since the dark sector is mostly populated

through Higgs decays which occur at temperatures below the weak scale, the relic density

is independent of the reheating temperature or any other UV-scale parameters. Fig. 5 also

shows phenomenological and theoretical constraints on the model, which will be discussed in

detail in Section 4. We observe that the model produces a viable DM candidate with masses

mDM ⇠ 0.1�1 MeV. In these figures, we have fixed the value of r = mDM/Mgap (see Section 2.2

for the discussion of this parameter). The ratio r is tightly constrained by the combination

of bounds from large-scale structure (warm dark matter) and dark matter self-interactions.

Given these bounds, r can only be varied by a factor of at most a few relative to the values

shown. Such variation does not have a strong e↵ect on the predicted dark matter mass range.

3.3 Quark & Lepton Portals: OSM = HQ
†
q, HL

†
`R

Above the weak scale, energy transfer from the SM to the dark sector occurs via scattering

processes Hff̄ ! CFT and Hf ! f + CFT, where f refers to quarks or leptons depending

on the SM operator used. The energy transfer rate in these channels peaks at high tempera-

tures, introducing dependence on the reheat temperature TR. Below the weak scale, OSM is

matched onto a dimension-3 bilinear fermion operator. The dominant process contributing

to production of CFT energy density is fermion annihilation ff̄ ! CFT. We find that for

TR
<
⇠ few TeV, production below the weak scale is dominant and the resulting DM relic

density is independent of TR. For D < 4.5 ) d < 1.5, the energy transfer through fermion

annihilation peaks at low temperatures, while for d > 1.5, temperatures of order the weak

scale dominate.

For the quark portal, conformal freeze-in continues until T = ⇤QCD or T = Mgap,

whichever happens first. For the lepton portal, it continues until T = me or T = Mgap.

Again, we assume that there are dark pions that form the dark matter relic density we ob-

serve today, that are a factor r ⇠ 0.01 (with scalar mediator) or r ⇠ 0.001 (with vector

mediator) lighter than the mass gap induced by the Standard Model deformation. The dark

sector energy density redshifts as radiation until TD hits mDM = m�, and redshifts as matter

afterwards, until today.

Notably, in the lepton portal, it is possible for the SM temperature at which TD hits

mDM to be higher than the stopping temperature. In the short period when the universe
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Figure 8: Dark matter relic density contours (red) and observational/theoretical constraints,

in the lepton portal model with minimal flavor violation couplings, with a scalar (vector)

mediator on the left (right).

Figure 9: Dark matter relic density contours (red) and observational/theoretical constraints,

in the lepton portal model with only the first generation of leptons on the left and all gener-

ations of leptons on the right, with a scalar mediator.

annihilation. The dark sector energy density produced via gluon annihilation scales as,
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matched onto a dimension-3 bilinear fermion operator. The dominant process contributing
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scale dominate.
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Again, we assume that there are dark pions that form the dark matter relic density we ob-
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mediator) lighter than the mass gap induced by the Standard Model deformation. The dark
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afterwards, until today.

Notably, in the lepton portal, it is possible for the SM temperature at which TD hits

mDM to be higher than the stopping temperature. In the short period when the universe
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Figure 10: Dark matter relic density contours (red) and observational/theoretical con-

straints, in the gluon portal model, with a scalar (vector) mediator on the left (right).

As in the quark portal, production continues until T = ⇤QCD or TD = Mgap, whichever

happens first. The constraints on the model parameter space are shown in Fig. 10. For

analytic estimates of the relic density, see Appendix A.1.

Figure 11: Dark matter mass that produces the observed relic density, as a function of the

reheating temperature, for various values of d, for the gluon (left) and hypercharge (right)

portals.
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processes, where most of the energy density is produced below T = Mgap through the processes

involving the IR composite states. This is the case for the grey shaded regions in Fig. 9. See

Appendix A.2 for details of thermally averaged hadronic cross-sections and production rates.

As discussed in Section 3, we consider three scenarios for flavor structure of the quark/lepton

portal couplings: Minimal Flavor Violation, Democratic, and First-Generation Only. The

three scenarios give di↵erent mass gap scales for which the correct relic abundance is pro-

duced.

The energy density (⇢CFT) produced through the dominant process of fermionic scattering

scales as follows for each structure:

• First Generation Only: ⇢CFT ⇠ Mpl
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4 (v2d�3
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2
j

⇣
m

4�d

↵2v2
P

i m
2
i

⌘2
T
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where ⇤SM ⌘ ↵ v and mi stands for the relevant fermion masses. At the end of the freeze-

in process for each interacting fermion, T = Max[mi, Mgap] for the lepton portal and T =

Max[mi, ⇤QCD, Mgap] for the quark portal. Each of these contributions is summed and

appropriately redshifted to obtain the relic density. See Appendix A.1 for the relic density

equations for each flavor structure and portal.

Of the three scenarios, the MFV model is the least constrained, due to suppressed cou-

plings to the first generation of fermions. In the quark portal, the First-Generation Only

scheme is ruled out by supernova cooling constraints from SN1987A data (for both scalar and

vector mediators). The other four models are viable and the plots are shown in Figs. 6 and

7.

In the lepton portal, the mass of the DM candidate with correct relic abundance tends to

be lower than in other models, and the bound on dark matter free-streaming length from the

Lyman-↵ forest data [22] plays a major role in constraining the models. This is illustrated

in Figs. 8 and 9. The viability of COFI dark matter in this case depends on the details

of the model: for example, MFV and democratic models with a scalar mediator predict

mDM >
⇠ 10 keV and are consistent with observations, while in other cases mDM ⇠ 1 keV and

the models are ruled out.

In summary, we find six models with allowed parameter space that reproduces the relic

density: quark portal with MFV or democratic coupling (both scalar and vector mediators),

and the scalar mediator lepton portal with MFV or democratic couplings.

3.4 Gluon Portal: OSM = G
µ⌫
Gµ⌫

The dominant mode of populating the dark sector is through gluon annihilation, gg ! CFT.

Additionally, there are subdominant processes of production, through loop-induced quark
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DM-SM Couplings

Subdominant processes include Z boson decay below the weak scale, and fermion annihilation

through the electroweak portal. Photon annihilation continues till TSM ⇠ Mgap, and the dark

matter redshifts as matter below TD ⇠ mDM . Photon annihilation to CFT states produces

dark sector energy density that scales similarly to the gluon portal model;

⇢CFT / Mpl (1� sin2 ✓w)
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where ✓w is the Weinberg angle. For analytic estimates of the relic density, see Appendix A.1.

The viable parameter space and constraints on this model are shown in Fig. 12. The

value of r is 0.1 and 0.01 respectively for scalar and vector mediators. As in the gluon portal,

the interaction term dimension D is always > 5 and production is dominant at the reheating

temperature TR, making the relic density dependent on an extra parameter. Due to the

similarities with the gluon portal, where vector boson annihilation in the UV determines the

relic density, equations (3.14) and (3.15) apply in this case as well. Fig. 11 demonstrates this

scaling.

4 Dark Matter Phenomenology and Constraints
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Figure 13: Left panel: E↵ective energy scale of the SM-CFT interaction in the MFV lepton

portal with a scalar mediator. Right panel: E↵ective dimensionless strength of the SM-CFT

coupling for the same portal, for SM collision energies of order 100 GeV.

The interactions of the COFI dark matter candidate with the Standard Model particles

are extremely weak. The e↵ective energy scale suppressing the SM-CFT interaction is well

above the weak scale

⇤ = (�CFT)
� 1

D�4 · ⇤CFT ⇠ 1010 � 1015 GeV, (4.1)

leading to tiny couplings of the DM particles to SM at energies of order the weak scale and

below. This is illustrated in Fig. 13, in the case of the lepton portal in the MFV flavor

scheme; other portals produce similar results. As a result, no relevant constraints arise from
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for a vector mediator ⇢µ, and

L ⇠
g?

Mgap
� (@�)2 , (2.9)

for a scalar mediator �. The characteristic coupling can be estimated in the large-N limit as

g? ⇠
4⇡
p
N

. (2.10)

In a generic theory (such as QCD), both vector and scalar mesons will be present with

comparable masses.

The interactions of � with the SM are obtained by matching the interaction Lagrangian

in the CFT phase, Eq. (2.1), to the low-energy e↵ective theory. Dimensional analysis and

large-N arguments suggest

OCFT �!
M

d�1
gap

g?
� , (2.11)

while contributions from ⇢
µ and � are subdominant. This is seen by first noting that OCFT

is a scalar operator with scaling dimension d. Once the CFT confines, it is expected to

“interpolate” a scalar operator made up of canonically normalized field operators of composite

states. A single trace interpolation is given by the above equation where � is a gauge invariant

operator for a composite scalar. The factor Md�1
gap is fixed by the dimensional analysis, while

the factor 1/g? is determined by the large-N counting. Explicitly, in the large-N limit,

hOCFTOCFTi ⇠
N

16⇡2 = 1
g2?
, suggesting that OCFT /

1
g?
. For ⇢µ or �, the interpolation relation

is either that of a “descendant” or multi-trace. This is simply because OCFT ⇠ @µ⇢
µ by

Lorentz invariance and OCFT ⇠ (@�)2 by the shift symmetry of �. This amounts to raising

the e↵ective dimension with more suppression by inverse powers of Mgap, rendering them

subdominant in the low-energy e↵ective theory.

2.3 Ultraviolet Completion

There exists a natural UV completion of a dark-sector CFT considered above: SU(N) gauge

theories with fixed points in the infrared a la Banks-Zaks [16, 17].3 In the UV, an operator

of this gauge theory, for example, a fermion bilinear, is coupled to the SM. At some scale

⇤CFT , there is a fixed point and the UV gauge theory has a phase transition into the (gener-

ically strongly coupled) conformal phase. OCFT is the operator in the conformal phase that

corresponds to the original operator of the gauge theory. The matching for the example of a

fermion bilinear operator is,

LUV =
�BZ

M
dSM�1
BZ

OSM ̄ 
⇤CFT
���!

�CFT

⇤D�4
CFT

OSMOCFT ) �CFT ⇡ �BZ

✓
⇤CFT

MBZ

◆
dSM�1

, (2.12)

where MBZ is the UV cuto↵ scale of the gauge theory, �BZ is the coupling and  is a fermion

in the UV. We impose �BZ ⇠ O(1) as a naturalness condition in all the models we consider

3
The UV theory may be any gauge theory with an interacting IR fixed point. The gauge group need not

be SU(N) and also we do not require the fixed point to be weakly interacting.

– 10 –

[Example: MFV Lepton Portal]



Observational Signatures?
• DM-SM Couplings are too weak for production at colliders, direct/indirect 

detection (common feature of freeze-in models)


• DM mass in the 10 keV-1 MeV range         free-streaming at scales 
accessible with future improved large-scale structure data


• CFT->matter phase transition in the dark sector at 


• No structures smaller than Hubble scale at the time of the phase transition 
can be formed


• Stochastic gravitational wave production if first-order phase transition 
(unfortunately                             )



Summary
OSM DM Mass DM Mass Dominant CFT Dominant

(Scalar Mediator) (Vector Mediator) Deformation Production Mode

H
†
H 0.4 - 1.2 MeV 40 - 400 keV Tree-level h ! CFT

HQ
†
q

1st: ��SN
All: 0.1 - 1 MeV

MFV: 0.5 - 5 MeV

1st: ��SN
All: 50 - 200 keV

MFV: 0.1 - 1 MeV

Radiative mixing qq̄ ! CFT

HL
†
`R

1st: ⇠⇠⇠⇠WDM

All: 3 - 10 keV

MFV: 10 - 100 keV

1st: ⇠⇠⇠⇠WDM

All: ⇠⇠⇠⇠WDM

MFV: ⇠⇠⇠⇠WDM

Radiative mixing `¯̀! CFT

G
µ⌫
Gµ⌫ 0.2 - 2 MeV 50 - 400 keV Radiative direct gg ! CFT

B
µ⌫
Bµ⌫ 0.1 - 10 MeV 0.05 - 1 MeV Radiative direct �� ! CFT

Table 2: Summary table for each SM operator portal considered. In this table, ��SN stands

for models that are ruled out by supernova cooling constraints, and ⇠⇠⇠⇠WDM stands for models

that are ruled out by warm dark matter constraints.

is subdominant to production in the CFT regime, with the exception of a small region in the

parameter space of the lepton-portal model.

We note that in the COFI scenario, it is possible that at some time in the cosmological

history TSM > Mgap > TD . In this regime, the thermal bath of the dark sector is described by

particle-like bound-state excitations. However, the energy transfer from the SM to the dark

sector can still be described within the unparticle approach, since the energy transferred in

a single collision is above Mgap. This is analogous to using the parton model to calculate

(inclusive) rates of hadron production at the LHC, even though no quark-gluon plasma is

produced.

With the low-temperature modifications outlined above, Eq. (3.5) remains valid to present

day. Integrating this equation, with energy transfer rates evaluated separately for each portal,

provides predictions for current dark matter relic density which can be compared with the

observed value, ⌦h
2 = 0.1. These predictions will be discussed in the rest of this section.

3.2 Higgs Portal: OSM = H
†
H

There are multiple mechanisms of SM! dark sector energy transfer in theH†
H portal model.

For TSM between the reheating temperature (TR) and the weak scale, the leading mechanism

is the scattering process HH ! CFT. After the electroweak phase transition, one Higgs in

the interaction term can be replaced with its VEV and dark energy density will be produced

through Higgs decay. Additionally, there is production from quark and gluon fusion through

– 14 –



Fermionic (“Neutrino”) Portal
• Only one relevant spin-1/2 gauge-invariant operator in the SM:


• CFT breaking by this interaction is very week (no VEV, does not mix with 
any operator that gets a VEV)


• Have to add CFT breaking by hand:


• Gap scale becomes a free parameter


• DM Candidate: Dark Pion again, or possibly “Composite Sterile Neutrino”

OCFT OCFT

H

L

Figure 1: Diagram that contributes to conformal symmetry breaking via generation

of O2
CFT from the (HL)OCFT operator.

3 Fermionic COFI Model

We will now study the conformal freeze-in production in a model where the coupling

between the SM and the dark CFT is of the form

LO =
�↵�

CFT

⇤d�3/2
CFT

(HL↵)O
�

CFT, (3.1)

where OCFT is a spin-1/2 operator with the scaling dimension d. Note that unitar-

ity bound in this case is d � 3/2. Here ↵, � are lepton flavor indices, which will

be suppressed unless explicitly stated otherwise. The coupling constant �CFT is di-

mensionless, and a flavor-diagonal and universal scheme is assumed for simplicity5.

One of the goals of this work is to explain the origin of dark matter by the COFI

mechanism generated by the (HL)OCFT operator.

3.1 Conformal Symmetry Breaking

Conformal symmetry is broken in the SM, and the portal interaction in Eq. (3.1) will

inevitably mediate this breaking to the dark sector. However, the SM HL operator

does not get a VEV. Being a spin-1/2 operator, it also cannot mix linearly with any

operator that does acquire a VEV. As a result, the leading conformal symmetry-

breaking e↵ect in the dark sector due to the portal interaction arises at the one-loop

level, see Fig. 1. This can be represented by adding a term to the Lagrangian,

L � CO
2
CFT, (3.2)

where C is a constant that can be calculated from the diagram in Fig. 1. We assume

that the dark-sector CFT can be treated in the large-N approximation, in which case

the scaling dimension of O2
CFT is approximately given by twice the scaling dimension

of OCFT. There are two cases:

5This assumption can be naturally realized through extra-dimensional setups; for example, see
Ref. [48]
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• 3/2  d < 2: The deformation Eq. (3.2) is relevant, and leads to the breaking

of conformal symmetry in the infrared. The scale of this breaking is estimated

as

M (HL)
gap ⇠ C1/(4�d)

⇠

 
�CFT

⇤d�3/2
CFT

⇤1/2
SM

4⇡

! 1
2�d

, (3.3)

where ⇤SM is the UV cut-o↵ scale for the SM sector. Unfortunately, the cal-

culation of DM relic density in the next section shows that if this e↵ect is the

leading source of conformal symmetry breaking in the dark sector, the resulting

DM candidate is too light to be a viable DM candidate, due to warm dark mat-

ter constraints. Thus, while this e↵ect is always there, an additional, stronger

breaking of the conformal symmetry in the IR must be introduced.

• d � 2: The deformation Eq. (3.2) is marginal or irrelevant, and does not lead

to the breaking of conformal symmetry in the infrared. Since such a breaking

is a necessary condition to obtain a DM candidate at the end of the freeze-in,

we again conclude that a new source of breaking of the conformal symmetry in

the IR must be introduced.

Motivated by the above considerations, we assume that the CFT contains an

additional relevant scalar operator ÕCFT that generates the required mass gap:

L �
�CFT

⇤d�3/2
CFT

(HL)OCFT + c̃ ÕCFT. (3.4)

In this setup, the mass gap is given by Mgap ⇠ c̃1/(4�d̃) and is an additional free

parameter. This provides a phenomenologically viable fermionic COFI model, at

the expense of losing some of the predictive power of the minimal bosonic COFI

models discussed in Refs. [26, 28] (see [29] for the mass gap generation in the tensor

COFI model whereMgap is induced from the dominant scalar operator in the operator

product expansion Oµ⌫⇥O
µ⌫). On the other hand, as we will see below, the fermionic

COFI models also o↵er an important new advantage: the measured neutrino masses

can be due to the same portal interaction, Eq. (3.1), that generates the observed DM

abundance.

3.2 Dark Matter Candidate

Once the dark-sector conformal symmetry is broken atMgap, the CFT operator OCFT

is interpolated as an infinite tower of composite fermions operators  n:

OCFT ⇠

X

n

anM
d�3/2
gap  n, (3.5)

where the coe�cients an are model-dependent. If the lightest state  0 in the  n

tower is also the lightest in the hadron spectrum,  0 may serve as a dark matter

– 8 –



COFI DM with Fermionic Portal

Figure 3: The e↵ective CFT coupling � ⌘ �CFT

⇣
µIR

⇤CFT

⌘d�3/2

that reproduces the

observed relic density w.r.t the DM mass m� (left) and dimension d (right), for

reheating temperature TR = 5v. Solid, dashed and dotted lines represent r = Mgap

m�
=

1, 10, 100 respectively. In the left panel, the parameter d is varied as 1.6, 2.4, and

3.2, represented by red, green, and blue lines, respectively. In the right panel, m�

is varied as 10 keV, 1 MeV, and 100 MeV, also shown by red, green, and blue lines,

respectively.

In Figure 3 we show the e↵ective COFI coupling

� ⌘ �CFT

✓
Mgap

⇤CFT

◆d�3/2

(4.25)

that reproduces the correct relic density. In the left panel, the e↵ective coupling is

plotted against the DM mass m�, while in the right panel, it is plotted against the

scaling dimension d. In both cases, we choose reheat temperature to be TR = 5v ⇠

1.2 TeV. As discussed above, for d < 2.5, the relic density is approximately inde-

pendent of TR, while for d > 2.5 increasing TR would decrease the e↵ective coupling

corresponding to correct relic density. Solid, dashed and dotted lines corresponds to

r = Mgap

m�
= 1, 10, 100 respectively. (Note that a hierarchy m� ⌧ Mgap is technically

natural for both fermionic and PGB DM candidates.) In the left panel, the values of

d are set to 1.6, 2.4, and 3.2, indicated by red, green, and blue lines, respectively. In

the right panel, m� takes values of 10 keV, 1 MeV, and 100 MeV, also represented

by red, green, and blue lines. As typical in freeze-in scenarios, correct DM abun-

dance requires a highly suppressed e↵ective coupling between the SM and the dark

sector. Such small couplings are in fact very natural in the model we consider: for

example, in a model with m� = 10 keV, Mgap = 1 MeV, d = 2.4, �CFT = 0.1, and

⇤CFT = 2.5⇥1012 GeV, the fermionic COFI mechanism produces the DM abundance

approximately consistent with observations. Alternatively, a model with �CFT ⌧ 1

and ⇤CFT ⇠ O (TeV) can be achieved in a natural way [26, 28]. Such a possibility is
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Constraints (DP or CSN)

Figure 5: The ratio of Mgap to m� that produces the observed relic density for

fixed values of �. The “Weak Self Interaction” refers to Eq. (6.5); the “Strong Self

Interaction” to Eq. (6.6). Solid, dashed and dotted lines correspond to di↵erent

values of �, while red, green, blue curves represent di↵erent choices of d.

In this mass range, correct DM relic density can be generated, but the required

values of �̃ ⇠ 10�18 are too small to also generate the neutrino mass via the COFI

portal operator. Viable models can still be constructed by adding an elementary

right-handed neutrino; see Sec. 5.2.

Allowing the DM particle to be lighter than Mgap with r = Mgap/mDM � 1 can

weaken the self-interaction constraint. In this case, the DM particles are described

within a weakly-coupled e↵ective theory of the hadronic phase, and need not have

geometric self-interaction cross sections. Besides dark matter �, the IR e↵ective

theory typically includes a collection of bound states with masses aroundMgap. These

states will couple to � and mediate DM self-interactions. Following the previous

work [26, 28, 29], we model the interaction for PGB dark matter as

g⇤
Mgap

�(@�)2, g⇤⇢
µ�⇤@µ� (6.3)

for a scalar mediator � and vector mediator ⇢µ respectively. Similarly, the leading

couplings of fermionic dark matter to a pseudo-Goldstone boson ⇡, scalar �, and

vector ⇢µ are as follows:
g⇤

Mgap
@µ⇡�

†�̄µ�, g⇤��̄�, g⇤⇢
µ�†�̄µ�. (6.4)

The characteristic dimensionless coupling is estimated to be g⇤ ⇠
4⇡
p
N

in the large-N

limit.; we will assume g⇤ ⇠ 1 in the estimates below.
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X-Ray Constraints (CSN Only)

Figure 7: The existing limits on the total mixing angle ✓2 for sterile neutrino-like

DM. Solid, dashed and dotted lines represent predictions of the fermionic COFI DM

scenario with r = Mgap

m�
= 10, 102, 103 respectively, while black, blue, red curves cor-

respond to d = 1.6, 2.4, 3.2 respectively. The black “DW” line represents Dodelson-

Widrow mechanism [4] for ordinary particle sterile neutrino DM.

where ✓2 is the total mixing angle for all lepton flavors:

✓2 ⌘
X

↵=e,µ,⌧

|✓↵|
2. (6.8)

The lifetime of dark matter must be longer than the age of the Universe, tU =

4.4⇥ 1017 sec [63], which leads to the bound on the mixing angle [64]:

✓2 . 3.3⇥ 10�4

✓
10 keV

m�

◆5

. (6.9)

X-rays

A far stronger bound on the total mixing angle ✓2 arises from a loop mediated

radiative decay � ! ⌫ + �, see Figure 6, which produces an observable photon. The

decay width of this process is given by [61, 62]

��!⌫+� =
9↵G2

F

256⇡2
✓2m5

�
⇡ 5.5⇥ 10�22✓2

⇣ m�

1 keV

⌘5

sec�1. (6.10)
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• Composite Sterile Neutrino DM can decay:


• X-ray observations constrain the rate of this 
process


• Conventional production model for SN DM - 
Dodelson-Widrow mechanism - is ruled out


• Composite SN with COFI production can 
evade this bound 


• Potential observational signature in future X-
ray observations

� ⌫

�

⌫ W

`

Figure 6: Loop-induced radiative decay of sterile neutrino dark matter � ! ⌫ + �.

such dark matter candidates. Hence, there is no significant bound on our scenario

from these objects.

In the core of an exploding supernova, such as the SN1987A, temperatures of

order 30 MeV may be reached, so that production of DM states is kinematically al-

lowed. Supernova constraints in the case of ordinary sterile neutrinos are well-studied

in the literature [59, 60]. The dominant production channel for sterile neutrino is

via vacuum oscillations of active neutrinos. Oscillation probability is dominated by

the states nearest in mass to the active neutrino. In the case of COFI models, these

states are the composite bound states formed after confinement, which behave es-

sentially like sterile neutrinos. Mixing of active neutrinos with heavier composite

fermion states are suppressed due to their larger masses. Therefore, in Figure 7, we

present the supernova constraints on ordinary sterile neutrinos to provide a point of

reference for sterile neutrino-like DM. For PGB DM, the lightest fermionic composite

of the CFT would typically lie closer to Mgap instead of m�, which means that in

these models the supernova bound could be further weakened by a factor of up to

r2.

6.4 Decaying Dark Matter

As already mentioned in Section 3.2, in models where the dark matter candidate is

the lightest fermionic state of the CFT operator OCFT, Eq. (3.5), the DM is neces-

sarily unstable. In this section, we will consider the phenomenological constraints

(and a potential signature) that arise due to this lack of stability. It should be kept

in mind that these constraints do not apply to all realizations of COFI DM: for ex-

ample, a PGB dark matter candidate can be exactly stable (up to Planck-suppressed

interactions) due to a global symmetry.

Lifetime of DM

For dark matter masses below twice the electron mass, the dominant decay channel

of the sterile neutrino-like DM is � ! 3⌫. The total decay width, accounting for all

possible combinations of neutrino flavors, is given by [61, 62]

��!3⌫ =
G2

F
m5

�

96⇡3
✓2 ⇡

✓2

1.5⇥ 1014 sec

⇣ m�

10 keV

⌘5

, (6.7)

– 23 –



Neutrino Mass Generation
• In the DS hadronic phase, active neutrino couples to a tower of composite 

“sterile neutrinos”:


• Suppose there is a massless chiral (right-handed) composite fermion


• Then this interaction generates a Dirac “SM” neutrino with mass


• Additional structure in the DS hadronic sector required to avoid annihilation of 
DM particles into SM neutrinos 

realized by starting in the deep UV with a coupling between the SM and a gauge the-

ory sector. The latter gauge theory sector flows to a strongly coupled IR fixed point,

generating the COFI interaction. The point is that the interaction between the SM

and the gauge theory sector is generically irrelevant, and thus under the renormal-

ization group flow is reduced significantly without any input small parameters. See

[26, 28] for more details.

In this section, we have determined the portal interaction strength needed to

produce the correct amount of DM. Can this portal interaction also provide su�cient

breaking of the CFT to give the DM its mass? As discussed in Section 3, for d � 2

the answer is negative, since the deformation induced by the portal is negligible in

the IR. For 3/2  d < 2, an IR CFT breaking is generated. The breaking scale is

given by Eq. (3.3), which can be rewritten as

M (HL)
gap ⇠

�
2
⇤SM

16⇡2
. (4.26)

Even with the highest plausible value of the cut-o↵, ⇤SM ⇠ Mpl, this scale remains

well below keV throughout the parameter space consistent with the DM relic density.

Since the DM mass is required to be above a few keV by the Lyman-↵ constraints,

the CFT breaking generated by the portal interaction alone is not su�cient. We

conclude that for any value of d, an additional source of CFT breaking must be

introduced, as was done in Eq. (3.4).

5 Neutrino Mass Generation

The CFT operator OCFT, and the composite states created by it in the hadronic

phase of the dark CFT, carry the quantum numbers of a right-handed neutrino.

Thus, we expect the portal interaction of Eq. (3.1) to generate a mass for active

neutrinos. In this section, we will show that in certain dark-sector models, this mass

could account for the observed neutrino mass scale m⌫ ⇠ 0.1 eV, leading to a very

attractive possibility that the same dynamics is responsible for the observed dark

matter abundance and neutrino mass. This will be discussed in subsection 5.1. An

alternative (perhaps more generic) possibility is that the neutrino mass generation

is achieved by a separate mechanics disconnected from the DM sector. The simplest

realization of this will be outlined in subsection 5.2.

5.1 Neutrino Mass from the Dark Matter Portal

The CFT operator interpolation Eq. (3.5) and the electroweak symmetry breaking

give rise to a possible mass source for active neutrinos:

�CFT

⇤d�3/2
CFT

(HL)OCFT ⇠ �CFTv
X

n

an

✓
Mgap

⇤CFT

◆d�3/2

(⌫L n) =
X

n

an�v(⌫L n), (5.1)
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chiral spectrum. Specifically, a massless composite right-handed fermion  0, with no

left-handed composite partner, is required. Such composite chiral massless fields may

arise naturally in theories where they are required by ’t Hooft anomaly matching.11

If such a massless composite fermion  0 is present, the portal interaction pairs it up

with ⌫L to produce an active neutrino with a Dirac mass,

m⌫ ⇠ �v , (5.3)

which may be of order 0.1 eV provided that

� ⇠ 10�13. (5.4)

Such values of e↵ective coupling can be consistent with the observed DM relic density

as well; see Fig. 4.

The existence of a very light composite fermion  0 implies that the dark matter

particle � is no longer the lightest dark-sector composite state. A phenomenologically

viable COFI model requires that the energy stored in the dark sector ends up in the

form of DM particles today. But composite states generically interact strongly with

each other, leading to reactions such as �� !  0 0 which would transfer most of

the energy to  0 at late times. To achieve a viable model, these reactions must be

strongly suppressed. This requires additional symmetry structure in the hadronic

phase of the dark sector: either � and/or  0 carry conserved quantum numbers that

forbid the decay and annihilation reactions, or perhaps there is an initial asymmetry

in a quantum number carried by � and not  0. Note that this requirement essentially

precludes the possibility that � itself is a sterile neutrino state, interpolated by OCFT.

However, other possibilities, including PGB dark matter, are still open. Detailed

model-building along these lines is beyond the scope of this paper and is left for

future work.

Using Eq. (5.3), the COFI production rates in Eq. (4.7), (4.9) and (4.11) can be

expressed in terms of Mgap and m⌫ :

nHnLh�(H + L ! +CFT)Ei =
22d

128⇡2

Ad�1/2 sec2(⇡d)

�(�1/2� d)�(3/2� d)

m2
⌫

v2
M3�2d

gap T 2d+2(5.5)

a singe lightest Dirac composite fermion. Then, the fermion system is described by L ⇠ m⌫L 1 +
M�1 1. This theory has U(1)2L ⇥ U(1)R chiral symmetry, two and only two of which are broken
by mass terms. Therefore, there exists one chiral symmetry unbroken, hence one massless fermion.
This argument can easily be extended to a tower of Dirac fermion coupled to a chiral fermion, and
details can be found in [49].

11See [50] for standard discussion of ’t Hooft anomaly matching. For a ’t Hooft anomaly associated
with continuous symmetries, there exist a theorem by Coleman and Grossman [51] based on S-matrix
technique which states that such a anomaly has to be matched by massless state with helicity
±1/2. A modern discussion on ’t Hooft anomalies associated with discrete as well as continuous
symmetries, including those of generalized symmetries (see [52–55] for reviews), and various ways
they can be matched, can be found for e.g. in section 3 of [56].
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DM and Neutrino Mass

• Correct DM relic density and active neutrino mass scale can be obtained 
from the same portal interaction Figure 4: Left: Red, green, and blue curves show the parameters corresponding

to the measured neutrino mass scale, m⌫ = 0.1 eV, for several representative values

of �CFT and ⇤CFT. The black curve shows the parameters where the correct DM

relic density is reproduced. It is assumed that r = Mgap

m�
= 100 and TR = 5v.

Right: The relation between �CFT and ⇤CFT that generate the correct neutrino

mass m⌫ = 0.1 eV, for a few representative values of d and Mgap.

where  n are right-handed fermions with the quantum numbers of a sterile neutrino,

composed of confined CFT degrees of freedom. Generically, we expect that these

fermions get masses of order Mgap from confining dynamics. These masses may be

Majorana or Dirac. In the Majorana case, the mainly-active neutrino gets a mass

m⌫ ⇠
�
2
v2

Mgap
, (5.2)

where we assumed an ⇠ 1. Unfortunately, for the values of parameters required to

obtain the correct DM relic density, shown in Fig. 3, this is much smaller than the

observed neutrino mass scale, ⇠ 0.1 eV. Alternatively, if we choose COFI parameters

to obtained correct neutrino masses, it will lead to overclosure of the universe. Either

way, this particular mechanism for the neutrino mass generation can not accommo-

date both requirements.

In the Dirac case,  n pair up with left-handed composite fermions  0

n
. This will

be the case if the dark CFT respects the lepton number and hence no Majorana

mass is allowed. In this case, the composite fermion spectrum will be purely vector-

like, and the addition of the field ⌫L leads to a mismatch between left- and right-

handed states, so that there is always one massless left-handed fermion left in the

spectrum even after including Eq. (5.1). Thus, active neutrinos, ⌫L, are remained

to be massless.10 To avoid this conclusion, the composite dynamics must produce a

10Alternatively, this may be seen from chiral symmetry of the theory. To simplify the discussion,
let us consider the truncated picture where the confined phase of the dark sector is represented by

– 17 –



5D Dual: Relevant Dilaton
• AdS/CFT correspondence indicates that the 

above setup has a 5D dual: AdS slice, SM on 
UV brane, DM IR-localized


•               is dual to a bulk scalar field


• Key feature of COFI: Conformal symmetry 
breaking in the SM determines the scale of 
CFT breaking in the IR


• In 5D: Physics on the UV brane sets up the 
position of the IR brane


• Realized explicitly in “Relevant Dilaton 
Stabilization” models (constructed for EW/
Planck hierarchy stabilization) 

[Csaki, Geller, Heller-Algazi, Ismail, ’23] 

[work in progress with Lillian Luo] 

• Lepton portal HL
†
`R,

• Weak-gauge portal Wµ⌫
Wµ⌫ , and

• Hypercharge-gauge portal Bµ⌫
Bµ⌫ .

All our examples involve relevant or marginal SM operators, which are expected to be domi-

nant at low energies. Also, all operators we consider are Lorentz scalars. For an example of

a non-scalar portal, namely OSM = Bµ⌫ which results in a composite dark photon, see Ref. [?

].

In the case of quark and lepton portals, the flavor structure of the CFT coupling to the

SM needs to be specified. We will assume that the portal operators are flavor-diagonal in the

SM mass eigenbasis. The coupling to CFT can then be written in this basis as

Lint =
�CFT

⇤D�4
CFT

OCFT ·

 
X

i

iO
i

Yuk

!
, (2.3)

where the sum runs over the six flavors of SM quarks or three flavors of charged leptons,

and O
i

Yuk is the SM Yukawa operator for each flavor. The constants i encode the flavor

dependence of the CFT-SM interactions. Specifically, we will consider three cases:

• Minimal Flavor Violation (MFV), with entries proportional to SM Yukawas: i = yi,

i = 1 . . . 6 for quarks and 1 . . . 3 for charged leptons.

• Democratic, with all entries the same: i = 1.

• First-Generation Only: i = 1 for the first-generation quarks or electrons, and 0 for the

second and third generations.

2.2 CFT Breaking in the Infrared

Since the Dark Sector CFT contains a relevant operator OCFT , the generic expectation is

that the conformal symmetry is broken in the infrared (IR). Specifically, if the Lagrangian

contains a term

L = cOCFT , (2.4)

where c is a constant of mass dimension 4� d > 0, the conformal symmetry is broken at the

“gap” mass scale

Mgap ⇠ c
1/(4�d)

. (2.5)

Here and below, we make use of Naive Dimensional Analysis (NDA) to estimate various

quantities of interest up to order-one factors. In most cases, more precise analytic results are

not available due to the strongly-coupled nature of the underlying theory. NDA estimates

will be su�cient to establish the basic features of the dark matter model and establish its

viability. At energy scales below Mgap, the theory is no longer conformal. In this subsection,

we will first estimate the gap scale for each of the six SM portals, and then describe the

physics at low energies below Mgap.
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5D Dual: Relevant Dilaton
• In relevant dilation model, bulk action is


• The UV-brane tadpole term serves as a source for the bulk field


• Minimizing the bulk action fixes the location of the IR brane (or equivalently 
dilation vev):


•

where y is the orbifolded fifth dimension. The UV and the IR branes are the two orbifold

fixed points at y = 0 and y = yc, respectively. This metric is a solution to the Einstein

equations when the bulk CC is ⇤ = �24M3

5
k2 and the brane tensions are tuned to ⇤UV =

�⇤IR = 24M3

5
k, where M5 is the 5D Planck mass [5].

We introduce a free scalar � in the bulk, whose action is given by

S� =

Z
d4x dy

p
g


1

2
gMN@M�@N��

1

2
m2�2

�

p
gind
p
g

VUV(�)�(y)�

p
gind
p
g

VIR(�)�(y � yc)

� (3.2)

where gind is the determinant of the induced metric on the branes. � respects a Z2 sym-

metry which is softly broken by a small tadpole on the UV brane:

VUV(�) =
1

2
mUV�

2 + �k5/2�, VIR(�) =
1

2
mIR�

2. (3.3)

� is dimensionless and can be taken to be very small since it is the only source of Z2 breaking

and thus technically natural. One way to generate a small � is via a Yukawa coupling

� L R, with one of the fermions odd under the Z2 symmetry. A fermion condensate can

be generated from the dynamics of some new confining gauge group similar to QCD. The

scale of the condensate is controlled by dimensional transmutation and can be naturally

smaller than the UV scale.

For the zero modes of �, which are only y-dependent, the solutions to the bulk equa-

tions of motion (EOM) are e(2±⌫)ky, where ⌫ ⌘
p

4 +m2/k2. We assume that 0 < ⌫ < 2 so

that on the UV brane, the second solution dominates. The profile of � is localized towards

the IR brane, and may be written as

�(y) = �0e
(2�⌫)ky

⇣
1 + �1e

2⌫ky
⌘
. (3.4)

The boundary conditions (BCs) on the branes are

2�0(0) = mUV�(0) + �k5/2, �2�0(yc) = mIR�(yc). (3.5)

This fixes the coe�cients of the 5D VEV profile in Eq. (3.4) to be

�1 = �
⌧IRe�2⌫kyc

⌧IR + 4⌫
, �0 = �

�k3/2

⌧UV + �1(⌧UV � 4⌫)
' �

�k3/2

⌧UV

, (3.6)

where we defined the mass mistunings on the IR and UV branes as

⌧IR ⌘ mIR/k + 4� 2⌫, ⌧UV ⌘ mUV/k � (4� 2⌫). (3.7)

The zero mode should be stable under small perturbations, otherwise the generated

dilaton potential itself will also be unstable. We verify this by perturbing the solution

�(y) + �(xµ, y) and plugging it back into S�. The e↵ective 4D mass of the perturbation

is obtained by solving the EOM for � in the limit of small 4D momentum p ⌧ ke�kyc and

then integrating out the extra dimension, which is found to be m2

� /
�
⌧UV + ⌧IRe�2⌫kyc

�
k2.
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A positive UV mass mistuning ⌧UV therefore ensures the zero-mode perturbations are not

tacyhonic and the solution is stable.

As shown in App. A, the e↵ective 4D potential of the dilaton is obtained by integrating

out the bulk matter and substituting in the solutions to the EOM and BCs. Following this

procedure with S�, integration by parts leaves us with only the boundary terms, since it

is quadratic in �:

V (�) = �

Z
dyL� = ��0(0)�(0) + VUV + e�4kyc

�
�0(yc)�(yc) + VIR

�
. (3.8)

Once we impose the BCs in Eq. (3.5) we are left with the tadpole contribution

V (�) =
1

2
�k5/2�(0) =

⌧IR�2

2⌧UV(⌧IR + 4⌫)
k4�2⌫�2⌫ + const., (3.9)

where � ⌘ ke�kyc is the dilaton. This is the key piece of our potential — the dilaton

can have any power between 0 and 4 while the size of this coupling is proportional to �2,

which can be hierarchically small. In the dual CFT this is the second term in Eq. (2.2)

which is quadratic in gd(µUV), as anticipated from the Z2 symmetry of O. No �2+⌫ term

is generated due to the vanishing VEV of � on the IR brane.

For comparison, in the Goldberger-Wise mechanism [44] the scalar has a small bulk

mass ✏ ⌘
p
4 +m2/k2 � 2 ⌧ 1 with nonzero VEVs on both branes, which induces cou-

plings �4+✏,�4+2✏ whose coe�cients are O(1) in units of k. It is dual to an almost marginal

operator of dimension 4+ ✏ where conformal invariance is broken both explicitly and spon-
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k3
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4�2⌫�2⌫ + V1
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k3
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5

⌧IR
⌧UV(⌧IR + 4⌫)
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The existence of a non-trivial minimum requires �2⌫ > 0, so the IR mass mistuning must

lie in the range 0 > ⌧IR > �4⌫.
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✓
�2⌫⌫

2�

◆
1/(4�2⌫)

⇠ k�1/(2�⌫). (3.12)
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dyL� = ��0(0)�(0) + VUV + e�4kyc

�
�0(yc)�(yc) + VIR

�
. (3.8)
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k4�2⌫�2⌫ + const., (3.9)
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where y is the orbifolded fifth dimension. The UV and the IR branes are the two orbifold

fixed points at y = 0 and y = yc, respectively. This metric is a solution to the Einstein

equations when the bulk CC is ⇤ = �24M3

5
k2 and the brane tensions are tuned to ⇤UV =

�⇤IR = 24M3

5
k, where M5 is the 5D Planck mass [5].

We introduce a free scalar � in the bulk, whose action is given by

S� =

Z
d4x dy

p
g


1

2
gMN@M�@N��

1

2
m2�2

�

p
gind
p
g

VUV(�)�(y)�

p
gind
p
g

VIR(�)�(y � yc)

� (3.2)

where gind is the determinant of the induced metric on the branes. � respects a Z2 sym-

metry which is softly broken by a small tadpole on the UV brane:

VUV(�) =
1

2
mUV�

2 + �k5/2�, VIR(�) =
1

2
mIR�

2. (3.3)

� is dimensionless and can be taken to be very small since it is the only source of Z2 breaking

and thus technically natural. One way to generate a small � is via a Yukawa coupling

� L R, with one of the fermions odd under the Z2 symmetry. A fermion condensate can

be generated from the dynamics of some new confining gauge group similar to QCD. The

scale of the condensate is controlled by dimensional transmutation and can be naturally

smaller than the UV scale.

For the zero modes of �, which are only y-dependent, the solutions to the bulk equa-

tions of motion (EOM) are e(2±⌫)ky, where ⌫ ⌘
p

4 +m2/k2. We assume that 0 < ⌫ < 2 so

that on the UV brane, the second solution dominates. The profile of � is localized towards

the IR brane, and may be written as

�(y) = �0e
(2�⌫)ky

⇣
1 + �1e

2⌫ky
⌘
. (3.4)

The boundary conditions (BCs) on the branes are

2�0(0) = mUV�(0) + �k5/2, �2�0(yc) = mIR�(yc). (3.5)

This fixes the coe�cients of the 5D VEV profile in Eq. (3.4) to be

�1 = �
⌧IRe�2⌫kyc

⌧IR + 4⌫
, �0 = �

�k3/2

⌧UV + �1(⌧UV � 4⌫)
' �

�k3/2

⌧UV

, (3.6)

where we defined the mass mistunings on the IR and UV branes as

⌧IR ⌘ mIR/k + 4� 2⌫, ⌧UV ⌘ mUV/k � (4� 2⌫). (3.7)

The zero mode should be stable under small perturbations, otherwise the generated

dilaton potential itself will also be unstable. We verify this by perturbing the solution

�(y) + �(xµ, y) and plugging it back into S�. The e↵ective 4D mass of the perturbation

is obtained by solving the EOM for � in the limit of small 4D momentum p ⌧ ke�kyc and

then integrating out the extra dimension, which is found to be m2

� /
�
⌧UV + ⌧IRe�2⌫kyc

�
k2.
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sector as ⇢CFT ⌘ Am
4
DM

. We have used the mass gap formula from Table 1 to convert the

interaction coupling dependence to mass gap dependence as,

Mgap =

✓
�CFT

⇤d�2
CFT

v
2

◆ 1
4�d

.

The ratios in each bracket are O(1) for 1 < d < 2.5 and A ⇠ O(1). Thus, we expect

a mass-gap for the Higgs portal model at the MeV scale. For details of this calculation,

see Appendix A.1. This result is in good agreement with the numerical integration of the

Boltzmann equation.

The dark matter mass mDM and the dimension d of the CFT operator that produce the

correct observed relic density are shown in Fig. 5. Since the dark sector is mostly populated

through Higgs decays which occur at temperatures below the weak scale, the relic density

is independent of the reheating temperature or any other UV-scale parameters. Fig. 5 also

shows phenomenological and theoretical constraints on the model, which will be discussed in

detail in Section 4. We observe that the model produces a viable DM candidate with masses

mDM ⇠ 0.1�1 MeV. In these figures, we have fixed the value of r = mDM/Mgap (see Section 2.2

for the discussion of this parameter). The ratio r is tightly constrained by the combination

of bounds from large-scale structure (warm dark matter) and dark matter self-interactions.

Given these bounds, r can only be varied by a factor of at most a few relative to the values

shown. Such variation does not have a strong e↵ect on the predicted dark matter mass range.

3.3 Quark & Lepton Portals: OSM = HQ
†
q, HL

†
`R

Above the weak scale, energy transfer from the SM to the dark sector occurs via scattering

processes Hff̄ ! CFT and Hf ! f + CFT, where f refers to quarks or leptons depending

on the SM operator used. The energy transfer rate in these channels peaks at high tempera-

tures, introducing dependence on the reheat temperature TR. Below the weak scale, OSM is

matched onto a dimension-3 bilinear fermion operator. The dominant process contributing

to production of CFT energy density is fermion annihilation ff̄ ! CFT. We find that for

TR
<
⇠ few TeV, production below the weak scale is dominant and the resulting DM relic

density is independent of TR. For D < 4.5 ) d < 1.5, the energy transfer through fermion

annihilation peaks at low temperatures, while for d > 1.5, temperatures of order the weak

scale dominate.

For the quark portal, conformal freeze-in continues until T = ⇤QCD or T = Mgap,

whichever happens first. For the lepton portal, it continues until T = me or T = Mgap.

Again, we assume that there are dark pions that form the dark matter relic density we ob-

serve today, that are a factor r ⇠ 0.01 (with scalar mediator) or r ⇠ 0.001 (with vector

mediator) lighter than the mass gap induced by the Standard Model deformation. The dark

sector energy density redshifts as radiation until TD hits mDM = m�, and redshifts as matter

afterwards, until today.

Notably, in the lepton portal, it is possible for the SM temperature at which TD hits

mDM to be higher than the stopping temperature. In the short period when the universe
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in COFI (Higgs portal)



5D dual: Phase Transition

• First-order transition completes promptly at 


• Gravitational wave production is under investigation



Conclusions
• Dark Sector described by a CFT is a natural and generic possibility


• Coupling of DS to SM necessarily breaks Conformal symmetry


• If coupling is via relevant CFT operator, low-energy phase is non-conformal          can 
contain dark matter


• Conformal Freeze-In (COFI): DS is populated from SM when it is in conformal phase, then 
undergoes a phase transition in which DM particles are created


• Produces viable DM candidate with mass in the 10 keV-100 MeV range


• Very feeble interactions of DM with SM, but large-scale structure signatures are possible


• Neutrino portal can account for DM relic density and active neutrino mass simultaneously


• Dark Sector phase transition/Gravitational wave production can be studied using 5D dual


