Dark Matter from a Conformal Dark Sector

Maxim Perelstein BCVSIN Conference, Kathmandu, December 8 2024

[Work with Sungwoo Hong and Gowri Kurup, 2207.10093, JHEP and w/Sungwoo Hong and Taewook Youn, 2412.00181 and w/Lillian Luo, 2412.xxxx]

Conformal(-ish) Dark Sector

- Conformal field theories seem ubiquitous, appear at interacting fixed points of RG flows
- Consider a dark sector described by a CFT (below some UV cutoff >> weak scale)
- Can dark matter arise from such a DS? lacksquare
- Conformal symmetry fixes scaling of CFT energy density in FRW universe: $\rho \propto a^{-4}$
- However DS is generically coupled to the SM, which is not conformal
- This may produce an interesting DM candidate

$$\mathcal{L}_{\mathrm{int}} = rac{\lambda_{\mathrm{CFT}}}{\Lambda_{\mathrm{CFT}}^{D-4}} \, \mathcal{O}_{\mathrm{SM}} \mathcal{O}_{\mathrm{CFT}}$$

In the deep UV, dark sector is a gauge theory, coupled to SM e.g. via

- DS flows to an interacting IR fixed point (Banks-Zaks) at $\Lambda_{
 m CFT} < M_{
 m BZ}$
- Below $\Lambda_{\rm CFT}$, the dark sector is a CFT, coupled to SM via $\frac{\lambda_{\rm CFT}}{\Lambda^{D-4}_{\rm CFT}} \mathcal{O}_{\rm SM} \mathcal{O}_{\rm CFT} \qquad \qquad \lambda_{\rm CFT} \approx \lambda_{\rm BZ} \left(\frac{\Lambda_{\rm CFT}}{M_{\rm BZ}}\right)^{d_{\rm SM}-1} \qquad \qquad D = d + d_{\rm SM}$
- "Natural" parameters: $\lambda_{BZ} \sim \mathcal{O}(1)$
- CFT is generically strongly coupled, so d is a continuous (non-integer) parameter (d > 1 from unitarity)

Conformal Dark Sector

$$\lambda_{\rm CFT} \ll 1$$

CFT Breaking: Higgs Portal

- For example, consider the "Higgs portal" coupling: ${\cal O}_{_{
 m SM}} = H^{\dagger} H$
- Below the weak scale: $\mathcal{L} = c \mathcal{O}$
- If $\mathcal{O}_{\rm CFT}$ is relevant (d<4), this perturbation grows in the IR, eventually breaking conformal symmetry.
- If no other sources of conformal breaking, the CFT breaking "gap" scale is

$$M_{\rm gap} = \left($$

• Generically, bound states form below this scale. Cosmologically, bound states behave as particles. If one or more are stable, can be DM.

$$c_{\mathrm{CFT}} \qquad c = rac{\lambda_{\mathrm{CFT}}}{\Lambda_{\mathrm{CFT}}^{D-4}} \langle \mathcal{O}_{\mathrm{SM}} \rangle.$$

$$\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^{d-2}}v^2\right)^{\frac{1}{4-d}}$$

CFT Breaking: Other Portals

	$\mathcal{O}^{}_{_{ m SM}}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \text{Loop-induc}\\ \mathcal{O}_{_{\rm CFT}}\end{array}$
Higgs portal	$H^{\dagger}H$	$\left(\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^{d-2}}v^2\right)^{\frac{1}{4-d}}$	$\left(\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^{d-2}} \frac{\Lambda_{\rm SM}^2}{16\pi^2}\right)$
Quark portal	$HQ_L^{\dagger}q_R$	$\left(\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^d} v \Lambda_{\rm QCD}^3\right)^{\frac{1}{4-d}}$	$\left(\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^d} \frac{\left(\sum_i \kappa_i y_{q_i}\right) v^2 A}{(16\pi^2)^2}\right)$
Gluon portal	$G^{\mu\nu}G_{\mu\nu}$	$\left(\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^d}\Lambda_{\rm QCD}^4\right)^{\frac{1}{4-d}}$	$\left(\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^d} \; \frac{\Lambda_{\rm SM}^4}{16\pi^2} \right.$
Lepton portal	$HL^{\dagger}\ell_R$		$\left(\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^d} \frac{\left(\sum_i \kappa_i y_{\ell_i}\right) v}{(16\pi^2)^2}\right)$
EW portal	$W^{\mu u}W_{\mu u}$		$\left(\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^d} \frac{\Lambda_{\rm SM}^4}{16\pi^2}\right)$
EW portal	$B^{\mu u}B_{\mu u}$		$\left(\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^d} \frac{\Lambda_{\rm SM}^4}{16\pi^2}\right)$

[Spin-1 portal: Chiu, Hong, LT Wang, '22] [Spin-1/2 portal: MP, Hong, Youn, '24]

- Below the gap scale, dark sector has particle-like excitations. To be specific, we assume the following (partly QCD-inspired) features:
- Lightest hadron is a pseudo-scalar particle, "dark pion"
- Dark pion is a pNGB, $r = m_{\rm DM}/M_{\rm gap}$ is a free (radiatively stable) parameter
- Dark pion is stable, plays the role of DM (no anomaly w.r.t. SM)
- Scalar or vector "dark rho" with mass $\sim M_{
 m gap}$

Hadronic Phase EFT

• Rho-pion interactions from symmetry: e.g. $\mathcal{L} \sim g_{\star} \rho^{\mu} \left(\chi^{\dagger} \partial_{\mu} \chi + h.c. \right)$

• DM elastic self-scattering is mediated by dark rho exchanges:

$$\sigma_{\rm SI} \sim rac{g_{\star}^4}{8\pi M_{
m gap}^2} \sim rac{r^6}{8\pi M_{
m gap}^2}$$
 (scalar rho), or $\sim rac{r^2}{8\pi M_{
m gap}^2}$ (vector rho)
nat SM-CFT coupling is $\mathcal{L}_{
m int} = rac{\lambda_{
m CFT}}{\Lambda_{
m CFT}^{D-4}} \mathcal{O}_{
m SM} \mathcal{O}_{
m CFT}$

- Recall th
- Symmetries restrict which states can be created by :

$$\mathcal{O}_{\rm CFT} \longrightarrow \frac{M_{
m gap}^{d-1}}{g_{\star}} \phi \qquad \qquad \mathcal{O}_{\rm CFT} \ \sim \ \partial_{\mu} \rho^{\mu} \qquad \qquad \mathcal{O}_{\rm CFT} \ \sim \ (\partial \chi)^2$$

Dark rho mediates DM-SM interactions: for example for lepton portal

$$\mathcal{L} \sim \frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^d} \left(H L^{\dagger} \ell_R \right) \mathcal{O}_{\rm CFT} \rightarrow \frac{\lambda_{\rm CFT} \, v \, M_{\rm gap}^{d-1}}{\sqrt{2}g_* \, \Lambda_{\rm CFT}^d} \, (\bar{e}e) \, \phi + \frac{g_*}{M_{\rm gap}} \phi \, (\partial \chi)^2$$

Hadronic Phase EFT

Cosmological History

- Phase transition (conformal plasma -> bound) states) in the dark sector at $T_{\rm dark} \sim M_{\rm gap}$
- Assume that 100% of energy in the dark sector before the transition is converted to DM
- If dark sector is in thermal equilibrium with SM before the phase transition, observed DM density requires $m_{\rm dm} \sim 100 \ {\rm eV}$ - hot DM!
- Freeze-in scenario: $T_{\text{dark}} < T_{\text{SM}}$
- As always with freeze-in, assume that dark ulletsector is not reheated after inflation, populated slowly by SM interactions

Conformal Freeze-In

- Energy transfer from SM to dark sector occurs when dark sector is conformal
- CFT energy evolves according to
- Solution to Boltzmann equation:

 $ho_{
m CFT}\sim$

 \bullet on T_R

$$\frac{d\rho_{\rm CFT}}{dt} + 4H\rho_{\rm CFT} = \Gamma_E(\rm SM \to \rm CFT)$$

• Dimensional analysis (if $T_{\rm SM} >>$ all mass scales): $\Gamma_E({\rm SM} \to {\rm CFT}) \sim \frac{\lambda_{\rm CFT}^2}{\Lambda^{2(D-4)}} T_{\rm SM}^{2D-3}$.

$$\frac{M_{\rm pl}}{\Lambda_{\rm CFT}^{2D-8}} \left[T^4 \left(\frac{T_R^{2D-9} - T^{2D-9}}{2D-9} \right) \right]$$

IR-dominated ("true freeze-in") for D < 9/2, otherwise (mildly) depends

Conformal Freeze-In

Conformal Freeze-In: Higgs Portal

- approach
- For example, in the Higgs portal:

$$n_h \langle \Gamma(h \to \text{CFT}) E \rangle = \iint d\Pi_h d\Pi_{\text{CFT}} f_h (2\pi)^4 \delta^4 (p_h - P) E_h |\mathcal{M}|^2.$$
$$= \iint \frac{d^3 \vec{p}_h}{(2\pi)^3 2E_h} \frac{d^4 P}{(2\pi)^4} e^{-\beta E_h} (2\pi)^4 \delta^4 (p_h - P) A_d (P^2)^{d-2} E_h \frac{v^2}{4} \frac{\lambda_{\text{CFT}}^2}{\Lambda_{\text{CFT}}^{2d-4}}$$
$$= \frac{f_d \lambda_{\text{CFT}}^2 v^2 m_h^{2(d-1)} T}{\Lambda_{\text{CFT}}^{2d-4}} K_2(m_h/T). \qquad \rho_{\text{CFT}}(T) = \frac{2M_* f_d \lambda_{\text{CFT}}^2}{3\sqrt{g_*(T)}v} \left(\frac{m_h}{\Lambda_{\text{CFT}}}\right)^{2d-4} T^4 \left(\frac{v^3}{T^3} - 1\right)$$

$$A_d = \frac{16\pi^{5/2}}{(2\pi)^{2d}} \frac{\Gamma(d+1/2)}{\Gamma(d-1)\Gamma(2d)}.$$

A more detailed calculation can be performed using Georgi's "unparticle"

$$f_d = A_d / 16\pi^2$$

Conformal Freeze-In: Higgs Portal

- Strong interactions in the CFT thermalize the transferred energy:
- Freeze-in stops when $T_D \sim m_{\rm dm}$:

$$T_m^4 = A m_{\rm DM}^4 \left[\frac{2M_* f_d \lambda_{\rm CFT}^2 g_*(T_m)}{3(g_*(m_h))^{3/2} v} \left(\frac{m_h}{\Lambda_{\rm CFT}}\right)^{2d-4} \left(\frac{v^3}{m_h^3} - 1\right) \right]^{-1}$$

• Current DM energy density: $\rho_{\rm DM}(T_0) =$

 $\rho_{\rm CFT} = AT_D^4, A \sim 1 \dots 10$

$$A m_{\rm DM}^4 \frac{g_*(T_0)T_0^3}{g_*(T_m)T_m^3}$$

$$\frac{4 f_d^3 g_*^{-9/2}}{10^{-5}} \left[\frac{\left(\frac{M_{\text{gap}}}{m_h}\right)^{(6-\frac{3d}{2})}}{10^{-12}} \right]$$

Conformal Freeze-In: Higgs Portal

Results: Higgs Portal $\mathcal{O}_{SM} = H^{\dagger}H$

scalar rho dominant

vector rho dominant

Supernova Bounds

• Effective Lagrangian relevant for SN core:

$$\mathcal{L} \sim \frac{\lambda_{\rm CFT} v}{\sqrt{2}\Lambda_{\rm CFT}^{d-2}} h \mathcal{O}_{\rm CFT} + \frac{\alpha_s}{12\pi v} h G^a_{\mu\nu} G^{\mu\nu a} \longrightarrow \mathcal{L} \sim C_G^{(N)} \left(\frac{\alpha_s}{6\sqrt{2}\pi}\right) \left(\frac{M_{\rm gap}^{4-d}}{v^2 m_h^2}\right) \bar{N} N \mathcal{O}_{\rm CFT}$$

- Trapping: Use hadronic EFT to evaluate DM mean free path in the SN core

• Production: Use Georgi's trick to evaluate inclusive production rate if $T_{\rm SN} > M_{\rm gap}$ or use hadronic CFT to compute DM pair-production in nucleon collisions if $T_{SN} < M_{gap}$

Quark Portal $\mathcal{O}_{SM} = HQ^{\dagger}q$

MFV couplings

Flavor-diagonal couplings

[scalar rho dominant]

Lepton Portal $\mathcal{O}_{SM} = HL^{\dagger}\ell_R$

scalar rho dominant

[MFV couplings]

vector rho dominant

scalar rho dominant

Gluon Portal $\mathcal{O}_{SM} = G^{\mu\nu}G_{\mu\nu}$

vector rho dominant

 $\Lambda = (\lambda_{\rm CFT})^{-\frac{1}{D-4}} \cdot \Lambda_{\rm CFT} \sim 10^{10} - 10^{15} \,\,{\rm GeV}$

DM-SM Couplings

[Example: MFV Lepton Portal]

Observational Signatures?

- detection (common feature of freeze-in models)
- DM mass in the 10 keV-1 MeV range pree-streaming at scales accessible with future improved large-scale structure data
- CFT->matter phase transition in the dark sector at $T \sim M_{\rm gap}$
- can be formed
- (unfortunately $\Omega_{GW} \propto (T_{dark}/T_{SM})^{8}$)

DM-SM Couplings are too weak for production at colliders, direct/indirect

No structures smaller than Hubble scale at the time of the phase transition

Stochastic gravitational wave production if first-order phase transition

Summary

$\mathcal{O}_{_{ m SM}}$	DM Mass (Scalar Mediator)	DM Mass (Vector Mediator)	Dominant CFT Deformation	Dominant Production Mode
$H^{\dagger}H$	0.4 - 1.2 MeV	40 - 400 keV	Tree-level	$h \to \mathrm{CFT}$
$HQ^{\dagger}q$	1st: SN All: 0.1 - 1 MeV MFV: 0.5 - 5 MeV	1st: SN All: 50 - 200 keV MFV: 0.1 - 1 MeV	Radiative mixing	$q\bar{q} \to \mathrm{CFT}$
$HL^{\dagger}\ell_R$	1st: JWDM All: 3 - 10 keV MFV: 10 - 100 keV	1st: WHM All: WHM MFV: WHM	Radiative mixing	$\ell \bar{\ell} \to \mathrm{CFT}$
$G^{\mu\nu}G_{\mu\nu}$	0.2 - 2 MeV	50 - 400 keV	Radiative direct	$gg \to \mathrm{CFT}$
$B^{\mu\nu}B_{\mu\nu}$	0.1 - 10 MeV	0.05 - 1 MeV	Radiative direct	$\gamma\gamma \to \mathrm{CFT}$

Fermionic ("Neutrino") Portal

- Only one relevant spin-1/2 gauge-invariant operator in the SM:
 - $\mathcal{L}_{\mathcal{O}} = \frac{\lambda_{\rm CFT}^{\alpha\beta}}{\Lambda_{\rm CDT}^{d-3/2}}$ any operator that gets a VEV)
- Have to add CFT breaking by han
- Gap scale becomes a free parameter

$$\frac{\Gamma}{2}(HL_{\alpha})\mathcal{O}_{\mathrm{CFT}}^{\beta}$$

CFT breaking by this interaction is very week (no VEV, does not mix with

nd:
$$\mathcal{L} \supset \frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^{d-3/2}} (HL) \mathcal{O}_{\rm CFT} + \tilde{c} \, \tilde{\mathcal{O}}_{\rm CFT}.$$

DM Candidate: Dark Pion again, or possibly "Composite Sterile Neutrino"

$$\overline{\lambda} \equiv \lambda_{\rm CFT} \left(\frac{M_{\rm gap}}{\Lambda_{\rm CFT}} \right)^{d-3/2}$$

Sample Point: $m_{\chi} = 10 \text{ keV}, M_{\text{gap}} = 1 \text{ MeV}, d = 2.4, \lambda_{\text{CFT}} = 0.1,$ $\Lambda_{\rm CFT} = 2.5 \times 10^{12} {
m GeV}$

mionic Portal

Constraints (DP or CSN)

X-Ray Constraints (CSN Only)

• Composite Sterile Neutrino DM can decay:

- X-ray observations constrain the rate of this process
- Conventional production model for SN DM Dodelson-Widrow mechanism is ruled out
- Composite SN with COFI production can evade this bound
- Potential observational signature in future Xray observations

Neutrino Mass Generation

"sterile neutrinos":

$$\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^{d-3/2}}(HL)\mathcal{O}_{\rm CFT} \sim \lambda_{\rm CFT} v \sum_{n} a_n \left(\frac{M_{\rm gap}}{\Lambda_{\rm CFT}}\right)^{d-3/2} (\nu_L \psi_n) = \sum_{n} a_n \overline{\lambda} v (\nu_L \psi_n),$$

- Suppose there is a massless chiral (right-handed) composite fermion
- Then this interaction generates a Dirac "SM" neutrino with mass

$$m_{\nu} \sim \overline{\lambda} v$$

DM particles into SM neutrinos $\chi \chi \rightarrow \psi_0 \psi_0$

• In the DS hadronic phase, active neutrino couples to a tower of composite

$$~~$$
 need $~\overline{\lambda} \sim 10^{-13}$

Additional structure in the DS hadronic sector required to avoid annihilation of

DM and Neutrino Mass

Correct DM relic density and activity from the same portal interaction

Correct DM relic density and active neutrino mass scale can be obtained

5D Dual: Relevant Dilaton

- AdS/CFT correspondence indicates that the above setup has a 5D dual: AdS slice, SM on UV brane, DM IR-localized
- $\mathcal{O}_{\mathrm{CFT}}$ is dual to a bulk scalar field
- Key feature of COFI: Conformal symmetry breaking in the SM determines the scale of CFT breaking in the IR
- In 5D: Physics on the UV brane sets up the position of the IR brane
- Realized explicitly in "Relevant Dilaton ulletStabilization" models (constructed for EW/ Planck hierarchy stabilization)

[Csaki, Geller, Heller-Algazi, Ismail, '23]

[work in progress with Lillian Luo]

5D Dual: Relevant Dilaton

• In relevant dilation model, bulk action is

$$S_{\Phi} = \int d^4x \, dy \, \sqrt{g} \left[\frac{1}{2} g^{MN} \partial_M \Phi \partial_N \Phi - \frac{1}{2} m^2 \Phi^2 - \frac{\sqrt{g_{\text{ind}}}}{\sqrt{g}} V_{\text{UV}}(\Phi) \delta(y) - \frac{\sqrt{g_{\text{ind}}}}{\sqrt{g}} V_{\text{IR}}(\Phi) \delta(y - y_c) \right] \qquad V_{\text{UV}}(\Phi) = \frac{1}{2} m_{\text{UV}} \Phi^2 + \gamma k^{5/2} \Phi,$$
$$V_{\text{UV}}(\Phi) = \frac{1}{2} m_{\text{UV}} \Phi^2 + \gamma k^{5/2} \Phi,$$
$$V_{\text{UV}}(\Phi) = \frac{1}{2} m_{\text{UV}} \Phi^2 + \gamma k^{5/2} \Phi,$$
$$V_{\text{UV}}(\Phi) = \frac{1}{2} m_{\text{UV}} \Phi^2 + \gamma k^{5/2} \Phi,$$

- The UV-brane tadpole term serves as a source for the bulk field
- dilation vev):

•
$$\chi \equiv k e^{-ky_c}$$
 $\langle \chi \rangle = k \left(\frac{\lambda_{2\nu}\nu}{2\lambda}\right)^{1/(4-2)}$

$$\nu \equiv \sqrt{4 + m^2/k^2}$$

• Minimizing the bulk action fixes the location of the IR brane (or equivalently

 $1/(4 - 2\nu)$ $M_{\rm gap} = \left(\frac{\lambda_{\rm CFT}}{\Lambda_{\rm CFT}^{d-2}}v^2\right)^{\frac{1}{4-d}}$ in COFI (Higgs portal) $\overline{2}$

5D dual: Phase Transition

- First-order transition completes promptly at $T_{PT} \sim M_{gap}$
- Gravitational wave production is under investigation

Conclusions

- Dark Sector described by a CFT is a natural and generic possibility
- Coupling of DS to SM necessarily breaks Conformal symmetry
- If coupling is via relevant CFT operator, low-energy phase is non-conformal contain dark matter
- Conformal Freeze-In (COFI): DS is populated from SM when it is in conformal phase, then undergoes a phase transition in which DM particles are created
- Produces viable DM candidate with mass in the 10 keV-100 MeV range
- Very feeble interactions of DM with SM, but large-scale structure signatures are possible
- Neutrino portal can account for DM relic density and active neutrino mass simultaneously
- Dark Sector phase transition/Gravitational wave production can be studied using 5D dual