DESY.

Shaping Dark Photon Spectral Distortions

Speaker: Xucheng Gan (DESY)

Giorgi Arsenadze, Andrea Caputo, Hongwan Liu, Joshua Ruderman

2409.12940 Collaborators: a Caputo Honowan Liu Joshua Ruder

Error bars are multiplied by 100

Xucheng Gan @ DESY

CMB is blackbody

Any process remove or inject photons

$\chi + \chi \rightarrow SM + SM$

 $\gamma \to A'$

Xucheng Gan @ DESY

Why the Dark Photon ?

Xucheng Gan @ DESY

Why CMB Spectral Distortion ?

Why CMB Spectral Distortion?

Berlin, Dror, Xucheng Gan, Ruderman 2022

BCVSPIN 2024

Dark Photon Limits Website

Why CMB Spectral Distortion?

CMB spectral distortion is currently the most sensitive test for the dark photon with 10^{-15} eV < $m_{A'}$ < 10^{-3} eV.

Why CMB Spectral Distortion? kHz Hz GHz THz eV keV **RAD:** $P_{\gamma \to A'} \sim \frac{\epsilon^2}{\chi} \times 10^{11}$ 10^{-4} 10^{-3} 10° 10^{-2} mixing Stellar 10^{-9} hoton Dark bounds dark matter Kinetic $P_{\gamma \to A'} \sim 10^{-4}$ COBE – FIRAS : 10 - 12-13 10°

COBE – FIRAS : $\epsilon_{est} \sim 3 \times 10^8$

Xucheng Gan @ DESY

Why CMB Spectral Distortion ?

CMB sp current test for t with 10⁻

1. 2. 3.

Correct formalism? Correct constraint? Correct smoking gun?

Xucheng Gan @ DESY

Questions:

Dark Photon Limits Website

$I(\nu) = \overline{I}_0(\nu) \cdot (1 - P_{\gamma \to A'})$

Mirrizi, Redondo, Sigl 2008

Caputo, Liu, Mishra-Sharma, Ruderman 2020

Works perfectly in low redshift

Xucheng Gan @ DESY

Previous Treatments

Caputo, Liu, Mishra-Sharma, Ruderman 2020

$I(\nu) = \overline{I_0}(\nu) - P_{\gamma \to A'}$ Mirrizi, Redor do, Sigl 2008

Caputo, Liu, Mishra Sharma, Ruderman 2020

High redshift

Xucheng Gan @ DESY

Previous Treatments

$\frac{Compton Scattering}{e^{-} + \gamma \leftrightarrow e^{-} + \gamma}$

Double Compton Scattering $e^{-} + \gamma \leftrightarrow e^{-} + \gamma + \gamma$

Bremsstrahlung $e^- + X \leftrightarrow e^- + X + \gamma$

Liu, Ruderman, 2409.12940

Xucheng Gan @ DESY

Recast µ and y with

McDermott, Witte 2019 Dark Photon Limit Website

Xucheng Gan @ DESY

Previous Treatments

$\gamma \rightarrow A' \text{ is } \mathbf{NOT}$ $\Delta I_{\gamma}(x;T_0) = \int dz' \, G^{th}(x',z';T_0) \frac{d(Q/\bar{\rho}_{\gamma})}{dz'} \quad \text{thermalized energy injection } (P_s \to 0)$

We need self-consistent treatment of μ – y Transition Era

Thermalized Energy Removal $P_{\rm s}=0$

Photon Removal $P_{c} = 1$

Xucheng Gan @ DESY

Arsenadze, Caputo, Xucheng Gan, Liu, Ruderman, 2409.12940

Xucheng Gan @ DESY

COBE-FIRAS Constraint Revisit

Comparing with Previous Works

Arsenadze, Caputo, Xucheng Gan, Liu, Ruderman, 2409.12940

Xucheng Gan @ DESY

Comments on Redondo et al. 09

Does not consider photon redistribution Need hard cutoff at T-era Out-of-date $X_e(z)$

Incorrect smoking gun

1.

2.

3.

4.

Arsenadze, Caputo, Xucheng Gan, Liu, Ruderman, 2409.12940

Xucheng Gan @ DESY

COBE-FIRAS Constraint Revisit

BCVSPIN 2024

 10^{-4}

COBE-FIRAS Constraint Revisit

Arsenadze, Caputo, Xucheng Gan, Liu, Ruderman, 2409.12940

Xucheng Gan @ DESY

COBE-FIRAS Constraint Revisit

Arsenadze, Caputo, Xucheng Gan, Liu, Ruderman, 2409.12940

Xucheng Gan @ DESY

µ Era Distortion

McDermott et al.: $P_{\rm s} = 0$

Real Case: $P_s = 1$

 $\frac{\mu_{inj}|_{P_s=1}}{\mu_{inj}|_{P_s=0}}$ x_{inj}

 $x_{inj} < x_0$: μ flips the sign!

COBE-FIRAS Constraint Revisit

Xucheng Gan @ DESY

y Era Distortion

 $G_y(x, x', z') = \alpha_\rho x' \cdot \left(1 - P_s(x', z')\right) \frac{Y(x)}{4}$

McDermott et al.: $P_s = 0$

 $\Delta I(x) \propto Y(x)$

Real Case: $P_s = 1$

 $\Delta I(x) \simeq - P_{\gamma \to A'}(x) \cdot I_0(x)$

Irreducible Cosmic Millicharge Background

A'SM

Xucheng Gan, Tsai, 2308.07951

Iles, Heeba, Schutz, 2407.21096

Xucheng Gan @ DESY

Summary

CMB spectral distortion is an extraordinary tool to test the photon injection/removal from BSM.

2. CMB spectral distortion is currently the best way to detect the ultralight dark photon in the mass range $10^{-10} \,\mathrm{eV} < m_{A'} < 10^{-3} \,\mathrm{eV}$.

3. Previous treatments either neglected the photon redistribution from the Compton Scattering or used incomplete formalism considering the thermalized energy injection.

4. We revisit the dark photon and do it with complete formalism. We not only fix the dark photon COBE-FIRAS bound in the high redshift region but also predict the smoking guns for future PIXIE-like experiments.

Xucheng Gan @ DESY

Emitter Cavity $(\gtrsim 10^{25} \text{ Photons})$

Xucheng Gan @ DESY

Dark SRF Experiment

Light Shinning Through The Wall

Receiver Cavity (Empty)

Xucheng Gan, Di Liu 2023 arXiv.2302.03056

Xucheng Gan @ DESY

Why the Dark Photon ?

Xucheng Gan @ DESY

u-y Transition Era

