

Development of nanostructured materials for ISOLDE targets

Valentina Berlin (valentina.berlin@cern.ch)

SY-STI-RBS

ISOLDE Workshop and Users meeting 2024

27 November 2024

Radioactive Ion Beams @ ISOLDE

(STI)

Target unit

lon source: surface, laser, plasma, ...

Transfer line controls transport to ion source, Ta, Cu or quartz Each target is customtailored to the physics experiment

30+ targets per year!

Target container typically heated to ~2000° C

SY

Accelerator Systems

(STI)

The Isotope Separation On-Line (ISOL) method

(STI)

ISOLDE Target Materials

Material requirements

- High **production cross section** of the isotope(s) of interest
- Stability at high temperatures
- Chemically stable and inert
- Resistance to radiation damage
- Rapid diffusion and effusion rates of the element(s) of interest

Operation <u>temperature</u> limitations

- **Sintering** (preserve target microstructure)
- Limited reactivity with surrounding materials
- Reduced stable beam contaminants (chemical impurities)
- Moderate equilibrium vapor pressure compatible with ion ٠ source (~10⁻⁴ mBar)

SY

Operations limit

SY

Accelerator Systems

CÉRN

Sintering temperature (densify):

function of the material melting point (T_m)

Preliminary results, in preparation (Edgar Reis)

Isotope production: target microstructure

[JPR17b]-mod

(STI)

J.P. Ramos, et al. NIM B 320 (2014). 10.1016/j.nimb.2013.12.009 U. Köster, et al. NIM B 204 (2003). 1016/S0168-583X(03)00505-6 J. Guillot. PhD thesis. (2017)

E.g. Nano CaO : material production and operation

[JPR17b, JPR12, SR22]-mod

SY

Accelerator Systems

(STI)

Nano-actinide targets: development and production

Nanomaterials production and safety

Criticalities to be addressed:

- **Safety:** High radiotoxicity and chemical reactivity require advanced shielding, containment (glove boxes, hot cells), and HEPA filtration.
- **Regulatory Compliance:** Adherence to strict international and national standards for radioactive and nanomaterial handling.
- **Environmental Protection:** Prevent airborne or environmental contamination through advanced ventilation and waste management systems.
- Material Stability: Controlled storage in inert atmospheres and thermal regulation to manage reactivity and degradation.
- Specialized Monitoring: Real-time detection systems for radiological, chemical, and nano-scale risks.

Following the Nano UCx combustion incident and the Moratorium for any nano-related activity at CERN, the construction of the Actinide NanoLab started.

SY

The ISOLDE Nanolab

Current status of the Nanolab

179/R-022

179/R-024

179/R-021

Nano UC_x production

UO₂ powder preparation **MWCNT** MWCNT + UO_2 Grinding 2 1 3 Mixing and drying and sampling preparation partica 🖀 Transfer in Storage 5 Pill pressing 6 Carburization 8 capsule C-sleeve

Transferring uranium carbide material production from R-001 to NanoLAB

Nano UC_x at ISOLDE (2015)

- A collaboration formed within the European FP7 Joint Research Activity "ActiLab" in ENSAR had carried out systematic online and offline investigations of current and novel uranium carbide matrices.
- ★ The highest release efficiency and overall intensity was measured from the low-density (ρ ≈1.4 g/cm³) UC_x made from nanometric UO₂ and MWCNT, followed by conventional UC_x (ρ ≈ 3.5 g/cm³).

[JPR17]

SY

Accelerator Systems

(STI

Accelerator Systems

(STI

ST

. ÉRN

ST

(STI)

:ÉRN

Alternative routes for nanomaterial production

Sonochemical methods

- Based on precipitation of nanostructures by reaction of lanthanum acetate, nitrate and chloride with ammonia or sodium hydroxide
- The cation are assembled within the template of surfactants micelle in an aqueous solution
- Ultrasound irradiation helps with controlling the particles size

 $La(OH)_3 + PVP10$ Is it nano? Yes but we can do better

$$PVP10 \xrightarrow{25^{\circ}C,1 \text{ bar}} PVP10 \text{ Micelles}$$

$$NaOH \xrightarrow{H_2O} OH^- + Na^+$$

$$a(NO_3)_3 \cdot 6H_2O \xrightarrow{H_2O} La^{3+} + 3NO_3^- + 6H_2O$$

$$La^{3+} + 3OH^- \xrightarrow{H_2O} La(OH)_3$$

 $CTAB \xrightarrow{25^{\circ}C,1 \ bar}{\rightarrow} CTAB \ Micelles$ $LaCl_{3} \cdot 7H_{2}O \xrightarrow{H_{2}O}{\rightarrow} La^{3+} + 3Cl^{-} + 7H_{2}O$ $NH_{3} + H_{2}O \rightarrow OH^{-} + NH_{4}^{+}$ $La^{3+} + OH^{-} \rightarrow La(OH)_{3}$ (Nanorod) $La(NO_{3})_{3} * H_{2}C_{2}O_{4}(exc_{3}) \rightarrow La(C_{2}O_{4})_{3}$

 $La(C_2O_4)_3 \xrightarrow{250^{o}C, > 20 \text{ bar}} La_2O_3 (nano)$

Cellulose impregnation method

- Based on an old ISOLDE target material precursor (thorium gas lamps), prepared by impregnation of cellulose with a saturated thorium nitrate solution
- Tests were done at JRC-Karlsruhe in January on lab-scale and attempted up-scaling at CERN ran into issues
- Heavily nitrated cellulose combusts very quickly in the process even at low temperatures (around 150° C)
- Option to explore: Starting from chloride and ethoxide or other functional groups (Th nitrate chemistry is quite rich and wellknown)
- Studies ongoing on Hafnium ethoxide impregnated cellulose fibers

 $HfCl_{4} + EtOH_{(exc.)} \rightarrow Hf(OEt)_{4} + 2Cl_{2}$ $Hf(OEt)_{4} + (C_{6}H_{10}O_{5})^{n} \xrightarrow{800^{o} C} HfO_{2}$

Cellulose impregnated with Hafnium ethoxide before pyrolysis (left), at 300° C (middle) and 850° C (right)

Sintering and grain growth during heat treatment

 $ThCl_4 + EtOH_{(exc.)} \rightarrow Th(OEt)_4 + 2Cl_2$ $Th(OEt)_4 + (C_6H_{10}O_5)^n \xrightarrow{800^o C} ThO_2$

UCl₄? Can we translate this method to uranium? Studies ongoing

Material development and infrastructure

 $La(NO_3)_3 * H_2C_2O_4(exc.) \rightarrow La(C_2O_4)_3$

 $La(C_2O_4)_3 \xrightarrow{250^{o}C_{,>} > 20 \ bar} La_2O_3 \ (nano)$

Hydrothermal methods

- Narrow particle size distribution and good degree of control of particle size down to 10s of nm
- Process can be done in water-based dispersions and does not require usage of a binder (surfactant) agent
- Tests with lanthanum at room pressure already led to formation of interesting platelet microstructure
- Further tests required to test stability at operational temperatures

La₂O₃ platelets formed in normal pressure conditions

High pressure reactor (200 bar, 270° C)

Nanofibers via Electrospinning

♦ Oxides are known at ISOLDE to sinter too fast.
 The main idea is to reduce the coordination number
 → Avoid/reduce sintering

Metallic Oxides (Zr, Y, Hf, Th, U) Carbides (Si, La, U, Th)

Advantages

- Nano safety materials are encapsulated in a polymeric matrix until heat-treatment
- Flexibility can be applied to a wide range of materials and explored for other applications
- Uniformity the process is consistent and produces uniform nanomaterials with enhanced physical properties
- Further tests required to test stability at operational temperatures

Dismantling & oxidation of irradiated targets

Addition of nano UO₂ to MWCNT Ultrasound + agitation

Drying and crushing of nano UO₂ + MWCNT mixture

Carburisation on pumpstand to produce UC_x

Particularly sensitive topic when talking about a nanostructured target materials

Target unit ready to be sent online

Irradiated actinide/lanthanide

carbide (UCx, ThCx and LaCx)

as target materials became

pyrophoric radioactive waste

Dismantling & oxidation of irradiated targets

Objectives

- Develop a controlled oxidation process in ISOLDE hot cells focused on stabilization of core material (i.e. UO₂.xH₂O, ThO₂.xH₂O and $La(OH)_3$)
- Searching **lowest stabilization temperature** to minimize release of radioactive volatile compounds
- Estimation of outgassing for radioactive volatile compounds
- Packaging and conditioning for **long-term disposal** in the Swiss deep geological repositories

Oxidation setup

20% O₂/Ar (dry)

Unknown phase/mixture at 380°C for 20 hours (15.6% mass increase) 1074 J/g heat of reaction

Humid air

La(OH)₃ and graphite mixture at 50°C for 10 hours (14.4% mass increase). 1485 J/g heat of reaction

SY

Dismantling & oxidation of irradiated targets

Objectives

- Develop a controlled oxidation process in ISOLDE stabilization of core material (i.e. UO₂.xH₂O, ThO₂.xH₂O)
- Searching lowest stabilization temperature to radioactive volatile compounds
- Estimation of outgassing for radioactive volatile compound
- Packaging and conditioning for long-term disposal geological repositories

Oxidation setup

(STI)

Humid air

La(OH)₃ and graphite mixture at 50°C for 10 hours (14.4% mass increase). 1485 J/g heat of reaction

Accelerator Systems

Chemical lab extension – non-actinide nanomaterials

Extension and upgrade of the current chemical and thermal laboratories:

• Chemical storage, thermal activities, process area \rightarrow only one facility, relocated from office area to dedicated Nano-2 and Nano-3 lab

Foreseen construction of:

- NANO-3 **Production** laboratory for non-actinide nanomaterials target production
- NANO-2 Characterization & Development laboratory for target materials development
- Chemical and Thermal laboratory for bulk materials handling and thermal treatments

31

SY

Chemical lab extension – non-actinide nanomaterials

SY Accelerator Systems

Conclusions and future outlooks

- **Enhanced Release Efficiency**: Development of nanostructured materials ensures faster isotope release, enabling the exploration of very short-lived isotopes and broadening research capabilities.
- * Material Optimization: The integration of nanoengineering techniques has improved stability and performance under high-temperature and radiation conditions.
- Operational Advancements: The incorporation of nanomaterials enables users to investigate a broader range of species within a single beam time.
- Safety and Compliance: The construction of the new nano-laboratories addressed critical safety and environmental concerns with robust containment, monitoring systems, and adherence to regulatory standards.
- * Next-Generation Targets: Research into innovative nanomaterials, including hybrids and novel composites, to further enhance isotope production efficiency and stability.
- Sustainability in Operations: Focus on minimizing environmental impact through better recycling and waste management strategies for radioactive and nanomaterial byproducts.

References and acknowledgments

[SR21] Sebastian Rothe, SY Technical Meeting, 11 NOV 2021 [SR22] Sebastian Rothe, EMIS XIX, Daejeon Korea, 5 Oct. 2022 [JPR18] J.P Ramos, Presentation at EMIS 2018 [JPR17b] J.P.Ramos, MEDICIS-Promed Specialized Training on Radioisotope production [ER24] E.M.D.S.Reis, Radioactive Ion Beam Production via the ISOL method, KU Leuven

A BIG THANKS TO ALL THE PEOPLE FROM THE SY-STI-RBS/LP and HSE-RP SECTIONS!

Mia AU Melania AVERNA Justus BERBALK Antoine BOUCHERIE Bernard CREPIEUX Sven DE MAN Charlotte DUCHEMIN Isabel FRANK Matthias Alexander GRESSER Patricija KALNINA

Timo KNOBLOCH Laura Naomi LAMBERT Line LE Edgars MAMIS Stefano MARZARI Michael OWEN Sebastian ROTHE Alexander SCHMIDT Edgar Miguel SOBRAL DOS REIS Simon Thomas STEGEMANN Thierry STORA Serdar USTA Joachim VOLLAIRE Kevin Raphael ZINKE Alexander DORSIVAL Elodie AUBERT Nadine CONAN Matthieu DESCHAMPS

SY

Thank you for your attention

Backup slides

2D proton scan

Measurements of the number of counts at the tape station (CA0...) as a function of the position of the proton beam.

(STI)

Useful tool for the tuning of the proton beam, as often the optimal position of the latter is **off-centered** with respect to the middle axis of the target container.

SY

Accelerator Systems

2D proton scan

Measurements at the tape station and on the RP monitorsas a function of the position of the proton beam.

STI

Tape station measurements

RP monitors

Radioisotope production @ ISOLDE

Beam Intensity =
$$\sigma \cdot j \cdot N_t \cdot \varepsilon$$

 $\varepsilon = \varepsilon_{diff} \varepsilon_{eff} \varepsilon_{is} \varepsilon_{sep} \varepsilon_{transp}$

Target-material dependent variables (and largest loss factors for shortlived radioisotopes)

SY

Accelerator Systems

Isotope production: target material

$$\varepsilon = \varepsilon_{diff} \varepsilon_{eff} \varepsilon_{is} \varepsilon_{sep} \varepsilon_{transp}$$
$$\varepsilon_{rel}$$

Typical target operation conditions:

T~ 2000 °C (UCx, Ta, ThCx) P~ $10^{-5} - 10^{-6}$ mbar c

Diffusion vs effusion

٠

SY

Accelerator Systems

(STI)

CÉRN

Diffusion $\varepsilon = (\varepsilon_{diff}) \varepsilon_{eff} \varepsilon_{is} \varepsilon_{sep} \varepsilon_{transp}$ Slowest step in many systems Critical for short-lived isotopes! $D = D^0 \exp\left(-\frac{\Delta H}{k_h T}\right)$ T (K) 10⁻⁸ - 600 450 400 500 10^{-10} Cu Au Zn 10^{-12} D (m²/ s) 10⁻¹⁴ Cd 10^{-16} T. (Pb) = 327.5 °C Pb 10⁻¹⁸ 0.00225 0.00175 0.00200 0.00250 1 / T (K⁻¹)

Effusion $\varepsilon = \varepsilon_{dif} \varepsilon_{eff} \varepsilon_{is} \varepsilon_{sep} \varepsilon_{transp}$

Effusion is much faster than diffusion for porous materials (mostly depending on the pore size and interconnectivity)

Therefore, porosity is good for short-lived radioactive species even if it decreases their production crosssection from nuclear reactions

Target production oven control system

Carburization is the heating of the UO_2/C pills up to 2000C under vacuum, to transform UO_2 to UC_x . To avoid interlock trigger caused by pressure spikes during CO_2 evolution, the **SW monitors**:

- Pressure
- Pressure Rate
- Drain Voltage Rate

And it adjusts by:

- Increasing/decreasing the ramp up speed
- Ramping down to decrease pressure
- · Automatic restart of devices if system shuts down

Monitor in a dedicated WRAP dashboard (wrap.cern.ch)

Software control for UC_x production

WRAP Dashboard for UC_x production

Alternative routes for nanomaterial production

Nano-calcium oxide production

Produced by decomposition of commercial calcium carbonate

$$CaCO_3 \xrightarrow{800^oC,10-3 mbar} CaO(nano) + CO_2$$

Fig. 1. Target and ion source assembly with plasma ion source MK5. The vacuum valve is part of the assembly.

SY

(STI

Accelerator Systems

Target selection

- **Cross sections**
- Bulk •
- Half-lives •

At ISOLDE

- 1.4-GeV p ٠
- ²³²Th, ²³⁸U ٠

In-target production Please note, these are not extractable yields! Software: FLUKA I Target type: U Carbide Deam succept: 1400 Neutron converter Show Compare												 P	In-target production Please note, these are not extractable yields!											
123 95	124 125	2500 126	v decay n	128	1 Sho	w magic	numbers 131	132	133	1 134	135	136	137	138	139	140	141	142	143	1 144	145	146	1 147	148
Pu 217 2.08e+4 - 94	+		r d 221 1.04e+5	Pu 222 4.16e+4	Pu 223 1.87e+5	Pu 224 6.24e+4	Pu 225 1.04e+5	Pu 226 2.08e+4	Pu 227 4.16e+4 20# ms	Pu 228 4.16e+4 2.1 s 1.3	Pu 229 2.08e+4 91 s 26	Pu 230 4.16e+4 1.70 m 0.17	Pu 231 1.66e+5 8.6 m 0.5	Pu 232 2.29e+5 33.7 m 0.5	Pu 233 7.70e+5 20.9 m 0.4	Pu 234 1.39e+6 8.8 h 0.1	Pu 235 4.31e+6 25.3 m 0.5	Pu 236 8.97e+6 2.858 y 0.008	Pu 237 2.55e+7 45.64 d 0.04	Pu 238 5.14e+7 87.7 y 0.1	Pu 239 2.92e+7 24.11 ky 0.03	Pu 240 1.23e+7 6.561 ky 0.007	Pu 241 5.41e+5 14.329 y 0.029	
Np 21 <mark>6</mark> 6.24e+5 - 93	- 1e+12 ^{Np} 218 - 1e+10 - 1e+10	Np 2 19 1.39e- 6 <5 us	Np 220 1.08e+6 30# ns	Np 221 9.78e+5 30# ns	Np 222 1.31e+6 700# ns	Np 223 1.44e+6 1# us	Np 224 1.41e+6 100# us	Np 225 1.41e+6 6 ms 5	Np 226 2.00e+6 35 ms 10	Np 227 1.98e+6 510 ms 60	Np 228 2.85e+6 61.4 s 1.4	Np 229 2.87e+6 4.00 m 0.18	Np 230 6.35e+6 4.6 m 0.3	Np 231 8.61e+6 48.8 m 0.2	Np 232 3.24e+7 14.7 m 0.3	Np 233 5.65e+7 36.2 m 0.1	Np 234 1.03e+8 4.4 d 0.1	Np 235 6.70e+8 396.1 d 1.2	Np 236 6.91e+8 153 ky 5	Np 237 1.08e+9 2.144 My 0.007	Np 238 4.08e+8 2.099 d 0.002	Np 239 9.86e+7 2.356 d 0.003	Np 240 1.41e+7 61.9 m 0.2	Np 241 3.74e+5 13.9 m 0.2
U 215 2.64e+7 -1/ 92 0. 9	- 10+8 - 110+6 U 217 - 10+6 4.26+7 - 10+4 800 us 700 5	U 218 4,32e+7 50 us 140	U 219 2.92e+7 55 us 25	U 220 3.64e+7 60# ns	U 221 4.43e+7 660 ns 140	U 222 4.90e+7 4.7 us 0.7	U 223 3.84e+7 21 us 8	U 224 3.92e+7 396 us 17	U 225 3.63e+7 61 ms 4	U 226 3.66e+7 269 ms 6	U 227 4.21e+7 1.1 m 0.1	U 228 3.16e+7 9.1 m 0.2	U 229 1.93e+7 57.8 m 0.5	U 230 5.94e+8 20.23 d 0.02	U 231 3.14e+8 4.2 d 0.1	U 232 2.29e+9 68.9 y 0.4	U 233 3.56e+9 159.2 ky 0.2	U 234 1.05e+10 245.5 ky 0.6	U 235 1.42e+10 704 My 1	U 236 3.26e+10 23.42 My 0.03	U 237 5.48e+10 6.752 d 0.002	U 238 3.52e+11 4.468 Gy 0.006	U 239 6.49e+9 23.45 m 0.02	U 240 6.84e+6 14.1 h 0.1
Pa 21.4 9.20e+7 —1 91 s 3	- 10+2 215 131e+8 14 ms 2 105 ms 12 3.4 2.14e+8 105 ms 12 3.4	Pa 21.7 1.88e+8 48 ms 0.09	Pa 218 1.40e+8 113 us 10	Pa 219 1.77e+8 53 ns 10	Pa 220 2.03e+8 780 ns 160	Pa 221 2.37e+8 5.9 us 1.7	Pa 222 2.12e+8 3.2 ms 0.3	Pa 223 2.35e+8 5.1 ms 0.3	Pa 224 2.84e+8 846 ms 20	Pa 225 2.78e+8 1.7 s 0.2	Pa 226 3.66e+8 1.8 m 0.2	Pa 227 3.24e+8 38.3 m 0.3	Pa 228 2.83e+8 22 h 1	Pa 229 1.46e+9 1.50 d 0.05	Pa 230 7.99e+8 17.4 d 0.5	Pa 231 3.25e+9 32.76 ky 0.11	Pa 232 2.53e+9 1.32 d 0.02	Pa 233 6.33e+9 26.975 d 0.013	Pa 234 6.21e+9 6.70 h 0.05	Pa 235 9.50e+9 24.4 m 0.2	Pa 236 6.30e+9 9.1 m 0.1	Pa 237 1.19e+10 8.7 m 0.2	Pa 238 1.75e+8 2.28 m 0.09	Pa 239 8.95e+5 1.8 h 0.5
Th 213 8.64e+8 	a emission 215 proton emission	Th 216 1.36e+9 6.0 ms 0.2	Th 217 9.22e+8 247 us 4	Th 218 1.22e+9 117 ns 9	Th 219 1.01e+9 1.021 us 0.024	Th 220 1.23e+9 9.7 us 0.6	Th 221 8.25e+8 1.78 ms 0.03	Th 222 9.05e+8 2.24 ms 0.03	Th 223 5.53e+8 600 ms 20	Th 224 1.58e+9 1.04 s 0.02	Th 225 1.03e+9 8.75 m 0.04	Th 226 1.94e+9 30.70 m 0.03	Th 227 1.39e+9 18.697 d 0.007	Th 228 2.18e+9 1.9124 y 0.0008	Th 229 1.66e+9 7.920 ky 0.017	Th 230 2.07e+9 75.4 ky 0.3	Th 231 1.46e+9 25.52 h 0.01	Th 232 1.51e+9 14.0 Gy 0.1	Th 233 9.48e+8 21.83 m 0.04	Th 234 8.40e+8 24.10 d 0.03	Th 235 4.16e+8 7.2 m 0.1	Th 236 2.36e+8 37.3 m 1.5	Th 237 2.87e+6 4.8 m 0.5	
Ac 212 1.62e+9 	 2-proton emission Ac 213 Ac 214 2-neutron emission 2-neutron emission 	Ac 21.5 2.19e-9 170 ms 10	Ac 216 1.34e+9 440 us 16	Ac 217 1.54e+9 69 ns 4	Ac 218 1.45e+9 1.00 us 0.04	Ac 219 1.66e+9 11.8 us 1.5	Ac 220 1.24e+9 26.36 ms 0.19	Ac 221 1.36e+9 52 ms 2	Ac 222 1.02e+9 5.0 s 0.5	Ac 223 1.04e+9 2.10 m 0.05	Ac 224 7.71e+8 2.78 h 0.16	Ac 225 7.66e+8 9.920 d 0.003	Ac 226 5.31e+8 29.37 h 0.12	Ac 227 5.24e+8 21.772 y 0.003	Ac 228 3.30e+8 6.15 h 0.02	Ac 229 3.03e+8 62.7 m 0.5	Ac 230 1.72e+8 122 s 3	Ac 231 1.37e+8 7.5 m 0.1	Ac 232 6.27e+7 1.98 m 0.08	Ac 233 3.82e+7 145 s 10	Ac 234 1.35e+7 45 s 2	Ac 235 3.22e+6 62 s 4	Ac 236 2.08e+4 4.5 m 3.6	
Ra 211 3.25e+9 -13881.4	 electron capture (?) 2-electron capture (?) β- decay 	Ra 21 <mark>4</mark> 2.71e-9 2)7 s 0.016	Ra 215 1.63e+9 1.67 ms 0.01	Ra 216 1.54e+9 182 ns 10	Ra 217 9.90e+8 1.63 us 0.17	Ra 218 1.03e+9 25.2 us 0.3	Ra 219 6.08e+8 10 ms 3	Ra 220 6.07e+8 17.9 ms 1.4	Ra 221 3.56e+8 28 s 2	Ra 222 3.23e+8 33.6 s 0.4	Ra 223 1.88e+8 11.4377 d 0.0022	Ra 224 1.70e+8 3.6319 d 0.0023	Ra 225 9.58e+7 14.9 d 0.2	Ra 226 8.45e+7 1.600 ky 0.007	Ra 227 4.30e+7 42.2 m 0.5	Ra 228 3.77e+7 5.75 y 0.03	Ra 229 1.59e+7 4.0 m 0.2	Ra 230 1.11e+7 93 m 2	Ra 231 3.89e+6 104 s 1	Ra 232 2.39e+6 4.0 m 0.3	Ra 233 2.70e+5 30 s 5	Ra 234 1.04e+5 30 s 10		
Fr 210 1.96e+9	 doubble β- decay β+ decay 	Fr 21.3 1.45e+9 4.14 s 0.06	Fr 214 6.71e+8 5.18 ms 0.16	Fr 215 4.40e+8 86 ns 5	Fr 216 2.67e+8 700 ns 20	Fr 217 2.19e+8 16.8 us 1.9	Fr 218 1.26e+8 1.0 ms 0.6	Fr 219 9.98e+7 20 ms 2	Fr 220 5.66e+7 27.4 s 0.3	Fr 221 4.73e+7 4.801 m 0.005	Fr 222 2.67e+7 14.2 m 0.3	Fr 223 2.67e+7 22.00 m 0.07	Fr 224 1.58e+7 3.33 m 0.10	Fr 225 1.66e+7 3.95 m 0.14	Fr 226 9.09e+6 49 s 1	Fr 227 8.28e+6 2.47 m 0.03	Fr 228 3.04e+6 38 s 1	Fr 229 1.91e+6 50.2 s 0.4	Fr 230 4.99e+5 19.1 s 0.5	Fr 231 2.70e+5 17.6 s 0.6	Fr 232 4.16e+4 5.5 s 0.6		I	
Rn 209 1.00e+9 	 internal transition spontaneus fission isotopic abundance 	Rn 2: 12 3.82e+ 8 23.9 m 1.2	Rn 213 1.89e+8 19.5 ms 0.1	Rn 214 1.06e+8 270 ns 20	Rn 215 4.89e+7 2.30 us 0.10	Rn 216 3.94e+7 45 us 5	Rn 217 1.80e+7 540 us 50	Rn 218 1.71e+7 33.75 ms 0.15	Rn 219 9.72e+6 3.96 s 0.01	Rn 220 1.20e+7 55.6 s 0.1	Rn 221 9.20e+6 25.7 m 0.5	Rn 222 1.37e+7 3.8215 d 0.0002	Rn 223 8.90e+6 24.3 m 0.4	Rn 224 1.00e+7 107 m 3	Rn 225 4.79e+6 4.66 m 0.04	Rn 226 5.24e+6 7.4 m 0.1	Rn 227 1.54e+6 20.2 s 0.4	Rn 228 7.07e+5 65 s 2	Rn 229 1.46e+5 11.9 s 1.3	Rn 230 1.25e+5 10# s >300ns		I		
At 208 2.98e+8 4-6850.03	Acluster At 210 2016+8 420005 81h04 72	At 21 .1 5.95e+ 7 214 h 0 .007	At 212 3.32e+7 314 ms 2	At 213 1.44e+7 125 ns 6	At 214 7.57e+6 558 ns 10	At 215 5.66e+6 100 us 20	At 216 3.56e+6 300 us 30	At 217 5.24e+6 32.62 ms 0.24	At 218 5.12e+6 1.5 s 0.3	At 219 8.34e+6 56 s 3	At 220 6.74e+6 3.71 m 0.04	At 221 8.80e+6 2.3 m 0.2	At 222 4.64e+6 54 s 10	At 223 5.76e+6 50 s 7	At 224 2.27e+6 2.5 m 1.5	At 225 2.33e+6 2# m >300ns	At 226 6.24e+5 20# s >300ns	At 227 2.70e+5 20# s >300ns	At 228 6.24e+4 5# s >300ns	At 229 4.16e+4 5# s >300ns	At 230 2.08e+4			

ISOL step 1: Production

CÉRN

(STI

Ballof et al. (2020) NIM B 463, 211-215

cern.ch/isolde-yields