ISOLDE Workshop and Users Meeting 2024, CERN, 27.11.2024

Status of PUMA at ISOLDE

Lukas Nies for the PUMA collaboration

European Organization for Nuclear Research

Nucleon distribution on the surface of nuclei

<u>Halo Nuclei</u>

- Dripline nuclei with a large N or Z excess
- One or more nucleons orbit the nucleus
 - → "halo" nucleons

Neutron skins

- Neutron excess in most nuclei least to larger neutron density throughout nucleus
- On surface, larger neutron density tail leads to neutron skin with thickness

 $R_{skin} = \sqrt{\langle r_n^2 \rangle} - \sqrt{\langle r_p^2 \rangle} \sim 0.1 - 0.25 \text{ fm for } {}^{208}\text{Pb}$

Lukas Nies

Collaboration

ISOLDE

Nucleon distribution on the surface of nuclei

antiProton Unstable Matter Annihilation (PUMA)

Technique: Low-energy antiprotons as a probe for nuclear structure

antiProton Unstable Matter Annihilation (PUMA)

The Transport: Cinema vs. Reality

- There is no connecting beam line between the 2 facilities
- Requirements:
 - → a transportable ion trap with sufficient storage capabilities $(10^9 \ \bar{p})$
 - → XHV vacuum conditions for the storage of antiprotons
 - → a detection system for monitoring annihilation rates during the transport

The Transport: Cinema vs. Reality

- There is no connecting bea
- Requirements:
 - → a transportable ion capabilities (10⁹ p̄)
 - → XHV vacuum condit antiprotons
 - → a detection system rates during the tra

Movie

27/11/2024

slide 5

CERN Courier October 2024

The transportable trap being carefully loaded in the truck before going for a road trip across CERN's main site. (Image: CERN)

пеанту

The Penning traps

- 4T superconducting NbTi magnet
- Cryogen-free design: cold mass of about 1750 kg

Objectives

- Store 10⁷ antiprotons (1st stage)
- Store 10⁹ antiprotons (2nd stage)
- Inject 10⁴-10⁵ ions

The Particle detectors

27/11/2024

slide 7

- Time Projection Chamber with trigger plastic barrel
- TPC developed at CERN \rightarrow currently finalized
- Resistive micromegas \rightarrow resolution < 400 μm
- ARC front end with stage chips (CEA, also used for T2K)

PUMA at ELENA

PUMA at ISOLDE: The new RC6 Transfer Line

slide 9

ISOLDE

PUMA at ISOLDE: The new RC6 Transfer Line

27/11/2024 slide 9

ISOLDE

PUMA at ISOLDE: The new RC6 Transfer Line

27/11/2024 slide 9

ISOLDE

PUMA at ISOLDE: Optics, ion source

PUMA at ISOLDE: Diagnostics

Isobar Separator: Expected Capabilities

- **Isobaric separation** with resolving powers $M/\Delta M > 100,000$ in only a few milliseconds
- **Ultra-high vacuum** with < 10⁻¹⁰ mbar at hand-over-point
- **Higher throughput** predicted as compared to other multi-reflection separators
- Possibility of **back-extraction** into central beamline (being investigated)
- Beam identification studies for target and Electronic december of the source developments
- **Collection** of samples benefiting from high flux and high separation powers
- **Temporary experiments** requiring < 10⁻¹⁰ mbar vacuum

PUMA at ISOLDE: RC6 Integration

Outlook and Timeline

- ☑ 100 keV **drift tube** at AD fully operational
- □ **Penning trap** currently being assembled at AD
- Full mock-up assembly and test of TPC and trigger barrel until YETS24
- □ Transport of **magnet** to CERN at the beginning of December
- \Box First anti-proton injection planned for early 2025
- ☑ **RC6 beamline** design finalized, production of parts started
- ☑ **ELENA quad. optics** on shelf and available
- □ **ISOLDE quad. optics** and **switchyard** refurbished until YETS24
- □ **MIRACLS** hardware to be moved mid-2025
- □ Delivery of **beam diagnostics** slated for end-2025
- □ First beams through RC6 before YETS25 (may slip into 2026)

Outlook and Timeline

☑ 100 keV **drift tube** at AD fully operational

- Penning trap currently being assembled at AD
- □ Full mock-up assembly and test of **TPC and trig nature** until YETS24
- □ Transport of **magnet** to CERN at the beginning c
- □ First anti-proton injection planned for early 202
- ☑ **RC6 beamline** design finalized, production of pa
- ☑ **ELENA quad. optics** on shelf and available
- □ ISOLDE quad. optics and switchyard refurbished
- □ **MIRACLS** hardware to be moved mid-2025
- □ Delivery of **beam diagnostics** slated for end-202
- □ First beams through RC6 before YETS25 (may sli

Antimatter to be transported truck!! outside a lab for first time – in a van

The volatile substance will be driven across the CERN campus in trucks to different facilities, giving scientists greater opportunities to study it.

By Elizabeth Gibney

NEWS 26 November 2024

The PUMA Collaboration

T. Aumann, N. Azaryan, W. Bartmann, A. Bouvard, O. Boine-Frankenheim, A. Broche, F. Butin, D. Calvet, J. Carbonell, P. Chiggiato, H. De Gersem, R. De Oliveira, T. Dobers, F. Ehm, J. Ferreira Somoza, J. Fischer, M. Fraser, E. Friedrich, M. Gomez-Ramos, J.-L. Grenard, R. Holz, G. Hupin, K. Johnston, C. Klink, M. Kowalska, Y. Kubota, P. Indelicato, R. Lazauskas, S. Malbrunot-Ettenauer, N. Marsic, W. Müller, S. Naimi, N. Nakatsuka, R. Necca, D. Neidherr, L. Nies, A. Obertelli, Y. Ono, S. Pasinelli, N. Paul, E. C. Pollacco, L. Riik, D. Rossi, R. Sangani, H. Scheit, M. Schlaich, R. Seki, A. Schmidt, L. Schweikhard, S. Sels, E. Siesling, T. Uesaka, M. Wada, F. Wienholtz, S. Wycech, C. Xanthopoulou, S. Zacarias

The ISOLDE-RC6 Team

O. Aberle, W. Andreazza, P. Arrutia, N. Azaryan, V. Barozier, W. Bartmann, M. Bissel, A. Boucherie, C. Capelli, N. Chritin, N. David, Q. Demassieux, J. A. Ferreira Somoza, I. Kozsar, Grzegorz Kruk, M. Kowalska, S. Lechner, F. M. Maier, S. Malbrunot-Ettenauer, A. Martinez De Zuazo Martinez, P. Martins, S. Mataguez, A. Michet, **L. Nies**, M. Nieto, B. Ninet, C. Pasquino, E. Piselli, R. Rinaldesi, A. Roitman, **E. Siesling**, J. Tassan-Viol, M. Vilén, F. Wienholtz

Backup

antiProton Unstable Matter Annihilation (PUMA)

Technique: Low-energy antiprotons as a probe

- First application of method by Bugg et al., PRL 31, 475 (1973) at BNL, USA
- New observable: proton-to-neutron annihilation ratio *R*, related to Halo factor
- Application to RIBs first proposed by Wada and Yamasaki, NIM B **214** (2004) 196-200

... but never applied!

PUMA aims to:

- 1. Provide new nuclear observable R
- 2. Characterize nuclear density tails (skins, halos, ...)
- 3. Find new p and n halos
- 4. Understand development of n-skins

antiproton-proton		antiproton-neutron	
Pion Final State	Branching	Pion Final State	Branching
$\pi^+\pi^-\pi^0\pi^0\pi^0$	0,233	$\pi^{-}\pi^{-}\pi^{+}k\pi^{0}(k>1)^{0,397}$	
$\pi^+\pi^-\pi^+\pi^-\pi^0$	0,196	$\pi^-\pi^-\pi^+\pi^0$	0,17
$\pi^+\pi^-\pi^+\pi^-\pi^0\pi^0$	π ⁰ 0,166	$\pi^{-}k\pi^{0}(k>1)$	0,169
		n/p-a	nnihilation ratio
Neutron halo		$\geq 10 \times N/Z \times R$	
Proton halo		$\ll R$	
Neutron skin		$> N/Z \times R$	

T. Aumann et al., Eur. Phys. J. A (2022) 58:88

Space Charge Limit on Ion Flux

Lukas Nies ISOLDE

WORKSHOP 2024

Collaboration

Rosenbusch, AIP Conf. Proc. 1521, 53–62 (2013) F. M. Maier et al., NIM A **1056** (2023) 168545

Extra Low Energy Antiprotons (ELENA) at the Antiproton Decelerator (AD)

Input: $1.5 \cdot 10^{13}$ p at 26 GeV/c on target approx. $3 \cdot 10^7 p$ arrive in AD

Deceleration of p:

- 5.3 MeV in AD
- 100 keV in ELENA (since 2018)

Duty cycle of ELENA:

4x $4\cdot 10^6$ bunches every 110s

Possibility to use 100 keV H- every 20 seconds

Slide by C. Klink (BE-EA)

PUMA at the AD

Slide by C. Klink (BE-EA)

Towards a High-Flux MR-ToF device

- Two main challenges:
 - Triple junction
 - Vacuum gap
- Cup design for triple junction held 60 kV in test setup
- Discharge between electrode vacuum gap at 12 to 21 kV limited MR-ToF operation to < 10 keV in 2023
- <u>Recent upgrade</u>: Electropolishing of all electrodes
- Both mirrors stable for 11 keV beam energy and max. 35 kV between 2 electrodes during the last 12 months
- Tests for 18 keV beam energy show stable mirrors for 2 days, after which the test was ended

Lukas Nies ISOLDE

Mixing Matter and Antimatter

- Fill trap with electrons from field emission source
- e⁻ cool down to ambient temperature through cyclotron radiation
- p̄ capture in reservoir trap
- Sympathetic cooling through Coulomb interaction
- Use rotating wall technique to controll radial expansion of p
- Fraction of p
 is transported into nested collision trap
- Loading of unstable ions into nested trap potential
- Mixing and annihilation of p
 and ions, promoted by RF heating

Pulsed Drift Tube for \bar{p}

J. Fischer *et al.,* NIM-B (2024)

Slide by C. Klink (BE-EA)

Beam diagnostics

- Transmission approx. 55 (3)% (simulations: 100%) due to lack of lensing (only one of four lenses available at time of measurement)
- Energy after deceleration 3.898(3) keV
- Energy spread 127(4) eV (σ) (simulations: 100 eV)

J. Fischer et al., NIM-B (2024)

Offline ion source at AD

- Characterise pion detector (TPC) & benchmark simulations: p, d
- Evolution of results with changing nucleon number: ^{3,4}He, ^{20,21}Ne, ¹⁶O, ⁴⁰Ar, ¹³²Xe
- Study isospin dependence along isotopic chains: ¹²⁴⁻¹³⁶Xe
- Future step: laser ablation source for: ⁴⁰⁻⁴⁸Ca, ¹¹²⁻¹²⁴Sn, ²⁰⁸Pb

Multi-Reflection Time-of-Flight Separator

- Linear Paul Trap with 12 DC Electrodes to form potential well, RF rods create confining field
- Used by 4 institutes in Paul Trap collaboration
- Accumulation and Bunching + Cooling using buffer gas injection

Slide by C. Klink (BE-EA)