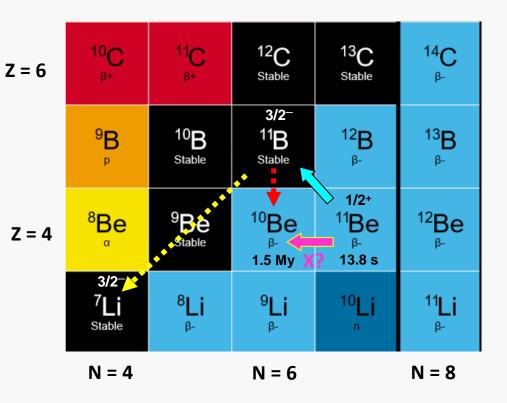
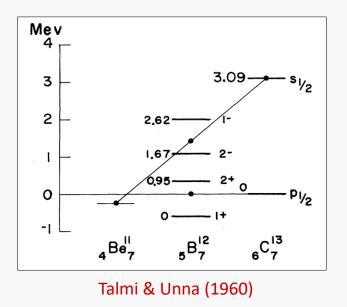


Looking for β-Delayed Protons in the Decay of ¹¹Be

Marek Pfützner


Nuclear Physics Division University of Warsaw

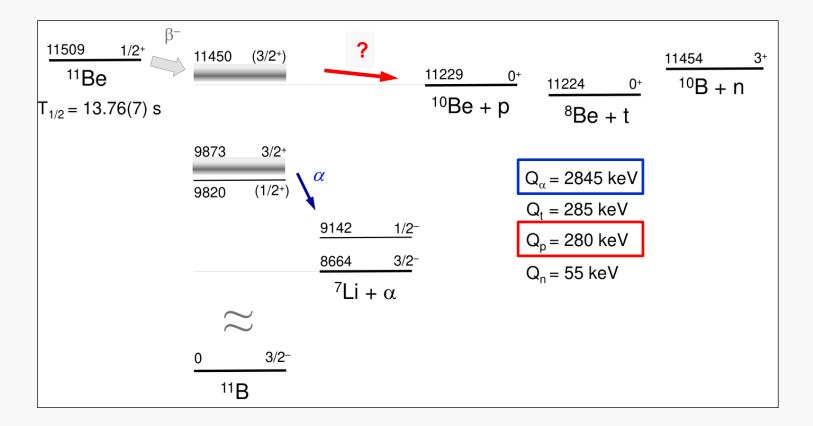
ISOLDE Workshop and Users meeting 2024



Case of ¹¹Be

- In 2018 a dark neutron decay was proposed as a solution to the n half-life puzzle
 - Fornal & Grinstein PRL 120 (2018)
 - → new decay channel: $^{11}Be \rightarrow ^{10}Be + X$
 - \rightarrow same final nucleus as after ¹¹Be β p !

M. Pfützner, ISOLDE Workshop and Users Meeting 2024, 27-29 Nov 2024, CERN



- > spin inversion $\rightarrow 1/2^+ \rightarrow$ long half-life
- > $s_{1/2}$ g.s. and S(n) = 502 keV → 1n halo
- ▶ The β^- p channel open → probe the halo

¹¹Be decay scheme

The $\beta^-\alpha$ emission is known, $b_{\alpha} = 3.3(1)\%$

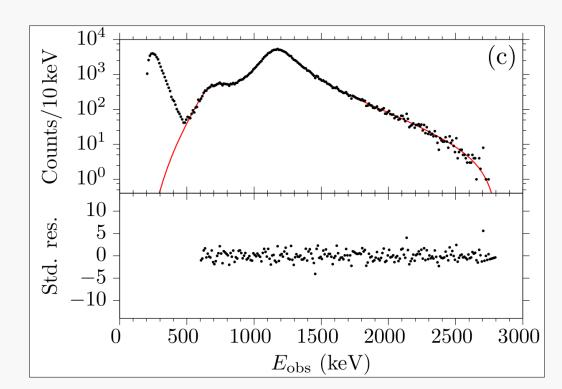
> The $\beta^- p$ decay possible, the predicted branching: $b_p < 10^{-6}$

First observation by Alburger and Wilkinson (1971)

Improved measurement: Alburger et al (1981)

 b_{α} = 2.9(4)%, transition through 3/2⁺ at 9.87 MeV

Most recent result: Refsgaard et al. (2019)


DSSD detectors @ ISOLDE

 $b_{\alpha} = 3.3(1)\%$,

transition through:

3/2⁺ at 9.87 MeV and 3/2+ at 11.49 MeV

 Note a large background below 500 keV due to
 β particles – protons are hidden there!

Refsgaard at al., PRC 99, 044316 (2019)

Indirect method:

collect ¹¹Be (ISOLDE), then look for ¹⁰Be in the sample with AMS (Uppsala, Vienna)

1st approach: $\rightarrow b_p = (2.5 \pm 2.5) \times 10^{-6}$

2nd approach: $\rightarrow b_p = (8.3 \pm 0.9) \times 10^{-6}$

3rd approach: $\rightarrow b_p < 2.2 \times 10^{-6}$

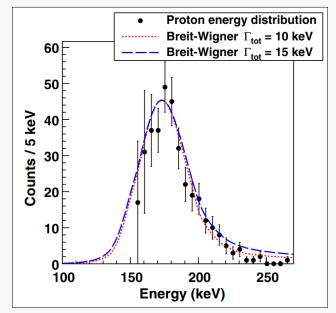
Borge at al., J. Phys. G 40, 035109 (2013)

Riisager at al., Phys. Lett. B 732 (2014) 305

Riisager at al., EPJ A 56 (2020) 100

 \rightarrow a source for ¹⁰Be contamination found (¹⁰Be¹H⁺)

Direct search:


implant ¹¹Be in a TPC and see tracks of protons (TRIUMF)

 $\Rightarrow b_p = (13 \pm 3) \times 10^{-6}$

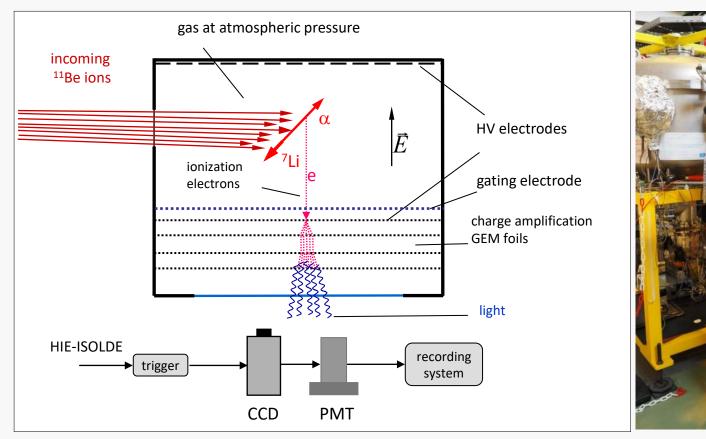
Ayyad at al., PRL 123 (2019) 082501

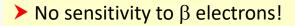
Gas mixture: 90% He + 10% CO₂ @ 60 torr

→ 200 keV proton \approx 10 cm track no spectrum of α particles

Experiment IS629

> 1.4 GeV p beam on UC_x target \rightarrow bunches of ¹¹Be @ 7.5 MeV/u sent to OTPC every 60 s

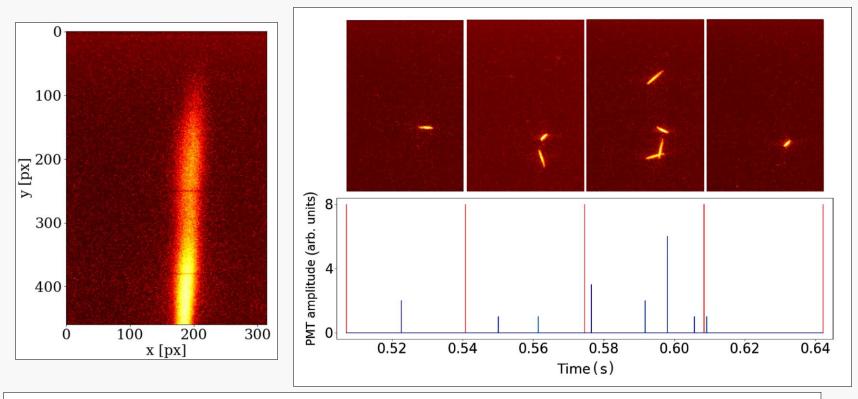



María J G Borge and Klaus Blaum J. Phys. G: Nucl. Part. Phys. 45 010301 (2018)

Time projection chamber with optical readout (OTPC)

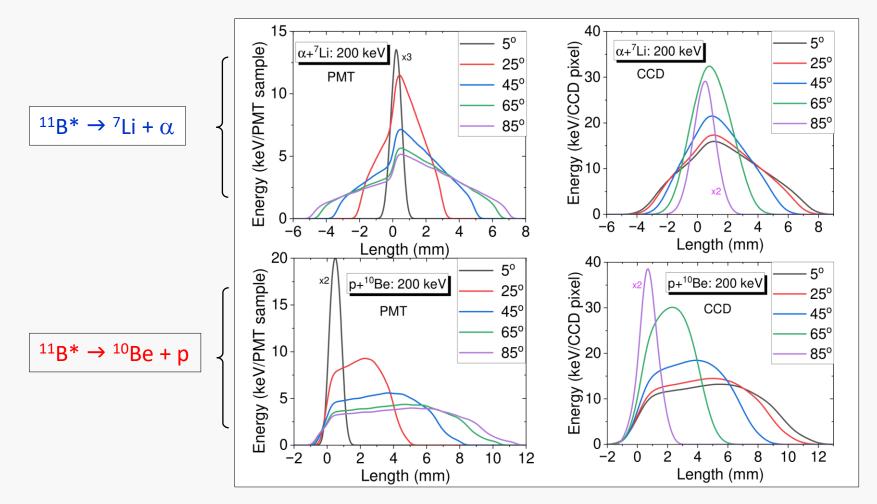
Gas mixture: 97% He + 1.6% CF₄ + 1.4% N₂ @ atmospheric pressure

Combination of the CCD image with the PMT waveform allows to reconstruct the event in three dimensions fully

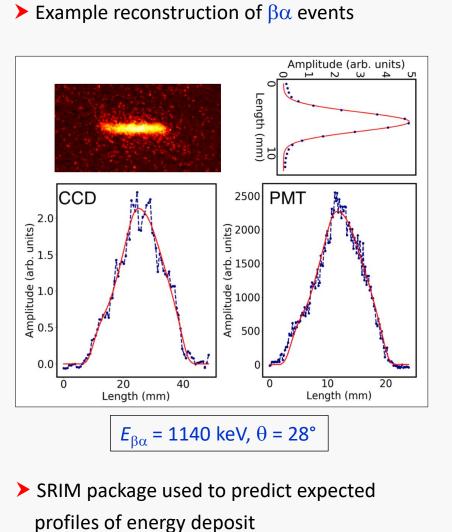

OTPC @ ISOLDE

Decay events

- Running OTPC mode: bunch plus "movie"
 - Bunches of about 10⁴ ions of accelerated ¹¹Be implanted every 1 min.
 - After implantation: 252 frames of 33 ms (13 s) + 47 s break
- > In total, about 1.4 M frames recorded, featuring about 1.5 M $\beta\alpha$ events



> For further analysis, we selected only frames with a single decay event (≈ 230 000)


SRIM package used to predict expected profiles of energy deposit

Two decay scenarios considered:

Event reconstruction

'n 2000 2000 Mplituda [jedn. 1000 2000 1.5 1.0 0.5 500 0.0 30 0 20 10 20 40 60 Długość (mm) Długość [mm] CCD PMT 1600 En = 1175ke\ b) = 63 1400 = 2 a 1200 g 1000 Amplituda [jedn. 800 600 400 200 20 30 400 10 20 30 10 Długość [mm] Długość [mm] **PM1** CCD En = 603 keV c) = -32= 32000 2.0 [auwoun 1500 $\sigma_{pmt} =$ 1.5 Amplituda [jedn. 200 1.0 0.5 5 10 15 20 0 10 20 30 40 Długość [mm] Długość [mm]

2.5

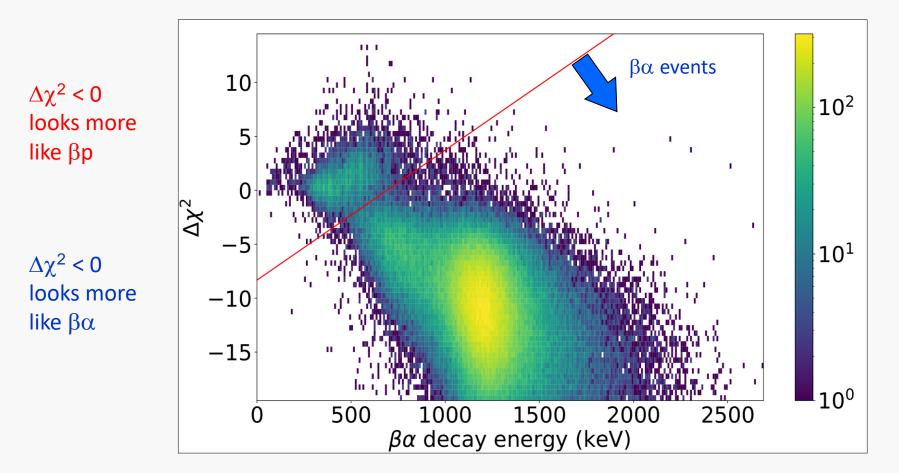
2.0

PMT

En = 1753 keV $\theta = 26^{\circ}$ $\chi^{2} = 2$

3500

3000 ave 2500 CCD


a)

Event selection

> Each event was reconstructed using both $\beta \alpha$ and βp scenarios ($\rightarrow \min \chi^2$)

$$\rightarrow \Delta \chi^2 = \chi^2_{\alpha} - \chi^2_{p}$$

$\beta\alpha$ decay of ¹¹Be

10⁴

10³

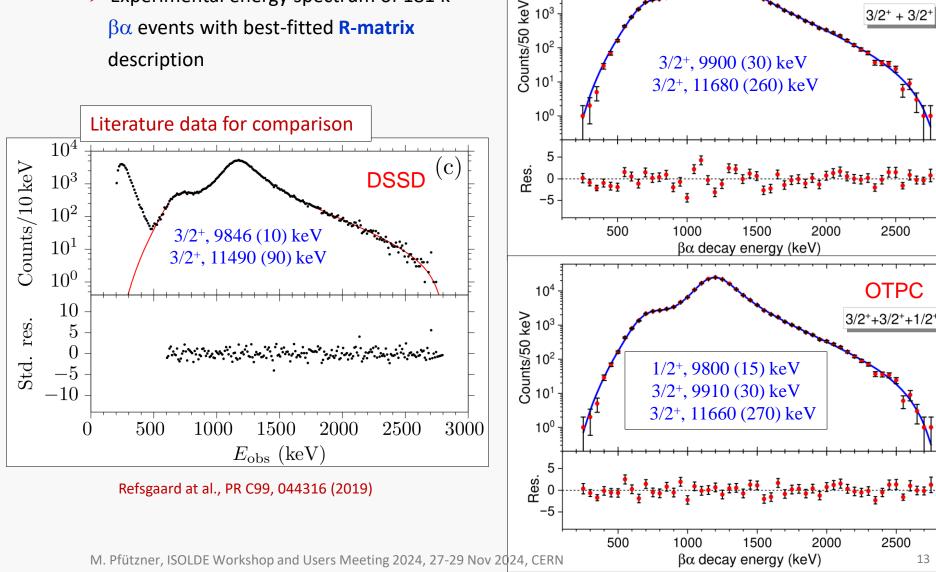
10²

OTPC

3/2+ + 3/2+

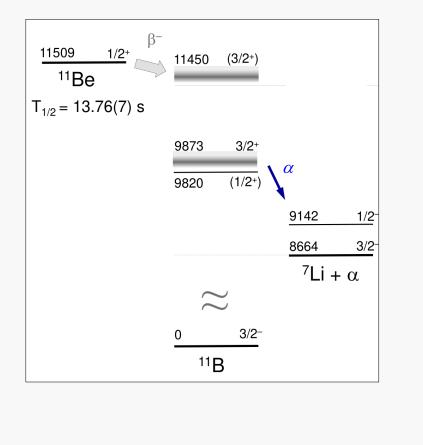
2500

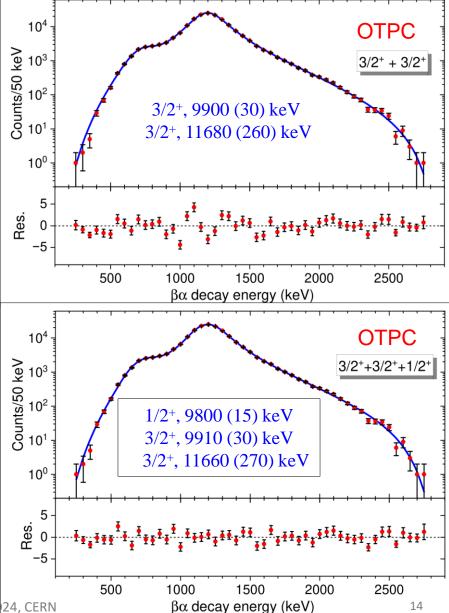
OTPC


3/2++3/2++1/2+

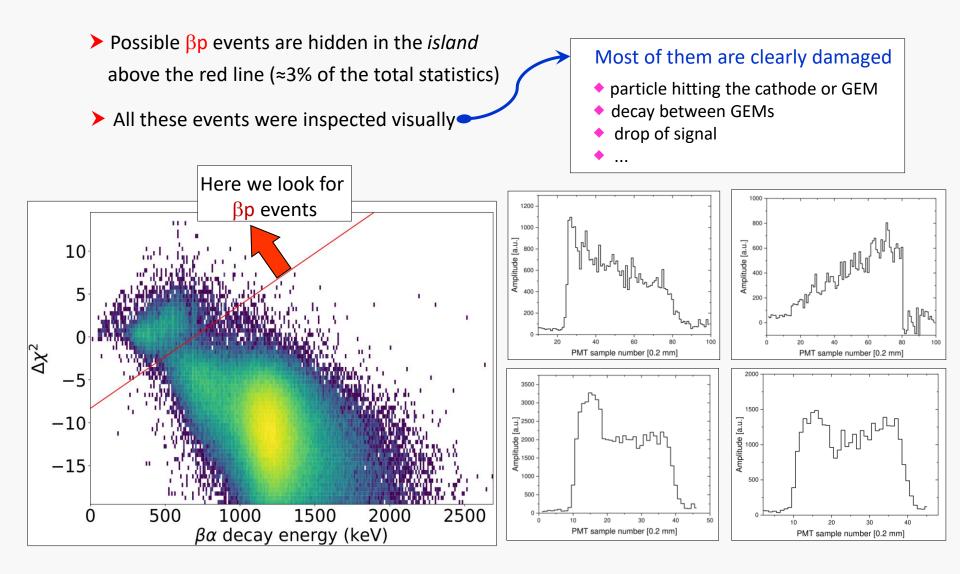
2500

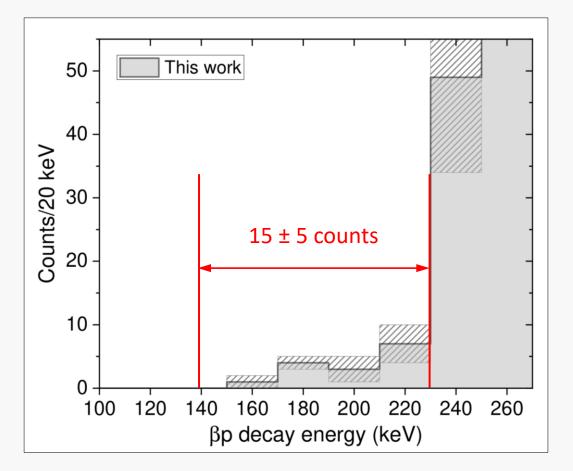
13


3/2+, 9900 (30) keV

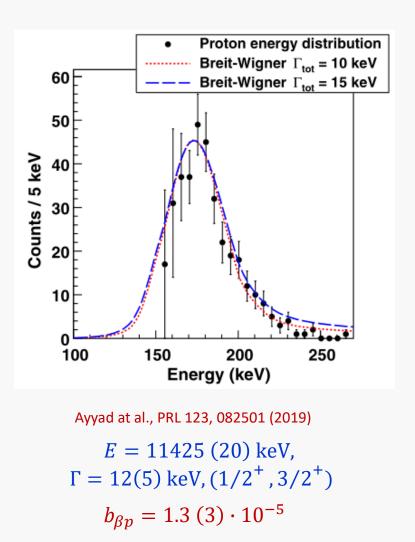

Experimental energy spectrum of 181 k $\beta\alpha$ events with best-fitted **R-matrix** description

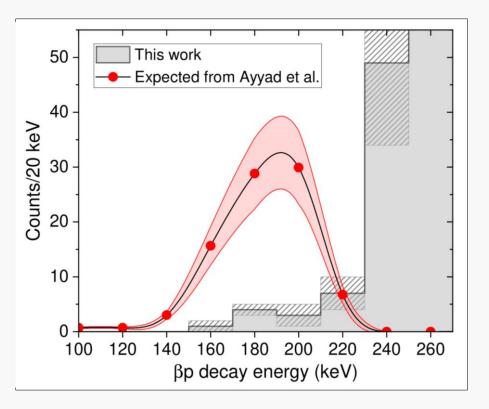
$\beta \alpha$ decay of ¹¹Be


Experimental energy spectrum of 181 k
 βα events with best-fitted R-matrix
 description



Search for βp emission




- > From not discarded events, a spectrum of βp candidates was made
- ➤ The doubtful cases → systematical error

The βp branching limit

→ Branching limit for E < 230 keV: $b_{\beta p} < 2.2(6) \cdot 10^{-6}$

Further measurements are needed!

Summary

- βα spectrum, measured in the full energy range consistent with Refsgaard et al.
- R-matrix fit of βα spectrum improved by including 1/2⁺ state at 9.8 MeV in ¹¹B
- Limit for the βp decay of ¹¹Be for E < 230 keV :

 $b_{\beta p} < (2.2 \pm 0.6_{\rm sys} \pm 0.6_{\rm stat}) \ 10^{-6}$

→ agrees with Riisager et al. (2020) contradicts Ayyad et al. (2019)

• We remeasured the branching ratio for $\beta \alpha$ decay

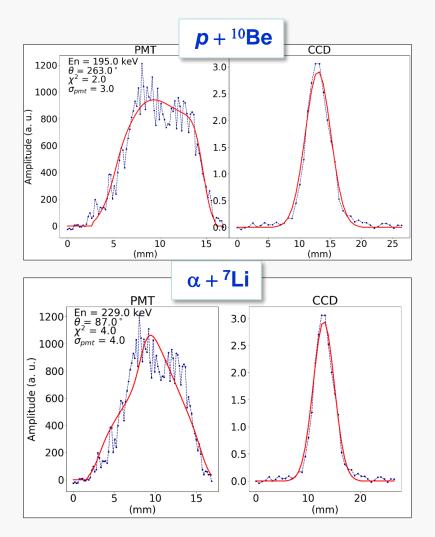
of ¹¹Be at LNS Catania $\rightarrow b_{\alpha} = 3.3(5)\%$

Decay study of ¹¹Be with an Optical TPC detector

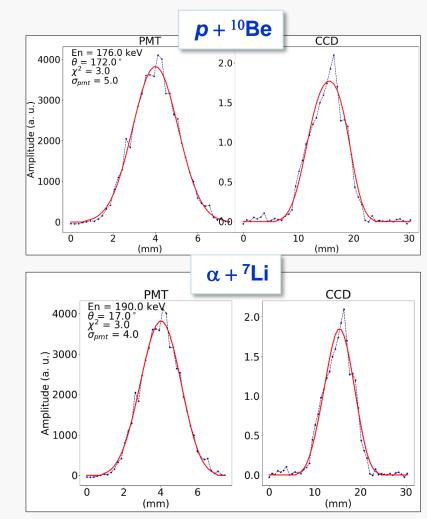
N. Sokołowska,¹ V. Guadilla,¹ C. Mazzocchi,¹ R. Ahmed,² M. Borge,³ G. Cardella,⁴ A.A. Ciemny,¹ L.G. Cosentino,⁵
E. De Filippo,⁴ V. Fedosseev,⁶ A. Fijałkowska,¹ L.M. Fraile,⁷ E. Geraci,^{8,4} A. Giska,¹ B. Gnoffo,^{8,4} C. Granados,⁶
Z. Janas,¹ Ł. Janiak,^{1,9} K. Johnston,¹⁰ G. Kamiński,¹¹ A. Korgul,¹ A. Kubiela,¹ C. Maiolino,⁵ B. Marsh,⁶
N.S. Martorana,⁴ K. Miernik,¹ P. Molkanov,¹² J. D. Ovejas,³ E.V. Pagano,⁵ S. Pirrone,⁴ M. Pomorski,¹
A.M. Quynh,¹³ K. Riisager,¹⁴ A. Russo,⁵ P. Russotto,⁵ A. Świercz,¹⁵ S. Viñals,³ S. Wilkins,⁶ and M. Pfützner^{1,*}

(ISOLDE Collaboration)

N. Sokołowska et al., Phys. Rev. C 110, 034328 (2024)

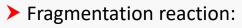


Thank you!

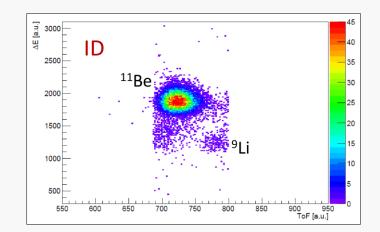


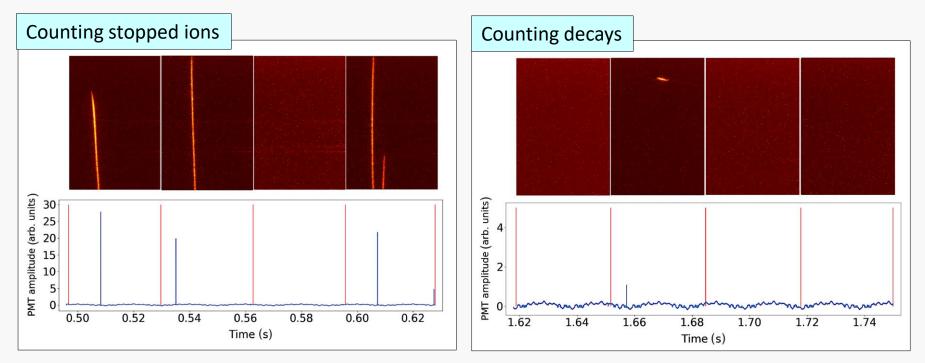
Two βp candidates

• Here βp scenario fits better than $\beta \alpha$



> Here two scenarios fit equally well

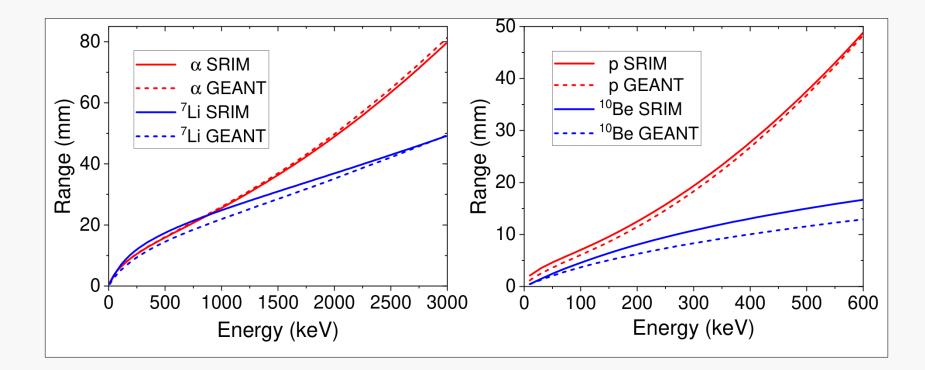

Experiment @ LNS (Catania)



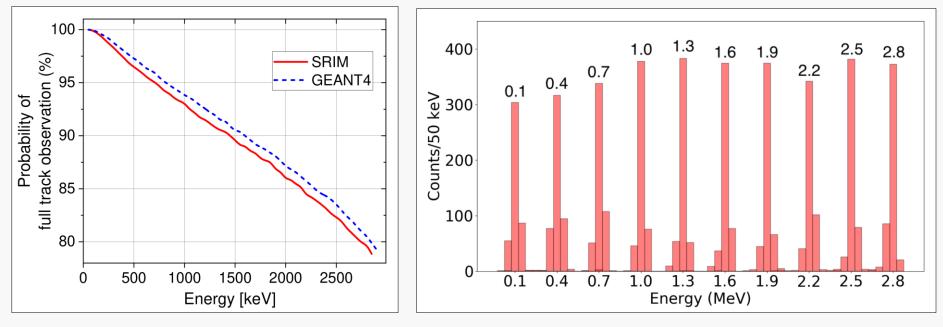
¹³C @ 55 MeV/u + Be \rightarrow ¹¹Be

and in-flight identification of single ions

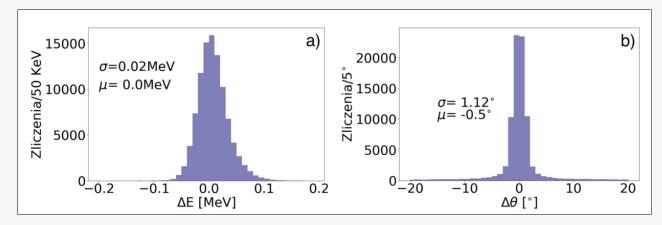
- Probability of stopping inside OTPC: 19(3)%
- > \approx 1800 $\beta\alpha$ events observed
 - → branching ratio: $b_{\alpha} = 3.3(5)\%$,



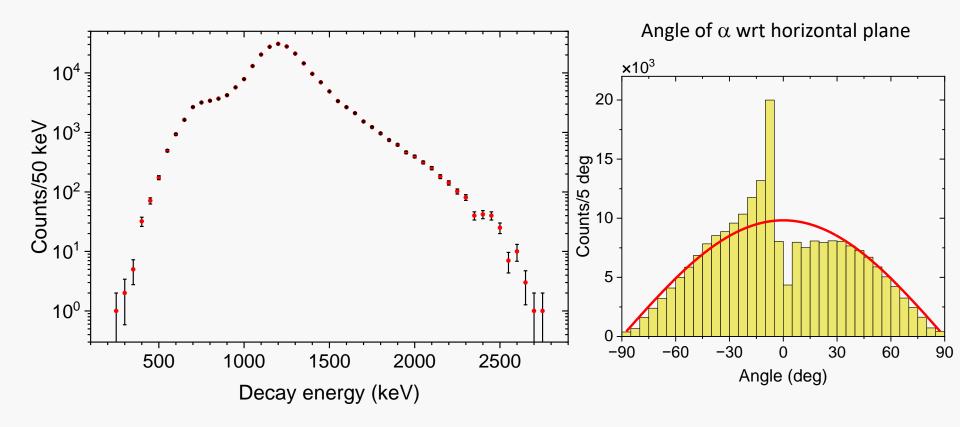
We used GEANT4 to simulate realistic decay events.


However, GEANT used a different dE/dx model.

- → All event reconstruction was done with both of them
- → Results were consistent with each other but SRIM was found a bit better



Efficiencies



Reconstruction of simulated monoenergetic events

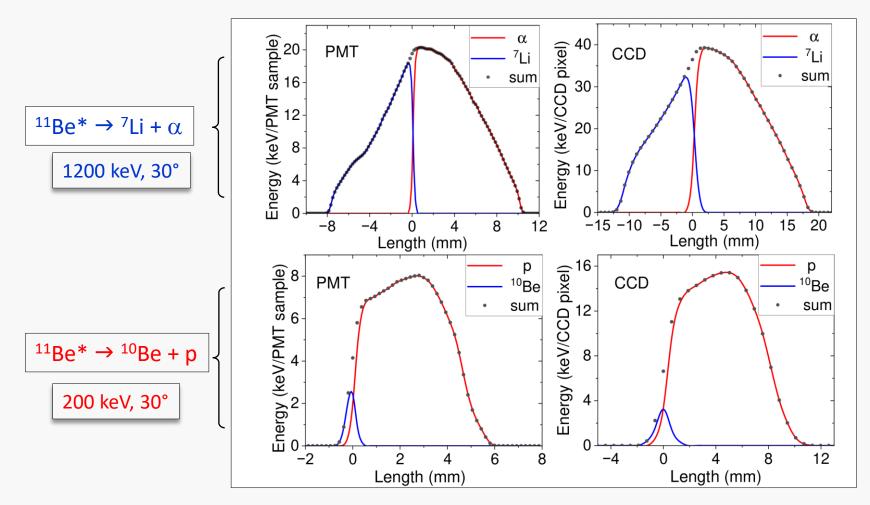
Experimental $\beta \alpha$ spectrum

R-matrix

$$N(E) = \sum_{c} N_{c}(E),$$
$$N_{c}(E) = f_{\beta} P_{c} \left| \sum_{\lambda \mu} B_{\lambda} \gamma_{\lambda c} A_{\lambda \mu} \right|^{2},$$

$$\begin{split} \Gamma_{\lambda} &= \sum_{c} \Gamma_{\lambda c}, \\ \Gamma_{\lambda c} &= \frac{2 P_{c} \gamma_{\lambda c}^{2}}{1 + \sum_{c} \gamma_{\lambda c}^{2} \frac{dS_{c}}{dE} \Big|_{E_{\lambda}}}, \end{split}$$

$$M_{GT,\lambda} = \left(\frac{\pi D}{Nt_{1/2}}\right)^{\frac{1}{2}} \left(1 + \sum_{c} \gamma_{\lambda c}^{2} \frac{dS_{c}}{dE}\Big|_{E_{\lambda}}\right)^{-\frac{1}{2}} B_{\lambda},$$


Model	Variant	χ_L^2/ndf	E_1	E_2	E_3
$2 \times 3/2^{+}$	full	5.03	9906(1)	11795(100)	-
	removed	3.02	9901(1)	11682(75)	-
$2 \times 3/2^{+}$	full	2.21	9923(4)	11817(100)	9813(20)
+ 1/2+	removed	1.64	9912(6)	11672(200)	9810(25)

	$2 \times 3/2^+$ Ref. [9]	$2 \times 3/2^{+}$	$2 \times 3/2^+ + 1/2^+$
E_1 (keV)	9 846(1)[10]	9 901(1)[30]	9 912(6)[35]
B_1/\sqrt{N}	0.161(2)	0.152(1)[2]	0.140(10)[3]
θ_{11}^2	1.31(2)	1.04(1)[17]	0.92(6)[14]
θ_{12}^2	0.84(2)	0.44(1)[13]	0.42(3)[14]
Γ_{11} (keV)	233(3)[3]	263(2)[4]	251(4)[7]
Γ_{12} (keV)	20.4(3)[3]	18.9(3)[2]	20(1)[1]
M_{GT_1}	0.717(12)[7]	0.760(2)[40]	0.714(20)[25]
B_{GT_1}	0.318(11)[6]	0.357(2)[35]	0.315(15)[20]
$\log(ft)_1$	4.08(3)[2]	4.027(2)[40]	4.08(2)[3]
E_2 (keV)	11 490(80)[50]	11 682(75)[260]	11 672(200)[40]
B_2/\sqrt{N}	0.156(26)	0.160(4)[70]	0.09(4)[20]
$\theta_{21}^{2 a}$	-0.21(7)	-0.152(25)[60]	-0.39(13)[30]
$\theta_{22}^{2 a}$	0.029(37)	0.015(16)[25]	-0.01(5)[5]
Γ_{21} (keV)	430(150)[50]	338(64)[120]	854(200)[670]
Γ_{22} (keV)	50(60)[50]	27(28)[30]	18(50)[90]
M_{GT_2}	1.05(17)[5]	1.08(3)[50]	0.63(13)[120]
B_{GT_2}	0.7(2)[1]	0.72(4)[80]	0.25(10)[200]
$\log(ft)_2$	3.8(3)[1]	3.72(2)[30]	4.2(2)[10]
E_3 (keV)			9 810(25)[40]
B_3/\sqrt{N}			0.042(22)[15]
θ_{31}^2			0.61(27)[10]
θ_{32}^2			0.33(3)[15]
Γ_{31} (keV)			146(32)[25]
Γ_{32} (keV)			9(3)[6]
M_{GT_3}			0.23(5)[6]
B_{GT_3}			0.032(15)[20]
$\log(ft)_3$			5.1(2)[2]

SRIM package used to predict expected profiles of energy deposit

Two decay scenarios considered:

