

Towards a nuclear clock: halflife and decay-fraction measurements of the radiative decay of ^{229m}Th

ISOLDE workshop and users meeting 2024 Yens Killian Elskens

Context

²²⁹Th has an isomer that lies low enough to probe with a laser

Ideal two-level system for a **nuclear clock**

Challenge: dominating IC decay

Populating the isomer through the β-decay of ²²⁹Ac within the context of a large-bandgap crystal

Results from 2021 ISOLDE beam time led to laser excitation in CaF_2 (PTB) and LiSrAIF₆ (UCLA), and even excitation with a frequency comb (JILA)

[4] C. Zhang et al. Frequency ratio of the ^{229m}Th nuclear isomeric transition and the ⁸⁷Sr atomic clock, 2024

KU LEUVEN

^[2] J.Tiedau et al. Laser excitation of the ²²⁹Th nucleus, 2024

^[3] R. Elwell et al. Laser excitation of the ²²⁹Th nuclear isomeric transition in a solid-state host, 2024

On-line VUV spectroscopy of the isomer at LA1

2023 campaign goals

Study the **effect** of the implanted **crystal** on the **radiative decay fraction**

Study the **time behaviour** of the radiative decay in different crystalline environments

Decay fractions in different crystals

 $\varepsilon_{\rm VUV} = \frac{H}{A_{\rm iso}\,\varepsilon_{\rm I}}$

Compare the radiative decay fraction of different crystals relative to CaF_2 bulk (highest absolute efficiency)

Determine limits for AIN and SiO₂

Studying the time behaviour of the VUV signal

Studying the isomer's time behaviour

The isomer's radiative decay does not reach transient equilibrium with ²²⁹Ac when expected

When it reaches equilibrium depends on the crystal

'Quenching' of the halflife

VUV spectroscopy at Spring-8 by X-ray pumping the isomer

Flux-dependent 'quenching' of the observed halflife

Quenching of the halflife: CaF₂ thin film

Make quenching depend linearly on activities of Ra and Ac

$$\frac{\mathrm{d}N_{\mathrm{rad}}}{\mathrm{d}t} = \lambda_{\mathrm{Ac}}N_{\mathrm{Ac}} - \underbrace{(1 + \alpha\lambda_{\mathrm{Ra}}N_{\mathrm{Ra}} + \beta\lambda_{\mathrm{Ac}}N_{\mathrm{Ac}})}_{Q^{-1}}\lambda_{\mathrm{rad}}N_{\mathrm{rad}} \underbrace{\frac{1}{2}}_{Q^{-1}}$$

Halflife of **488** \pm **48 (stat.) s** (very preliminary) seems to correspond with results from PTB (436 \pm 10 s), Spring-8 (447 \pm 25 s) and JILA (444 \pm 3 s)

Doesn't describe MgF₂ well. Probably needs a **'population quenching'** on top of the halflife quenching.

Conclusions and outlook

Determined relative radiative decay fractions in different crystals

CaF₂, MgF₂, LiSrAIF₆, AIN, SiO₂

Environmental-dependent 'quenching' mechanism observed.

Describes time behaviour in CaF₂, not in MgF₂

Acknowledgements

The IS715 collaboration

M. Athanasakis, M. Au, S. Bara, M. Bartokos, K. Beeks, S. Casci, P. Chhetri, K. Chrysalidis, A. Claessens, J. G. Correia, Y. Elskens, R. Ferrer, R. Heinke, E. Hudson, F. Ivandikov, U. Köster, S. Kraemer, M. Laatiaoui, R. Lica, G. Magchiels, J. Moens, H. Morgan, D. Moritz, I. Morawetz, L. Pereira, S. V. Pineda, S. Raeder, S. Rother, A. de Roubin, F. Schaden, K. Scharl, T. Schumm, S. Stegeman, P. Thirolf, P. Van Duppen, A. Vantomme, R. Villarreal, U. Wahl

Back up

DFT calculations for SiO₂ by UCLA

DFT calculations for crystalline SiO₂ (experiment = amorphous)

2 structures modeled:

- 1. Th substitutes Si
- 2. Th and two O's are added as interstitial defect

Empty Th states emerge within the band gap for both structures

Q: Is the 'quenching' actually a dead-time issue?

Instituut voor Kern- en Stralingsfysica **KU LEUVEN**

A: No