

The DESIR facility at GANIL/SPIRAL2

Bertram Blank

L2Pi Bordeaux

A new GANIL users facility

- Study of the fundamental properties of atomic nuclei and underlying forces
- With a high precision using ultra-pure samples of radioactive ions manipulated at very low energy
- Taking advantage of the various RIBs production methods
- In complementarity to S³(-LEB) and other GANIL installations

• • • **DESIR** at **GANIL**

• • • **DESIR** physics programme

Transpost beam lines

SP1 -> DESIR beam line

Test bench

Ph. Alfaurt, LP2iB

Junction beam lines from SPIRAL1 and S3-LEB to the DESIR Hall: ~100 m

Installation starting by the end of 2025

• • Beam preparation and purification

Beam purification (pc **RFQ + HRS** $M/\Delta M = 20,000$ @ 3π mm.mrad / 30keV **GPIB + PIPERADE** MAX-PLANCK-INSTITUT FÜR KERNPHYSII 10^{5} ions/bunch, 2-20 Hz M/ Δ M = 10^{5} 27 kV 29.9 kV 29.95 kV FC/MCP 30 kV **Commissioning at LP2iB Commissioning at LP2iB** Installation and commissioning: 2026-2027 MR-ToF-MS for mass measurements and beam purification: 2026-2028

Refurbishment at LPC Caen

• • Beam purification: High-resolution separator HRS

 $M/\Delta M = 20\ 000\ @\ 3\pi\ mm.mrad / 30 keV$

simulation and measurement

• • Beam preparation: General purpose ion buncher GPIB

.P2i

Emittance:

• 3 π.mm.mrad at 30 keV

Continuous mode:

- Transmission for K⁺ ions is routinely over 75 %
- Careful optical tuning yields transmission >90 %

Bunching mode:

- 100 % transmission up to 10⁶ ions/bunch
- ~ 50 % transmission with 10⁸ ions/bunch

Energy and time dispersion:

- Energy dispersion measurement currently limited by detection system (< 6 eV)
- Minimum time dispersion currently down to pprox 250 ns (FWHM) at 3 keV

• • Beam purification: PIPERADE

• • • Experimental equipment: time line

S2 - 2026: GPIB + PIPERADE + fluorescence laser line (LINO)

• • • Experimental equipment: time line

S1 - 2027: MORA cooler-buncher (RFQ)

• • Experimental equipment: time line

2029: collinear laser spectroscopy (LASAGN) completed, MLLTrap

• • The DE_{sir}TRAP_{ping} facility

MORA

P. Delahaye, GANIL, L. Hayen, LPC Caen

- RFQ-CB associated with a Paul trap
- -> β -v angular correlation coefficient
- -> D correlation with laser polarized beams

P. Delahaye et al., Hyperfine Interaction 240 (2019) 63
⇒ Fundamental interaction physics
■ exotic currents, CVC, V_{ud}, CP-violation

Commissioning at JYFL

MLLTrap

P. Thirolf, LMU Munich – E. Minaya Ramires, IJClab

- Double Penning trap
- -> high precision mass measurements
- -> in-trap decay

E. Minaya-Ramires et al., NIM B 463 (2020) 315 P. Chauveau et al., NIMB 463 (2020) 371

- \Rightarrow Nuclear structure & Decay properties
 - shell evolution, deformation
 - (super-) heavy nuclei decay spectroscopy

Commissioning at ALTO (IJCLab)

• • • The LUMIERE facility

Laser Utilization for Measurement and Ionization of Exotic Radioactive Elements

LASAGN (L. Lalanne, IPHC)

- Collinear laser spectroscopy (CRIS like)
 - -> hyperfine structure (magnetic and quadrupole moments, mean square charge radii)
- LINO commissioned at ALTO, IJCLab, D. Yordanov et al.

The BESTIOL facility

BEta decay STudies at the SPIRAL2 IsOL facility

BEDO

Beam cooling and purification using PIPERADE for (trap-assisted) decay spectroscopy

-> High-precision measurements with ultra-pure samples using:

- β-γ decay stations (BEDO, …)
- total absorption spectrometers (DTAS)
- neutron detection arrays (BELEN, MONSTER, ...)
- -> Fundamental interaction, nuclear structure, decay properties
 - CVC, V_{ud}
 - beta shapes
 - lifetimes, P_{(2)n}
 - exotic decays (β-2p, cluster emission)
 - Gamow-Teller strength

MONSTER

BELEN

SiCube

ASGARD

COeCO

b-STILED

• • • The DESIR building

- Building delivery: September 2025
- October 2025 to September 2026: Beam line & experiment installation
- June 2026 to January 2027: Cabling
- October 2026 to June 2027: Technical commissioning
- March to October 2027: Stable beam commissioning
- November 2027: Facility ready for radioactive beams

Thanks for your attention

Backup slides

• • • The LUMIERE facility

Laser Utilization for Measurement and Ionization of Exotic Radioactive Elements

- > LASAGN (L. Lalanne, IPHC)
 - Collinear laser spectroscopy (CRIS like, ISOLDE)
 - -> hyperfine structure (magnetic and quadrupole moments, mean square charge radii)

Optical pumping line (LINO, *D. Yordanov et al.*)
-> β-decay study of laser polarized beams

Commissioned at ALTO (IJCLab)

D.T. Yordanov et al., JINST 15 (2020) P06004

 \Rightarrow Static moments, shape evolution, nuclear structure

• • • **DESIR** time line

Moyens communs

ASGARD CaeSAR opportunities

First **precise recoil spectroscopy** after beta/EC decays, planned at DESIR (28-)

Beyond Standard Model searches

Open doors to:

- Nuclear structure
- Auger spectroscopy for medical studies

Submitted for ERC, support from Label D'Excellence de Normandie

Unique project, HR gets training in **quantum sensors**

