Investigating the deformation of the intruder isomeric 1/2⁺ state in ⁷⁹Zn (N=49) via Coulomb excitation

Report on IS646

Andrea Gottardo, Magda Zielinska, Filippo Angelini

INFN - LNL

ISOLDE Workshop and Users meeting

CERN, November 2024

⁷⁹Zn shape coexistence

- Intruder states along the N=49 isotone chain
- $1/2^+$ and $5/2^+$ from neutron two-hole-one-particle excitations to the $s_{1/2}$, $d_{5/2}$ shells beyond N=50

C. Wraith et al., Phys. Lett. B 771 (2017) 385391

L. Nies et al., Phys. Rev. Lett. 131, 222503, 2023

- Shell-model calculations predict a shape coexistence among a spherical ground state and well-deformed intruder states
 - In ⁷⁹Zn, the long-lived 1/2⁺ intruder isomer provides the unique possibility of probing its deformation by performing a Coulomb excitation on it
 - Intruder 1/2⁺ 7% isomeric ratio in ⁷⁹Zn ISOLDE beam (from mass spectroscopy)

⁷⁹Zn coulex at HIE-ISOLDE

Miniball with 8 clusters

CD detector 25-55 deg, S2 Micron

Targets ²⁰⁸Pb 4 mg/cm², ¹⁹⁶Pt 3 mg/cm²

Run in 2023

Beam intensity ~10⁴ pps, ⁷⁹Zn @ 4.07 MeV/u Problems with beam (target issues)

<u>Run in 2024</u>

Beam intensity ~8x10⁴ pps, ⁷⁹Zn @ 4.00 MeV/u

CD detector

Calibration

A/Q = 4 from EBIS at the beginning of the experiment: ${}^{12}C^{3+}$, ${}^{16}O^{4+}$, ${}^{20}Ne^{5+}$, ${}^{40}Ar^{10+}$

Simulation used to estimate energy deposited in each ring for the 4 ions

Alignment of pads

Velocity from kinematics and angle

⁷⁹Zn level scheme from a β decay study

Comparison of Pb and Pt target

6

Comparison of ejectile and recoil gate

Identified transitions

- New transition at 480 keV
- Whole multiplet of g_{9/2} hole with 2⁺ of ⁸⁰Zn was observed
- The structure built on the 1/2⁺ resembles a K=1/2 band with a large decoupling coefficient
- We will extract the B(E2) of the band built on the intruder isomer and compare it to theoretical models
- Same structure in ⁸³Se, measured at LNL with GALILEO using ⁸²Se(d,p)⁸³Se and DSAM

State at 985 keV: lifetime

State at 985 keV:

Components are visible both with and without DC: part of the decays happen at rest

Lifetime might be of the order of the flight time to the CD.

Beta after target ~ 7.3 - 8.5%

ToF ~ 0.4 - 1.8 ns

Efficiency and intensities

Gamma distribution at different scattering angles

DC energy vs Theta CD

First ISOL beam from SPES @ LNL

- Protons on SiC target
- Plasma source
- Mass 28 selected with a Wien filter

Thank you for your attention !

Collaboration

Name	Institution
Carlotta Porzio	CERN
Nigel Warr	Cologne
Magda Satrazani	KU Leuven
Filippo Angelini	Unipd and INFN-LNL
Hannah Kleis	University of Cologne
Lukas Nies	CERN
Frank Browne	University of Manchester
Ivan Anastasov	University of Sofia
Bruno Olaizola	IEM-CSIC
Andres Illana	UCM
Michalina Komorowska	HIL UW
Marco Rocchini	INFN-Florence
Naomi Marchini	INFN-Florence
Francois Didierjean	IPHC-Strasbourg
Magda Zielinska	CEA
Adriana Nannini	INFN-Florence
Gilbert Duchene	IPHC-Strasbourg
Samantha Lange	University of Guelph
Andrea Gottardo	INFN-LNL
Matus Balogh	INFN-LNL
Björn Johansson	Chalmers University of Technology
Zinovia Eleme	University of Ioannina
Konstantin Mashtakov	University of Guelph
Serge Franchoo	IN2P3-IJC
Konstantin Stoychev	University of Guelph
Desislava Kalaydjieva	University of Guelph
Giacomo Colombi	University of Guelph
Ben Jones	University of Liverpool

Name	Institution
Frank Browne	CERN
Andres Illana	UCM
Liam Gaffney	University of Liverpool
Marco Rocchini	INFN Firenze
Tommaso La Marca	University of Florence
Magda Zielinska	CEA Saclay
Piet Van Duppen	KU Leuven
Naomi Marchini	INFN Firenze
Andrea Gottardo	INFN-LNL
Luca Zago	INFN-LNL , Padova University
Francois Didierjean	IPHC-Strasbourg
Massyl Kaci	IJCLab-Orsay
Michalina Komorowska	HIL UW
Benito Gongora Servin	LNL-INFN/UniFE
Filippo Angelini	LNL-INFN, UniPD
Desislava Kalaydjieva	CEA Paris-Saclay/ University Paris-Saclay
Daniele Brugnara	LNL-INFN
Serge Franchoo	IJC/ University Paris-Saclay
Joakim Cederkall	Lund University
M Majid Rauf Chishti	Lund University
Nigel Warr	Cologne University
Guillem Tocabens	CEA Saclay
Elia Pilotto	INFN Padova,UniPD
Ivan Anastasov	University of Sofia

And many thanks to:

- MINIBALL collaboration
- ISOLDE team
- Accelerator team
- RILIS team
- Target team
- EUROLabs funding

Stability during the experiment

⁷⁹Zn on target: ~ 81 h

⁷⁹Zn on 208Pb: ~ 54 h ⁷⁹Zn on 196Pt: ~ 27 h

Laser retuning (2nd step) at the end of the second day increased intensity

2nd step of the laser tripped the last day -> Change of scheme (~50% rel. intensity)

Geometry of the setup

Miniball angles

Estimated in July by the IKP group Intense Sn beam helped optimize Doppler correction

CD distance

Estimated with alpha source ?