

Nuclear Astrophysics at the n_TOF / CERN facility

Claudia Lederer-Woods

University of Edinburgh

ISOLDE Users Meeting, Nov 2024

European Research Council

The n_TOF facility at CERN

C₆D₆ Capture Setup

Slow Neutron Capture Process Sites

Success of modelling the slow process using nuclear data input

J. Phys. G: Nucl. Part. Phys. 41 (2014) 053101

Measurements at n_TOF: 2001-present

s-process branching ⁶³Ni(n,γ)

→ Constrain the weak s-process inventory in ⁶³Cu, ⁶⁴Ni and ⁶⁴Zn before SN explosion Measurement with DANCE (LANL) agrees (M. Weigand, et al., Phys. Rev. C **92** (2015) 045810.)

Branching points measured at n_TOF

Branching	Terrestrial T _{1/2}	Mass	n_TOF Publication
⁶³ Ni	101 y	100 mg	Lederer et al., PRL 110 (2013)
⁷⁹ Se	3E5 y	3 mg	under analysis (J. Lerendegui-Marco, C. Domingo-Pardo, et al)
⁹³ Zr	1E6 y	1 g	Tagliente et al. PRC 87 (2013)
⁹⁴ Nb	2E4 y	1 mg	under analysis, Balibrea-Corret et al., EPJ Web of Conferences 279, 06004 (2023)
¹⁵¹ Sm	93 y	200 mg	Abbondanno et al. PRL 93 (2004)
¹⁷¹ Tm	1.9 y	5 mg	Guerrero et al. PRL 125(2020)
²⁰⁴ Tl	3.87 y	9 mg	Casanovas et al., Phys. Rev. Lett. 133, (2024)

Cosmic γ-ray emitter ²⁶Al

Galactic ²⁶Al ($T_{1/2}$ ~7x10⁵ y) can be detected by satellite telescopes via its characteristic γ -ray emission

Main Origin of ²⁶Al in massive stars (Diehl et al, Nature 439 (2006))

Key nuclear uncertainties for theoretical predictions of abundances: ²⁶Al(n,p) and ²⁶Al(n,α) reaction rates [Iliadis et al., Astrophys. J. Supp. 193, 16 (2011)]

n_TOF EAR-2

²⁶Al(n,α) and ²⁶Al(n,p) measurement detection setup at EAR-2

C. Lederer-Woods et al., PRC 104, L032803 (2021) C. Lederer-Woods et al., PRC 104, L022803 (2021)

- Cross sections measured up to ~150 keV neutron energy, reaction rates reliable up to ~0.5 GK (PRC 104, L032803 (2021), PRC 104, L022803 (2021))
- Data allow accurate predictions of ²⁶Al destruction in low mass AGB.
- Good agreement with presolar grain abundances using n_TOF data (Battino et al., MNRAS 520, 2436–2444 (2023))

BUT more accurate data are still needed at high neutron energy, relevant to ²⁶Al abundances in massive stars (T~1GK)

New Run at for high neutron energy 2023

... taking advantage of higher flux which allows use of better collimated neutron beam

⁴⁰K(n,α) and ⁴⁰K(n,p)

- ⁴⁰K abundances impact on radiogenic heating, most important in young exoplants (Frank et al, Icarus (2014))
- Scarce cross section data

- ⁴⁰K efficiently produced in massive stars
- destroyed by (n,γ), (n,α) and (n,p) reactions

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSAJEM

KU LEUVE

Measurement at n_TOF EAR-2

- Sample 0.5 mg, 16% enriched in ⁴⁰K coated in 100 nm Au (produced at PSI)
- dE-E setup for proton and alpha detection
- First data from dE detector

n_Act@BDF - Neutron Activation Station at the SPS Beam Dump Facility

CERN-SPSC-2024-027 / SPSC-EOI-023

Flux 3-4 orders of magnitudes higher than at present n_TOF NEAR

- Parasitic use for neutron cross section measurements
- Unique installation providing ultra high neutron fluxes over a wide energy range for activation measurements complementary to n_TOF capabilities
- Proximity to ISOLDE measurements on radioactive nuclei
- World-first measurements of key reactions for nuclear astrophysics and nuclear applications

n_Act@BDF - Neutron Activation Station at the SPS Beam Dump Facility

CERN-SPSC-2024-027 / SPSC-EOI-023

Science Examples:

Measurements to determine neutron densities and temperature in stellar interiors e.g. (n,γ) on ⁹⁴Nb, ¹⁴⁷Pm, ¹⁶³Ho and ¹⁷¹Tm Measurements to explain peculiar abundances in old stars e.g. (n,γ) on ¹²⁵Sb, ¹³⁷Cs, ¹⁴⁴Ce

Thanks for listening!