

Overview of the 2024 Miniball campaign at ISOLDE

Carlotta Porzio

29th November 2024, ISOLDE Workshop and Users Meeting 2024

HIE-ISOLDE

The Miniball array Gamma-ray detection

- Eight triple-crystal cryostats
- Six-fold segmented HPGe crystals
- 2022 refurbishment:
 - New encapsulation and cryostats
 - New electronics (AGATA-like preamplifiers)
 - New DAQ (FEBEX by GSI)

The Miniball array A versatile instrument

Plunger chamber

Target wheel

up to 6 targets installed in the chamber

SPEDE chamber

Coulomb excitation reactions

- Low energy (few MeV/u): "safe" Coulex
- Only electromagnetic interaction
- Extract matrix elements and transition strengths

Doppler correction

 $E_{\rm lab} = \frac{\sqrt{1-\beta^2}}{1-\beta\cos\theta} E_{\rm cm}$

- β ~ 0.1
- Crystal six-fold segmentation improves precision on θ

Particle detection at Miniball

• 16 annular strips CD detector (DSSSD):

• 12 sector strips

Ionization chamber

Ionization chamber at the end of the Miniball

- Fill gas: CF₄.
- Operating pressure: 400-500 mbar.

Ionization chamber 2024 refurbishment

- Rewired anode and cathode grids (U. Manchester).
- Tested with stable beam.
- Operated with RIB during IS646.

Ivan Anastasov (U. Sofia, BG)

IS646 and IS557: ^{79,80}Zn Coulex

Spokespeople: A. Gottardo, M. Zielinska, A. Illana, P. Van Duppen

⁷⁹Zn (IS646):

Identify the nature of 1/2⁺ isomeric state: almost spherical, large s_{1/2} intruder state or deformed configuration with $d_{5/2}$ component? Predicted different level schemes and B(E2) strengths.

⁸⁰Zn (IS557):

Complete systematic study of B(E2) in eveneven n-rich 7n nuclei.

> [^{74,76}Zn (IS557) Coulex results in: A. Illana et al., PRC 108 (2023) 044305]

 \rightarrow See talk by A. Gottardo on Thursday 28/11

IS646 and IS557: ^{79,80}Zn Coulex

Primary target: UC with n-converter, quartz line, RILIS

IS646:

- ⁷⁹Zn beam (9/2+ g.s. and 1/2+ isomeric state), 4 MeV/u
- ²⁰⁸Pb target (4 mg/cm²) and ¹⁹⁶Pt target (3 mg/cm²)
- 4.5 days of beamtime
- 8×10^4 ions/s [PhD project of F. Angelini]

IS557:

- ⁸⁰Zn beam, 4.75 MeV/u
- ²⁰⁸Pb target (4 mg/cm²) and ¹⁹⁶Pt target (3 mg/cm²)
- 4.5 days of beamtime
- 7×10^3 ions/s

IS748: ^{212,214}Ra Coulex Spokespeople: G. Rainovski, G. Georgiev

- To what extent does the seniority scheme remain valid in the Po-Rn-Ra isotones with N = 126 and 124?
- Experiment goal: measure B(E2; $2^+ \rightarrow 0^+$) in 212,214 Ra and possibly B(E2; $4^+ \rightarrow 2^+$) in 212 Ra.
- Comparison with B(E2) values predicted within the shell model using the KHM3Y interaction.

IS748: ^{212,214}Ra Coulex

[PhD project of H. Mayr]

- Primary target: ThC, surface ionization
- Beams extracted as ²¹²Ra¹⁹F⁺¹ and ²¹⁴Ra¹⁹F⁺¹
- 212 Ra beam: 4.5 MeV/u, 4 × 10⁵ ions/s
- ¹²⁰Sn target (2.2 mg/cm²) and ⁵⁸Ni target (2.0 mg/cm²)
- 2 days of beamtime

IS748: ^{212,214}Ra Coulex

[masters project of I. Anastasov]

- 214 Ra beam: 4.5 MeV/u, 2.3 × 10⁵ ions/s
- 3.5 days of beamtime

CÉRN

 (2^{+})

IS748: ^{212,214}Ra Coulex

IS708: ¹⁴⁴**Ba Coulex** Spokesperson: L. Gaffney

 Probe octupole collectivity in the lanthanide region.

- Initial goal: octupole collectivity in ¹⁴⁶Ce.
- Measure B(E3; 0⁺ → 3⁻) in ¹⁴⁴Ba. Improve previous measurement from ANL [Bucher *et al.*, PRL 116 (2016) 112503].

 \rightarrow See talk by B. R. Jones on Thursday 28/11

IS708: ¹⁴⁴Ba Coulex

- Primary target: UC, surface ionization
- ¹⁴⁴Ba beam, 4.5 MeV/u, ~10⁶ ions/s

3

629

431

331

- ²⁰⁸Pb target, 2.5 mg/cm²
- 2.5 days of beamtime

6+

4+

2+

Gamma-ray energy with addback, gated on the ejectile, Doppler corrected for the ejectile with random subtraction

CÉRN

- Miniball and Coulex excitation at HIE-ISOLDE
- Ionization chamber back into operations
- Four experiments run in 2024
- Multiple approved experiments to run yet! ٠

Thank You

Setup: I. Anastasov, F. Browne, L. P. Gaffney, H. Hess, H. Kleis, P. Reiter, S. Thiel, C. Unsworth, N. Warr

Machine supervisors: A. Rodriguez, E. Fadakis, E. Piselli, E. Siesling, M. Lozano, S. Mataguez Target team: S. Rothe, M. Au, I. Frank, A. Schmidt, S. Stegemann RILIS team: K. Chrysalidis, C. Bernerd, R. Heinke, J. Reilly

Collaborations: IS702, IS646, IS557, IS748, IS708

The research leading to these results has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement no. 101057511.

home.cern