Ultra-high precision nuclear mass measurements for fundamental studies

- Basics of Penning-trap mass spectrometry
- Nuclear masses for neutrino physics
- Fundamental physics studies

Klaus Blaum Max-Planck-Institute for Nuclear Physics, Heidelberg

CERN, Nov 29th, 2024

The mass of an atom

$$m_{\text{Atom}} = N \bullet m_{\text{neutron}} + Z \bullet m_{\text{proton}} + Z \bullet m_{\text{electron}} - (B_{\text{atom}} + B_{\text{nucleus}})/C^2$$
$$\delta m/m < 10^{-10} \qquad \delta m/m = 10^{-6} - 10^{-8}$$

Storage of ions in a Penning trap

The free cyclotron frequency is inverse proportional to the mass of the ion!

$$v_{\rm c} = qB/(2\pi m_{\rm ion})$$

 $v_{+}^{2} + v_{z}^{2} + v_{-}^{2}$

Non-destructive FT-ICR detection technique

L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58 (1986) 233

PENTATRAP - A Penning-trap setup at MPIK

A balance for highly charged ions.

Measurement principle at PENTATRAP

Mass Ratio determination – Polynomial Method

Results I

Nuclear masses for neutrino physics

Q-value of ¹⁸⁷Re-¹⁸⁷Os for neutrino physics

P. Filianin et al., Phys. Rev. Lett. 127 (2021) 072502

relative nuclear mass precision achieved: 6.10-12

BUT

For Re²⁹⁺ (Z = 75) vs. Os²⁹⁺ (Z = 76) we measure two ratios with a 50/50 probability:

 $R_1 = 1.00000013886(15)$

 $R_2 = 1.00000015024(12)$

Weighing of different electron config.

Search for low-lying isomeric states

The AME mass backbone

Go

The ECHo (163Ho) project

Results II

Nuclear masses for fifth force search

www.freedomsphoenix.com/

Probe for new force carriers

Isotope shift spectroscopy: 5th force?

- $\delta v_i^{A,A'} = F_i \delta \langle r^2 \rangle_{A,A'} + k_i \frac{A A'}{A A'}$
- use 2 transitions i, j \rightarrow eliminate $\delta \langle r^2 \rangle_{A,A}$,
- new force mediated through scalar field with boson mass $m_{\phi} \rightarrow X_i$
- coupling to neutrons: y_n
- coupling to electrons: y_e
- nonlinearity in King's plot:

$$\delta v_i^{A,A'} = F_i \delta \langle r^2 \rangle_{A,A'} + k_i \frac{A - A'}{AA'} + \frac{\alpha_{NP} X_i (A - A')}{AA'}$$

Berengut et al., PRL 120, 091801 (2018); Ozeri et al. (2020)

spectroscopy measurements needed!

Yb mass-ratio measurements

M. Door *et al.*, submitted (2024) All even-even mass ratios measured. ⁽²⁾ Relative mass uncertainty: ~4·10⁻¹², improvement factor: typically >50

Yb spectroscopy limits

æ

ISOLDE Workshop, CERN - Blaum

Sr mass-ratio measurements

Much more complicated, since there are only three stable even-even isotopes!

Mass-ratio uncertainties of 10⁻¹¹ and below required!

Summary

Precision Penning-trap mass spectrometry has reached an amazing precision even on exotic systems and has opened up many new fields of research!

Thanks for the invitation and your attention!

Thanks ...

to all my Division members and

you for the invitation and your attention!

