FCC-ee booster as a Light Source

Sara Casalbuoni (European XFEL) and Frank Zimmermann (CERN)

Non collider science opportunities at FCC-ee | kickoff brainstorm 23 August 2024

European XFEL

Outline

FCC-ee booster

- Diffraction limited storage rings
 - Small emittance high brilliance and high coherent flux
- Average and peak brilliance: FCC-ee booster versus PETRA IV and EuXFEL

Conclusions

Non collider science opportunities at FCC-ee | kickoff brainstorm, Sara Casalbuoni, 23.08.2024

Present parameters used for study of FCC-ee booster as photon source

	U ₀ x 3	U ₀ x 94
beam energy [GeV]	20	20
avg. beam current [mA]	6	6
number of bunches	1120	1120
rms bunch length [mm]	7.9	9.5
rms relative energy spread [10-3]	1.8	2.2
beta at wiggler /undulator [m]	1.6	1.6
wiggler field [T]	1	1
wiggler period [mm]	40	40
magnetic gap [mm]	10	10
tot. length wiggler [m]	6.4	264
hor. emittance [pm rad]	15	0.5
vert. emittance [pm rad]	<1.5	<0.05

circumference = 90.7 km without wigglers U₀ = energy loss / turn = 1.33 MeV hor. em. = 46 pm rad; vert. em. < 5 pm rad 3

FCC-ee booster operated as photon source

Fixed-field chicane: the beam automatically moves out of the wiggler during acceleration

Horizontal emittance versus circumference

Diffraction limited storage ring (DLSR)

A ring with horizontal emittance ε_x ($\varepsilon_y < \varepsilon_x$) is diffraction limited at all photon wavelengths λ emitted by undulators for which

Small emittance high brilliance and high coherent flux

🖬 🔜 📒 European XFEL

 $\sigma_{x,y} = \sqrt{\varepsilon_{x,y} \beta_{x,y}}$ $\sigma'_{x,y} = \sqrt{\varepsilon_{x,y}/\beta_{x,y}}$

European XFEL

Different approximations of single electron undulator emission to gaussian beam

	σ_{ph}	σ_{ph}'	$arepsilon_{ph}$	$\beta_{ph} = \sigma_{ph} / \sigma'_{ph}$
Kim (NIM 1986)	$\sqrt{\lambda/L}$	$\sqrt{\lambda L}/4\pi$	$\lambda/4\pi$	$L/4\pi$
Kim (PAC87)	$\sqrt{\lambda/2L}$	$\sqrt{2\lambda L}/4\pi$	$\lambda/4\pi$	$L/2\pi$
Ellaume (2003)	$\sqrt{\lambda/2L}$	$\sqrt{2\lambda L}/2\pi$	$\lambda/2\pi$	L/π
Lindberg & Kim (2015)	$\sqrt{\lambda/4L}$	$\sqrt{\lambda L}/2\pi$	$\lambda/4\pi$	L/π

7

Diffraction limited storage ring (DLSR)

 $Brilliance = \frac{Flux}{4\pi^{2}\Sigma_{x}\Sigma_{y}\Sigma'_{x}\Sigma'_{y}} \approx \frac{Flux}{4\pi^{2}\varepsilon_{ph}^{2}} = \frac{4 Flux}{\lambda^{2}} \qquad \sigma_{x,y} = \sqrt{\varepsilon_{x,y} \beta_{x,y}}$ $\sigma'_{x,y} = \sqrt{\varepsilon_{x,y}/\beta_{x,y}}$ Maximum brilliance for $\varepsilon_{x,y} \ll \varepsilon_{ph}$

For $\varepsilon_{x,y} \approx \varepsilon_{ph}$ brilliance maximized when the electron and photon beam phase spaces are matched

$$\beta_{x,y} = \frac{\sigma_{ph}}{\sigma'_{ph}} = L/\pi \qquad Brilliance = \frac{Flux}{4\pi^2(\varepsilon_x + \varepsilon_{ph})(\varepsilon_y + \varepsilon_{ph})} \approx \frac{Flux}{\lambda^2}$$

$$\frac{\sigma_{ph}}{\sqrt{\lambda/4L}} \frac{\sigma'_{ph}}{\sqrt{\lambda L}/2\pi} \frac{\varepsilon_{ph}}{\lambda/4\pi} \frac{\beta_{ph} = \sigma_{ph}/\sigma'_{ph}}{L/\pi} \qquad PETRAIV: undulator length = L = 4 m \varepsilon_x = 20 \text{ pm rad for}$$

$$1 \text{ A } \varepsilon_{ph} = 8 \text{ pm rad}$$

$$\chi' \qquad \beta_x = 10 \text{ m} \qquad \chi' \qquad \beta_x = L/\pi = 1.27 \text{ m}$$

$$f_x = L/\pi = 1.27 \text{ m}$$

$$F_{L} = 10 \text{ m}$$

$$\chi' \qquad F_{L} = 10 \text{ m}$$

Without dispersion

9

 σ = rms beam size Diffraction limited storage ring (DLSR) σ' = rms beam divergence Without dispersion High transverse coherence Coherent $Flux = f_c \cdot Flux$ $\sigma_{x,y} = \sqrt{\varepsilon_{x,y} \,\beta_{x,y}}$ $\sigma'_{x,y} = \sqrt{\varepsilon_{x,y}/\beta_{x,y}}$ Fraction of X-rays transversally coherent $f_{c} = \frac{\varepsilon_{ph}}{\Sigma_{x}\Sigma'_{x}} \cdot \frac{\varepsilon_{ph}}{\Sigma_{y}\Sigma'_{y}} \xrightarrow{\varepsilon_{x,y} \to 0} 1 \qquad \begin{array}{c} \text{Assuming} \\ \varepsilon_{x} = \varepsilon_{y} = \varepsilon \\ \beta_{x,y} = L/\pi \end{array} \text{ round beam}$ $\Sigma_{x,y} = \sqrt{\sigma_{x,y}^2 + \sigma_{ph}^2}$ $\Sigma'_{x,y} = \sqrt{\sigma'_{x,y}^2 + \sigma'_{ph}^2}$ $f_{c} = \frac{\left(\frac{\lambda}{4\pi}\right)^{2}}{\left(\varepsilon \cdot \frac{L}{2} + \frac{\lambda L}{4\pi^{2}}\right)\left(\varepsilon \cdot \frac{\pi}{L} + \frac{\lambda}{4\pi}\right)}$ σ'_{ph} $\beta_{ph} = \sigma_{ph} / \sigma'_{ph}$ σ_{ph} ε_{ph} $\sqrt{\lambda L}/2\pi$ $\lambda/4\pi$ L/π $\sqrt{\lambda/4L}$

📕 European XFEL

1000

10000

FCC-ee

Non collider science opportunities at FCC-ee | kickoff brainstorm, Sara Casalbuoni, 23.08.2024

Conclusions

With respect to PETRA IV, planned diffraction limited storage ring with smallest emittance, the FCC-ee booster has the potential to produce

a fraction of coherent X-rays larger by one order of magnitude at 50-100 keV

- an average brilliance larger by up to two orders of magnitude at 50-100 keV
- a peak brilliance larger by up to four orders of magnitudes
- The compatibility of the use of the FCC-ee booster for the collider and requirements from possible users shall be further studied

FCC-ee booster as a Light Source

Non collider science opportunities at FCC-ee | kickoff brainstorm, Sara Casalbuoni, 23.08.2024 13

Thank you for your attention !

📰 📒 European XFEL