

Benjamin Rienäcker | Research Associate | University of Liverpool / QUASAR Group

A century worth of positrons ...

Low energy positron/positronium physics at one glance:

- Precision QED studies (Ps spectroscopy)
- Fundamental symmetry tests (annihilation channels)
- Material studies (defect studies)

Few examples for institutions using positrons for research with low energy antiparticles:

C Y

- CERN (Antimatter Factory)
- Many universities
- (UCL, TU Delft, UTokyo, UC Riverside & San Diego, Grenoble, Canberra, ETH)
- ➢ FRM II (NEPOMUC)
- ➢ KEK (IMSS)

Example: Production of anti-hydrogen

Charge exchange reaction:

$$Ps^* + \overline{p} \rightarrow e^- + \overline{H}^*$$

Phys. Rev. A **94**, 022714 (2016) https://doi.org/10.1103/PhysRevA.94.022714

AEGIS

Gained a lot of experience recently within the AEgIS collaboration on these three pillars

- Limited availability of positrons currently only one experimental trial every few minutes.
- Experiments would greatly benefit from a reliable LINAC providing e⁺ in high amounts.
- Usually, small collaborations do not have the resources to operate a LINAC source.

	2018	2023	Improvement factor	2024/2	5
Degrader efficiency	(2-3)% of 30E6	≈70% of 5E6 (*)	5	≈88% of 5E6	6
Cross section (n ⁴)	n = 17	n = 21	2	n=30	10
Positronium target	7.5%	2.5%	0.33	15%	2
Laser Bandwidth coverage	15%	30%	2	30%	2
Pbar plasma – Ps interaction	Perpendicular	Collinear	1.5	Collinear	1.5
Positron Source (**)	1E6 e⁺/min	1E6 e⁺/min	1	8E6 e ⁺ /min	8
TOTAL IMPROVEMENT		≈ 10 ≈ 3000			
Hbar production	$0.05\overline{H}/min$	$< 1 \overline{H}/_{1}$	min	<i>0</i> (100) <i>H</i>	/ min

(*) In 2022, a successful trapping of **3.7E6 antiprotons** was demonstrated: https://cds.cern.ch/record/2846698?ln=en (**) Available from the beginning of 2024 (bottleneck: sole supplier of 22Na sources in South Africa)

Benjamin Rienäcker

cy

Efforts towards the first Bose-Einstein condensation of Ps

Nanochanneled silicon converters are able to produce Ps at temperatures of 150K and below in a cryogenic enviroment.

Laser cooling cryogenic positronium atoms for 100ns (15 cooling cycles) could reduce the temperature to **<10K**.

An increase of at least orders of magnitude in Ps density is necessary. The current limit is the rate of accumulation of e⁺ from Na-22 sources.

When a Ps-BEC annihilates, a coherent burst of gamma rays is emitted. A proposed way to build a 511 keV gamma ray laser!

Benjamin Rienäcker

2³S source

y x

Searches for rare Ps annihilation channels

Table from Phys. Part. Nucl. 37 (2006) 321-346

Decay mode	90% upper limit, ppm		
$\gamma + X$	5-1		
	1.1		
	340		
$\gamma + X \longrightarrow \gamma + 2\gamma$	28		
	300		
γγ	233		
	350		
γγγγ	2.6		
	3.7		
$\gamma + X_1 + X_2$	44		
Invisible	2.8		
	540		

Rare-event searches limited by statistics

Benjamin Rienäcker

Requires simultaneous detection of three Compton scattering events

Detection of multipartite entanglement in Ps annihilation y rays

8

Requires cold long-lived Ps

sources in very high amounts

Stopper

Detector

Area of impact #2

Charge distribution

Decay times

 $\Gamma_{a}^{\text{th}} = 7.039979(11) \ \mu \text{s}^{-1},$ $\Gamma_{p}^{\text{th}} = 7989.6178(2) \ \mu \text{s}^{-1},$ $= 7.0404(10)^{\text{stat.}}(8)^{\text{syst.}} \mu s^{-1}$ Γ_o^{\exp} $' = 7990.9(1.7) \ \mu s^{-1}$

Phys. Part. Nucl. 37 (2006) 321-346

Searches for BSM physics in:

New precision QED measurements feasible, with colder Ps sources

Positronium

 α^2

- energy intervals
- decay rates

 $(Z\alpha)^2 m/M$

or $\alpha(Z\alpha)m/m_p$

 $(Z\alpha mcR_N/\hbar)^2$

decay modes

- Fifth fundamental force
- **Axion-like particles** \geq
- Symmetry violations \geq

1³S-2³S transition frequency

Ps is an ideal system to test bound state

QED due to the absence of nuclear effects

Phys. Rep. 422 (2020) 1-63

Limited by second order Doppler effect, requires colder Ps sources

Possible use case: Ultra-high density monolithic 3D ICs

 \rightarrow Depth-resolved defect analysis with positrons

Image from S. Panth et al. (2014), doi: 10.1109/S3S.2014.7028195

Take home message

THANK YOU