Toward GPU Accelerated Full Simulation of Optical

Calorimetery with Celeritas

Hayden Hollenbeck
University of Virginia

CalVision Workshop August 6th, 2024

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop

Outline

@ Simulation for CalVision

© GPU Programming

@ Celeritas

@ Conclusion

n Hollen

CalVision: Goals

——T 7 T T
Lo l00Gevme]

+ Incident y J

* Incident = _

08 -

I 1 - (h/el, il

r Slope & = L‘() .

L 1 — (h/elg) §

0.6 - A
LL] L _
= L i
) L _
04 - -

- -— (h/el|g) = o

02 I D

Hayden Hollenbeck (UVa)) & Ja ion Workshop 3/20

Single Bar Simulation

Simulating single crystal response

o PWOy, crystal with 1 SiPM on
the front face and 2 SiPMs on
the rear face

@ Single incident charged particle

e Options to set filters in front

. Above: Single crystal with SiPMs (grey)
of each SiPM on front and rear faces. Incident 1 GeV
Goal: Measure scintillation and muon.
Cerenkov signals in each SiPM Below: Zoomed image showing optical

photon tracks (blue), with ~ 20,000
Cerenkov photons and ~ 100, 000
scintillation photons.

Hayden Hollenbeck (UVa) a sion & bas Ca sion Workshop 4 /20

Fast Parameterization: Scintillation

Scintillation properties:

@ Isotropic emission
@ Single emission spectrum
@ Number of photons depends only on energy deposit (Birk’s Law)

Fast Parameterization

Setup:

@ Create position dependent bins in the crystal
@ Simulate random photons in each bin
@ If photon reaches SiPM sensitive area, record wavelength and time

During Simulation:

@ Record position, time, and energy of every energy deposit in the crystal
@ Manually kill all scintillation photons at track start

Post-Processing:

@ Use Birk’s law to generate photons for each deposit
@ Convolute with pre-generated histograms

en Hollenbeck (UVa) 9 & bas CalVision Workshop

Fast Parameterization: Cerenkov

Cerenkov properties:
o Well-defined cone angle from particle velocity
e Highly directed
e Emission spectrum is velocity dependent

Both time and energy are sensitive to particle velocity!

Spectrum and angle depend on speed

o Path depends on particle direction and angle
@ Need to bin in all 3 velocity components!

@ May also need finer bins in position

No easy way to do fast sim for Cerenkov ...

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop

Celeritas: Use GPUs to fully simulate optical physics
quickly

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop 7/20

CPUs vs GPUs

L1

Core Core
L1 Cache L1 Cache
L2 Cache L2 Cache

13 Cache.
12 Cache

“ o

cry GPU

Goal: high performance for parallelizable, floating-point problems
Different hardware architectures:

@ Optimal use cases for each?

© Why and how do they get their performance boosts?
@ What’s their limitations?

Resources:

@ CUDA programming guide
@ How CUDA Programming Works - GTC 2022

< (UVa)

8 /20

CPU Parallelism

Example CPU: AMD EPYC 945/
Atomic execution unit: 1 thread on 1 core

Multicore: multiple cores on each CPU (48 cores)
SIMD: Single Instruction Multiple Data

o Vectorized instructions on larger registers (128-, 256-, 512-bits)

e Arrays of data need to be aligned and sequential
Multi-Threading: simulate multiple threads on a single core through
interleaving

o Context switching - very expensive!

o (Hardware) Simultaneous multithreading - simultaneous threads on

a single core (2 per core)
Branching: local thread flow control is completely independent of other
threads

e Can spoil pipelining and prefetching

e Mitigation through branch predicition
Memory Access: Many caches levels & few registers - save and reuse
results

e CPU Stalls: threads must wait for cache lookup

o L3 cache: 256 MB

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop 9/20

GPU Execution Hierarchy

Execution Hierarchy

@ Thread - Single process run on a single core

(same as CPU thread) Semvn
@ Warp - 32 threads that get run B vost
simultaneously i
o Smallest GPU execution unit |
o All threads run the same command on e e [e e

the same clock tick
e Branching handling by disabling certain

Block (0,1) Block (1, 1) Block (2, 1)

threads Seriat oode Host
@ Thread Block - Set of identical threads to f
run e
o Smallest user execution unit Tesme1) et
. Block (0, 0) Block (1, 0)
o User may specify thread code and block W gﬁgﬁ
dimensions eI (e 2
o Each thread has a unique ID - specifies e

what data it should run on

E
E

o Blocks guaranteed to run with same
shared data cache

en Hollenbeck (UVa) 9] & as CalVision Workshop 10 /20

GPU Architecture

Hardware Hierarchy

@ Streaming Multiprocessor (SM) -
set of processors with a common —— —

Dispatch Unit (32 thread/cik) Dispatch Unit (32 thread/clk)

shared memory e — e
o Warp Schedulers - Each i R |~ 5 |
SChedulaI' runs 1 Warp / wrs2wtaz P33 RS2 Fros intazinraz PRS2 RS rres

wrszwrs: FRaafesd rres wrszwrsz FpsdEpsd rres
TENSOR CORE TENSOR CORE

clock cycle irstwrss PSR reee irsziras PSR rree

Iwroziwra: FRREFRS ros Iwrozwra: FREERE rros

e Y Iwrazwras FRSEERE eeee

e Streaming Processor (SP)
- Cores that run a single

inraziwra: FRSAFRE rees Iwrazirss FRSEFRE rros

thread —
— -
— —

o Register File - Register
memory for threads e EE

Register Filo (16,384 x 32.bit) Register File (16,384 x 32-bit)

° L1 Cache / Shared Memory |ISfEe o SR -
- Common local memory Ermm ~ D S~
available to threads i i

Thread registers persistent - no

Tex

context switch penalty!

GPU Hardware Specs

Ex: NVIDIA A100 Tensor Core GPU

108 Streaming Multiprocessors per GPU

64 32-bit floating point cores per SM

32 64-bit floating point cores per SM

192 KB of combined shared memory and L1 cache

4 warp schedulers per SM

64 max warps per SM = 2048 max threads per SM (not simultaneous,
just managed!)

Roughly 108 x 4 x 32 = 13,824 simultaneous threads!

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop 12 /20

GPU Performance Considerations

@ Memory Access
o Access aligned to cache lines most efficient - random access has
major speed penalties
e Delays in memory access hidden by warp scheduling - need high
occupancy!

e Branching

e Minimize time spent executing 2 different branches
e Don’t avoid entirely! Many optimizations, tricks, and ways to
minimize penalties!

o Host-Device transfer

o Initialize constant and global data once
o Transfer only when necessary
e Minimize transfer during hot loops

e Occupancy

e Maximize number of warps available to be run
e Maximize number of threads in a warp - may need to reorganize
data!

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop 13 /20

Celeritas: Overview

o Standalone GPU accelerated
simulation code

@ Runs both with and without
GPUs

e Can drop into existing Geant4

code to offload tracks to the
GPU

o Currently implements high
energy EM physics

o Continual unit testing and
physics validation against
Geant4

@ Developers at ORNL, FNAL,
ANL, BNL, and more!

https://github.com/
celeritas-project/celeritas

Celeritas R&D Report: Accelerating
Geant4.
https://doi.org/10.2172/2281972

Hayden Hollenbeck (UVa)

CalVision & Celeritas

CalVision Workshop

14 /20

https://github.com/celeritas-project/celeritas
https://github.com/celeritas-project/celeritas
https://doi.org/10.2172/2281972

Celeritas: Physics Loop

Initialize new Move to Post-step
tracks boundary \
/ Hits

Along-step Interact

A\

@ | Field | | Linear |

—LE

OO0

SA
Select 7
. Process
discrete .
. . secondaries
interaction

Hayden Hollenbeck (UVa) ritas CalVision Workshop 15 /20

Celeritas: Actions

Q: When does work actually get done on the GPU?
A: Actions - per track GPU kernels!

@ Eg: tracks need to undergo discrete actions every step
© One action determines which discrete interaction for every track
@ Collect actions of same discrete interaction
@ Run appropriate kernel on track collection
Design Logic:
@ Need to handle variable number of tracks
@ Need to handle variable number of actions

@ Need to handle randomly chosen kernels each step

Hayden Hollenbeck (UVa) CalVision & Celeritas

CalVision Workshop 16 / 20

Celeritas: Optical Physics

e generate
Optical photons: simulated
as distinct particles from]
high energy photons
o Entirely separate /
optical physics loop /
after core physics runs /m-ww\
e Simpler physics -
optimized algorithm ﬁ!é l J*/ i l

\

Kl

17 / 20

Celeritas: Generators

Need to move photons from core physics to optical physics loop

@ Same idea as fast parameterization: record energy deposits,
locations, times

e Store as small data structure, wait for the core loop to end

e Use generators to initialize optical photons from each record

Generators
e Scintillation
o Cerenkov

Both currently implemented in Celeritas

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop 18 /20

Celeritas: Processes

Discrete Optical Processes: currently being implemented

Absorption

Rayleigh Scattering
Wavelength Shifting
e Mie Scattering

Boundary Optical Processes: yet to be implemented
e Refraction

o Reflection

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop 19 /20

Conclusion

Geant4 struggles to simulate high count optical physics events

Fast parameterizations good for scintillation, not for precise
Cerenkov

GPUs allow simulating many many tracks concurrently

e GPU accelerated code Celeritas can be readily integrated into
Geant4

o Major focus is currently on optical physics!

Actively looking for help with development and integration with
experiments - get in contact with us!

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop 20/ 20

	Simulation for CalVision
	GPU Programming
	Celeritas
	Conclusion

