
Toward GPU Accelerated Full Simulation of Optical
Calorimetery with Celeritas

Hayden Hollenbeck

University of Virginia

CalVision Workshop August 6th, 2024

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop 1 / 20



Outline

1 Simulation for CalVision

2 GPU Programming

3 Celeritas

4 Conclusion

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop 2 / 20



CalVision: Goals
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Single Bar Simulation

Simulating single crystal response

PWO4 crystal with 1 SiPM on
the front face and 2 SiPMs on
the rear face

Single incident charged particle

Options to set filters in front
of each SiPM

Goal: Measure scintillation and
Cerenkov signals in each SiPM

Above: Single crystal with SiPMs (grey)
on front and rear faces. Incident 1 GeV
muon.

Below: Zoomed image showing optical

photon tracks (blue), with ∼ 20, 000

Cerenkov photons and ∼ 100, 000

scintillation photons.

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop 4 / 20



Fast Parameterization: Scintillation

Scintillation properties:

Isotropic emission
Single emission spectrum
Number of photons depends only on energy deposit (Birk’s Law)

Fast Parameterization

Setup:

Create position dependent bins in the crystal
Simulate random photons in each bin
If photon reaches SiPM sensitive area, record wavelength and time

During Simulation:

Record position, time, and energy of every energy deposit in the crystal
Manually kill all scintillation photons at track start

Post-Processing:

Use Birk’s law to generate photons for each deposit
Convolute with pre-generated histograms
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Fast Parameterization: Cerenkov

Cerenkov properties:

Well-defined cone angle from particle velocity

Highly directed

Emission spectrum is velocity dependent

Both time and energy are sensitive to particle velocity!

Spectrum and angle depend on speed

Path depends on particle direction and angle

Need to bin in all 3 velocity components!

May also need finer bins in position

No easy way to do fast sim for Cerenkov . . .
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Celeritas: Use GPUs to fully simulate optical physics
quickly
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CPUs vs GPUs

Goal: high performance for parallelizable, floating-point problems
Different hardware architectures:

Optimal use cases for each?
Why and how do they get their performance boosts?
What’s their limitations?

Resources:

CUDA programming guide
How CUDA Programming Works - GTC 2022
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CPU Parallelism

Example CPU: AMD EPYC 9454
Atomic execution unit: 1 thread on 1 core

Multicore: multiple cores on each CPU (48 cores)
SIMD: Single Instruction Multiple Data

Vectorized instructions on larger registers (128-, 256-, 512-bits)
Arrays of data need to be aligned and sequential

Multi-Threading: simulate multiple threads on a single core through
interleaving

Context switching - very expensive!
(Hardware) Simultaneous multithreading - simultaneous threads on
a single core (2 per core)

Branching: local thread flow control is completely independent of other
threads

Can spoil pipelining and prefetching
Mitigation through branch predicition

Memory Access: Many caches levels & few registers - save and reuse
results

CPU Stalls: threads must wait for cache lookup
L3 cache: 256 MB
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GPU Execution Hierarchy

Execution Hierarchy

Thread - Single process run on a single core
(same as CPU thread)

Warp - 32 threads that get run

simultaneously

Smallest GPU execution unit
All threads run the same command on
the same clock tick

Branching handling by disabling certain

threads

Thread Block - Set of identical threads to

run

Smallest user execution unit
User may specify thread code and block
dimensions
Each thread has a unique ID - specifies
what data it should run on

Blocks guaranteed to run with same

shared data cache
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GPU Architecture

Hardware Hierarchy

Streaming Multiprocessor (SM) -
set of processors with a common
shared memory

Warp Schedulers - Each
schedular runs 1 warp /
clock cycle

Streaming Processor (SP)
- Cores that run a single
thread
Register File - Register
memory for threads

L1 Cache / Shared Memory
- Common local memory
available to threads

Thread registers persistent - no

context switch penalty!
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GPU Hardware Specs

Ex: NVIDIA A100 Tensor Core GPU

108 Streaming Multiprocessors per GPU
64 32-bit floating point cores per SM
32 64-bit floating point cores per SM
192 KB of combined shared memory and L1 cache
4 warp schedulers per SM
64 max warps per SM = 2048 max threads per SM (not simultaneous,
just managed!)

Roughly 108× 4× 32 = 13, 824 simultaneous threads!
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GPU Performance Considerations

Memory Access

Access aligned to cache lines most efficient - random access has
major speed penalties
Delays in memory access hidden by warp scheduling - need high
occupancy!

Branching

Minimize time spent executing 2 different branches
Don’t avoid entirely! Many optimizations, tricks, and ways to
minimize penalties!

Host-Device transfer

Initialize constant and global data once
Transfer only when necessary
Minimize transfer during hot loops

Occupancy

Maximize number of warps available to be run
Maximize number of threads in a warp - may need to reorganize
data!
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Celeritas: Overview

Standalone GPU accelerated
simulation code

Runs both with and without
GPUs

Can drop into existing Geant4
code to offload tracks to the
GPU

Currently implements high
energy EM physics

Continual unit testing and
physics validation against
Geant4

Developers at ORNL, FNAL,
ANL, BNL, and more!

https://github.com/

celeritas-project/celeritas

Celeritas R&D Report: Accelerating

Geant4.

https://doi.org/10.2172/2281972
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Celeritas: Core Physics Loop
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Celeritas: Actions

Q: When does work actually get done on the GPU?
A: Actions - per track GPU kernels!

1 Eg: tracks need to undergo discrete actions every step

2 One action determines which discrete interaction for every track

3 Collect actions of same discrete interaction

4 Run appropriate kernel on track collection

Design Logic:

1 Need to handle variable number of tracks

2 Need to handle variable number of actions

3 Need to handle randomly chosen kernels each step
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Celeritas: Optical Physics

Optical photons: simulated
as distinct particles from
high energy photons

Entirely separate
optical physics loop
after core physics runs

Simpler physics -
optimized algorithm
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Celeritas: Generators

Need to move photons from core physics to optical physics loop

Same idea as fast parameterization: record energy deposits,
locations, times

Store as small data structure, wait for the core loop to end

Use generators to initialize optical photons from each record

Generators

Scintillation

Cerenkov

Both currently implemented in Celeritas
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Celeritas: Processes

Discrete Optical Processes: currently being implemented

Absorption

Rayleigh Scattering

Wavelength Shifting

Mie Scattering

Boundary Optical Processes: yet to be implemented

Refraction

Reflection

Hayden Hollenbeck (UVa) CalVision & Celeritas CalVision Workshop 19 / 20



Conclusion

Geant4 struggles to simulate high count optical physics events

Fast parameterizations good for scintillation, not for precise
Cerenkov

GPUs allow simulating many many tracks concurrently

GPU accelerated code Celeritas can be readily integrated into
Geant4

Major focus is currently on optical physics!

Actively looking for help with development and integration with
experiments - get in contact with us!
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