Accelerator Availability in the First Half of 2024 and AFT Update

B. Mikulec, L. Felsberger, H. Dostmann, J. Heron, A. Asko

with thanks to

- J. Uythoven, D. Wollmann
- everybody who provides data for AFT
- the AFT team
- and everybody who constantly checks and validates AFT data

Outline

- Mid-year AFT analysis to help equipment teams reacting within the run to potential trends
 - LHC and proton injector chain
 - Dates: from start of physics to 05/08/2024 9:00:00
 - Usual excluded time periods (TS, dedicated MDs, other scheduled interventions)
 - All graphs shown in the slides are available on Gitlab and will be regularly updated
 - <u>https://gitlab.cern.ch/mpe-reliability-tools/aft_processing/-/tree/master/output</u>
- Feedback concerning AFT expert review rates
- AFT news

Definitions

- Fault: deviation from nominal operation as defined in accelerator schedule
- **Root-cause statistics**: downtime attributed to system causing the fault
- Availability: Fraction of scheduled operational time that machine is available for operation

Linac4 Unavailability

Linac4 Weekly Fault Rate

Linac4 Unavailability by Duration

PSB Unavailability (w/o Inj. Complex)

PSB Weekly Fault Rate (w/o Inj. Complex)

PSB Unavailability by Duration (w/o Inj. Complex)

PS Unavailability (w/o Inj. Complex)

PS Weekly Fault Rate (w/o Inj. Complex)

PS Unavailability by Duration (w/o Inj. Complex)

CERN

SPS Unavailability (w/o Inj. Complex)

SPS Weekly Fault Rate (w/o Inj. Complex)

SPS Unavailability by Duration (w/o Inj. Complex)

 \mathbf{SPS}

LHC Unavailability (w/o Inj. Complex)

Start statistics with start of Stable Beams; only proton run period

LHC Unavailability (w/o Inj. Complex)

QPS relatively high turnaround penalty as well as Power Converters or Beam Losses (short faults e.g. during ramp)

LHC Weekly Fault Rate (w/o Inj. Complex)

LHC Unavailability by Duration (w/o Inj. Complex)

 $LHC_{-}protons$ 0 - 15 min NO_INJ_COMPLEX 30.1%15 min - 1 h 301 21/04 Loss of 1.8K pumping unit in LHC8 3.1%1 - 2 hours (1d 17h) 26.3%2 - 10 hours 10/05 Magnet quench sector 23 (1d 5h) 10h - 1 day 2524/04 High heat load \rightarrow switch back to 1 - 10 days 6.9%6.9%optimal cryo configuration (1d 4h) 21.4%10 + daysUnavailability (%) 1. 19.3%18.8%3.5%17.5%3.7%15.8%2.7%2.0%5.6%6.6%1.9%4.0%13.5%3.3%2.1%10.8%1011.1%11.0%7.9%6.8%7.3%53.7%2.9%2.0%2.3%1.9%1.5%1.5%2.5%1.7%2.1% $\frac{1.2\%}{0.4\%}$ $1.1\% \\ 0.3\%$ 1.1% 1.2%0.3%0.1%0 2015202220232016201720182024

Availability LHC + Injector Chain

	Linac4	PSB	PS	SPS	LHC
2022	97.1%	97.5%	92.9%	82.7%	80.7%*
2023	97.9%	98%	94.9%	92.4%	73.7%*
05/08/2024	97.2%	98.2%	96.5%	88.2%	78.6%

* <u>Mind</u>: LHC schedules have been adapted in 2022 and 2023 to exclude long periods of fault!

- Availability quoted excluding faults from injector chain
 - Usual periods of TS, dedicated MDs etc. excluded as well
- LHC: data since start of Stable Beams
- Injectors: data since start of beam request for downstream beam commissioning
- Up to now, in 2024 solid availability from all machines

AFT Review Rates

- Expert review is important to ensure good data quality for solid analysis
 - For manual fault insertion, mistakes e.g. of system assignment happen or root cause not yet known
 - Automatic fault assignment is still not 100% fail-safe and comprehensive
- Reviewers should receive automatic emails → please don't forget to acknowledge the faults in AFT (box 'expert review')
- Weekly fault reviews every Monday 11am
 - Ccc glassbox and <u>zoom</u>
- We thank all our reviewers for their efforts!

AFT Overall Review Rates

Se	Linac4	PSB	PS	SPS	LHC	AD & ELENA	EA	NA
2022	74%	45%	40%	13%	44%	53%	53%	31%
2023	85%	72%	68%	12%	34%	73%	78%	15%
19/07/2024	84%	88%	78%	15%	32%	78%	80%	16%
05/08/2024 After contact	89%	84%	76%	19%	39%	82%	84%	22%

- Includes equipment review rates, as well as OP and RAWG review rates (injector faults, downtime to be updated, MD, access management, precycle, other)
- Generally good review rates for the faults, increasing over the years
 - SPS, NA and LHC to catch up...
 - SPS: many automatically registered few second-long faults
 - Sometimes confusion that the box 'Expert reviewed' should be clicked

AFT Review Rates – Systems across Complex

- Equipment expert review rate improved, in particular after contacting experts
- For certain systems might not be clear who should review the faults?
- We can help explaining the technicalities

* Vacuum includes vacuum system of EA, not under VSC responsibility...

Automatic Fault Recording Status

Significant **effort** was put in integrating further machines with **multiple extensions** on the API in order to facilitate the process

- Linac4/PSB: some improvements for more solid Linac4/PSB fault distinction
- PS: work ongoing to automatically assign systems and destinations
- SPS: steadily refining faulty system assignment + adding certain degraded faults (since mid-July)
- LHC: steadily refining faulty system assignment, adding non-blocking faults
 and spurious PC trips during periods without beam

Other AFT News

- Minor requests/corrections implemented
 - List of desired improvements available and status being tracked
 - Many good ideas time for development needed
- Outcome of AFT survey with equipment groups on AFT usage and ideas for improvement will be presented on 24th of October (tbc)
- One outcome of survey currently being pursued: integration of EAM with AFT

Summary

- First ~half of the year shows mostly excellent availability from the CERN complex machines
 - Long failure events often determine statistics
- OP and expert review rate quite acceptable for ensuring good data quality for most systems
- Work ongoing to improve automatic fault recording and EAM / AFT integration

Thanks to everybody for your continued support in this effort!

