The multiwavelength signature of the multizone jets of Mkn 421 Indirect dark-matter searches with γ-rays

Dimitrios Kantzas LAPTh/CNRS

with Francesca Calore, Marco Chianese

Indirect dark matter searches

 $m_{_{DM}} \& <\sigma v >$

Galactic entre excess

DM

D

Image Credit: N. L. Rodd

Goodenough & Hooper 2009; Hooper 2011; Calore et al. 2015; 2016; Macias et al. 2018

P

DM spikes

see e.g., Quinlan et a. 1995; Gondolo & Silk 1999; Gorchtein et al. 2010

Image Credit: Nick Risinger

Active galactic nuclei (AGN)

Cosmic ray (CR) acceleration in AGN jets

CR cooling due to DM or boosted DM

e.g., Bringmann & Pospelov 2019; Ema et al. 2019; Cappiello & Beacom 2019; Guo et al. 2020; Wang et al. 2022

 $\chi + e^{-}/p^{+} \rightarrow \chi + e^{-}/p^{+}$

elastic CR-DM

 $\chi + p^+ \rightarrow \chi + p^+ + \dots + \gamma$ -rays + neutrinos

inelastic CR-DM

Effect of inelastic CR-DM on the γ -ray spectrum

Ambrosone et al, 2024

Elastic CR-DM collisions in AGN jets

Herrera & Murase, 2024

CR protons + DM

Elastic CR-DM collisions in AGN jets

Herrera & Murase, 2024

CR electrons + DM

Elastic CR-DM collisions in AGN jets

Herrera & Murase, 2024

CR electrons + DM

Semi-analytical, multi-zone jet model

BHJet: a multi-zone model (Lucchini..., DK et al. 2022)

jet acceleration

and collimation

jet segments

particle acceleration

Image Credit: T. Revolta

Dimitrios Kantzas | UNDARK

Blandford & Königl 1979; Hjellming & Johnston 1988; Falcke & Biermann 1995; Markoff et al. 2001, 2005; Maitra et al. 2009; Crumley et al. 2017; Lucchini et al. 2019, 2022; Kantzas et al. 2021, 2022, 2023a

Jet composition and radiative processes

Pian 2019

The study case of Markarian 421

- BL Lac object
- @122Mpc (z=0.0308)
- The 1st extragalactic TeV source (Punch et al. 1992)
- One of the brightest quasars

2 jet cases for Mkn 421

Pencil jet: slim and powerful jet power: 0.08 Edd radius: 10 R_g <u>CR accel</u>eration: 20 R_g **Brush** jet: thick and less powerful jet power: 0.0045 Edd radius: 30 R_g CR acceleration: 100 R_g

Din

Pencil jet: the multiwavelength spectrum of Mkn 421

Brush jet: the multiwavelength spectrum of Mkn 421

The MW spectrum of Mkn 421 with DM

Herrera & Murase, 2024

The cooling timescales

 $<\sigma v > /m_{DM} = 10^{-28} \,\mathrm{cm}^{-2} \,\mathrm{GeV}^{-1}$

$$<\sigma v>/m_{DM}=0$$

Conclusions

- CRs may cool due to CR-DM collisions
- CR-DM may produce secondary particles via inelastic collisions
- We cannot draw conclusions on the DM nature unless we better constrain jet physics !
- More physical-driven jet models are required !! -
- DMJet in prep

Find BHJet <u>here</u>

Backup slides

Extra material

The multi-wavelength emission

The MW spectrum of Mkn 421 with DM (2)

Herrera & Murase, 2024

The cooling timescales (2)

 $<\sigma v > /m_{DM} = 10^{-28} \,\mathrm{cm}^{-2} \,\mathrm{GeV}^{-1}$

 $<\sigma v>/m_{DM}=0$

Constraints from CR-DM collisions

Herrera & Murase, 2024

Ambrosone et al. 2023

Dimitrios Kantzas | UNDARK

2

Best-fit (?) of the Steady state with BHJet

preliminary value parameter 1.83 p₁ E_{break} (GeV) 155 42 δ B (G) 0.4 u_e/u_B 7.4 $R(r_{a})$ 36 $z_{diss}(r_{g})$ 435 $\mathsf{N}_{\mathsf{i}} \left(\mathsf{L}_{\mathsf{Edd}} \right)$ 0.0007

Kantzas et al. in prep

Best-fit (?) of the Steady state with BHJet

16500 iterations with 48 walkers

autocorrelation time:

[421 232 252 293]

The Steady state

	parameter	value
	p ₁	2.3
	p ₂	4.7
1. Jul	E _{break} (GeV)	100
	δ	38
	B (G)	0.048
	u _e /u _B	70.6
	R (r _g)	2

Bartoli et al. 2016