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ULDM does not behaves like CDM at small-scales
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FIG. 1. Simulated VULF based on the approach in Ref. [41]
with field value �(t) and time normalized by �DM and coher-
ence time ⌧c respectively. The inset plot displays the high-
resolution coherent oscillation starting at t = 0.

lacking 2 and is becoming more relevant as experiments
begin searching such regimes.

Here we focus on this regime, T ⌧ ⌧c, characteris-
tic of experiments searching for ultralight (pseudo)scalars
with masses . 10�13 eV [33–39] that have field coherence
times & 1 day. This mass range is of significant inter-
est as the lower limit on the mass of ultralight axions
is down to 10�22 eV and can be further extended if it
does not make up all of the DM [27]. Additionally, there
has been recent theoretical motivation for “fuzzy dark
matter” in the 10�22 � 10�21 eV range [27–30] and the
so-called string “axiverse” extends down to 10�33 eV [31].
Similar arguments also apply to dilatons and moduli [32].

Figure 1 shows a simulated VULF field, illustrating
the amplitude modulation present over several coherence
times. At short time scales (⌧ ⌧c) the field coherently os-
cillates at the Compton frequency, see the inset of Fig. 1,
where the amplitude �0 is fixed at a single value sampled
from its distribution. An unlucky experimentalist could
even have near-zero field amplitudes during the course of
their measurement.

On these short time scales the DM signal s(t) exhibits
a harmonic signature,

s(t) = �⇠�(t) ⇡ �⇠�0 cos(2⇡f�t+ ✓) , (1)

where � is the coupling strength to a standard-model field
and ✓ is an unknown phase. Details of the particular ex-
periment are accounted for by the factor ⇠. In this regime
the amplitude �0 is unknown and yields a time-averaged

2 We only found explicit investigation of the T ⌧ ⌧c regime in
Ref. [54] where the authors state the exponential distribution of
the dark matter energy density, and by the authors of Ref. [53]
discussing sensitivity in their Appendix E.

energy density h�(t)2iT⌧⌧c = �2
0/2. However, for times

much longer than ⌧c the energy density approaches the
ensemble average determined by h�2

0i = �2
DM. This field

oscillation amplitude is estimated by assuming that the
average energy density in the bosonic field is equal to the
local DM energy density ⇢DM ⇡ 0.4GeV/cm3, and thus
�DM = ~(m�c)�1p2⇢DM.

The oscillation amplitude sampled at a particular time
for a duration ⌧ ⌧c is not simply �DM, but rather a ran-
dom variable whose sampling probability is described by
a distribution characterizing the stochastic nature of the
VULF. Until recently, most experimental searches have
been in the m� � 10�13 eV regime with short coherence
times ⌧c ⌧ 1 day. However, for smaller boson masses
it becomes impractical to sample over many coherence
times: for example, ⌧c & 1 year for m� . 10�16 eV. As-
suming that �0 = �DM neglects the stochastic nature of
the bosonic dark matter field [33–39].

The net field �(t) is a sum of di↵erent field modes with
random phases. The oscillation amplitude, �0, results
from the interference of these randomly phased oscillat-
ing fields. This can be visualized as arising from a ran-
dom walk in the complex plane, described by a Rayleigh
distribution

p(�0) =
2�0

�2
DM

exp

✓
� �2

0

�2
DM

◆
, (2)

analogous to that of chaotic (thermal) light [55]. This
distribution implies that ⇠ 63% of all amplitude realiza-
tions will be below the r.m.s. value �DM.

We refer to the conventional approach assuming �0 =
�DM as deterministic and approaches that account for
the VULF amplitude fluctuations as stochastic. To com-
pare these two approaches we choose a Bayesian frame-
work and calculate the numerical factor a↵ecting cou-
pling constraints, allowing us to provide modified exclu-
sion plots of previous deterministic constraints [33–39].
It is important to emphasize that di↵erent frameworks
to interpret experimental data than presented here could
change the magnitude of this numerical factor [56–59].
In any case, accounting for this stochastic nature will
generically relax existing constraints as we show below.

Establishing constraints on coupling strength — We
follow the Bayesian framework [60] (see application to
VULFs in Ref. [41]) to determine constraints on the cou-
pling strength parameter �. Bayesian inference uses prior
information (such as assuming that one candidate makes
up all of the DM, or conditions imposed by the SHM) to
derive posterior probability distributions for given propo-
sitions or model parameters. One additional prior we
assume here is that the DM signal is well below the ex-
perimental noise floor. The central quantity of interest in
our case is the posterior distribution for possible values
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t ⇠ 106

m

✓
10�6

�2
0

◆



New phenomenology from ULDM

DM small scale dynamics

C) changes dynamics at smaller 
scales

~̇v +H~v +

✓
~v · r

a

◆
~v = �r

a

✓
V � 1

2m2a2

r2p
⇢

p
⇢

◆
⇢̇+ 3H⇢+

r
a
(⇢~v) = 0

gravitational potential

pure CDM part repulsive term
Schive et al.1407.7762

3

FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M#. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M# are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-

soliton

halo

�(x, t) =
Mpl

2
p
2⇡

e�imte�i�t�(x) + h.c.

ULDM in the halo

Figure 2: A slice of density field of ψDM simulation on various scales at zzz=== 000...111. This scaled sequence
(each of thickness 60 pc) shows how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to the granular structure inside the
haloes. Distinct solitonic cores with radius ∼ 0.3− 1.6 kpc are found within each collapsed halo. The
density shown here spans over nine orders of magnitude, from 10−1 to 108 (normalized to the cosmic mean
density). The color map scales logarithmically, with cyan corresponding to density ! 10.

graphic processing unit acceleration, improving per-
formance by almost two orders of magnitude21 (see
Supplementary Section 1 for details).

Fig. 1 demonstrates that despite the completely
different calculations employed, the pattern of fil-
aments and voids generated by a conventional N-
body particle ΛCDM simulation is remarkably in-
distinguishable from the wavelike ΛψDM for the
same linear power spectrum (see Supplementary Fig.
S2). Here Λ represents the cosmological constant.
This agreement is desirable given the success of stan-
dard ΛCDM in describing the statistics of large scale
structure. To examine the wave nature that distin-
guishes ψDM from CDM on small scales, we res-
imulate with a very high maximum resolution of
60 pc for a 2 Mpc comoving box, so that the dens-
est objects formed of " 300 pc size are well re-
solved with ∼ 103 grids. A slice through this box
is shown in Fig. 2, revealing fine interference fringes
defining long filaments, with tangential fringes near

the boundaries of virialized objects, where the de
Broglie wavelengths depend on the local velocity of
matter. An unexpected feature of our ψDM simula-
tions is the generation of prominent dense coherent
standing waves of dark matter in the center of every
gravitational bound object, forming a flat core with
a sharp boundary (Figs. 2 and 3). These dark matter
cores grow as material is accreted and are surrounded
by virialized haloes of material with fine-scale, large-
amplitude cellular interference, which continuously
fluctuates in density and velocity generating quan-
tum and turbulent pressure support against gravity.

The central density profiles of all our collapsed
cores fit well with the stable soliton solution of the
Schrödinger-Poisson equation, as shown in Fig. 3
(see also Supplementary Section 2 and Fig. S3). On
the other hand, except for the lightest halo which
has just formed and is not yet virialized, the outer
profiles of other haloes possess a steepening loga-
rithmic slope, similar to the Navarro-Frenk-White
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FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M#. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M# are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-
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arXiv:1407.7762
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New phenomenology from ULDM: 3 examples
C) changes dynamics at smaller scales

II. SOLITON PROPERTIES:
ANALYTIC CONSIDERATIONS

In this section, we review the relevant properties of the
soliton that help to understand results from numerical
simulations.
We consider a real, massive, free2 scalar field ϕ,

satisfying the Klein-Gordon equation of motion and min-
imally coupled to gravity. In the nonrelativistic regime, it is
convenient to decompose ϕ as

ϕðx; tÞ ¼ 1ffiffiffi
2

p
m
e−imtψðx; tÞ þ c:c:; ð2Þ

with complex field ψ that varies slowly in space and time,
such that j∇ψ j ≪ mjψ j and j _ψ j ≪ mjψ j. The field ψ
satisfies the Schroedinger-Poisson (SP) equations [32]

i∂tψ ¼ −
1

2m
∇2ψ þmΦψ ; ð3Þ

∇2Φ ¼ 4πGjψ j2: ð4Þ

We look for a quasi-stationary phase-coherent solution,
described by the ansatz3

ψðx; tÞ ¼
"
mMplffiffiffiffiffiffi

4π
p

#
e−iγmtχðxÞ: ð5Þ

The ULDM mass density is

ρ ¼
ðmMplÞ2

4π
χ2

≈ 4.1 × 1014
"

m
10−22 eV

#
2

χ2 M⊙=pc3: ð6Þ

The parameter γ is proportional to the ULDM energy per
unit mass. Validity of the nonrelativistic regime requires
jγj ≪ 1. Since we are looking for gravitationally bound
configurations, γ < 0.
Assuming spherical symmetry and defining r ¼ mx, the

SP equations for χ and Φ are given by

∂2
rðrχÞ ¼ 2rðΦ − γÞχ; ð7Þ

∂2
rðrΦÞ ¼ rχ2: ð8Þ

Finding the ground state solution amounts to solving
Eqs. (7)–(8) subject to χðr → 0Þ ¼ const, χðr → ∞Þ ¼ 0,
with no nodes. Given the boundary value of χ at r → 0, the
solution is found for a unique value of γ.

It is convenient to first solve Eqs. (7)–(8) with the
boundary condition χð0Þ ¼ 1. Let us call this auxiliary
solution χ1ðrÞ, with γ1. A numerical calculation gives [4,5,8]

γ1 ≈ −0.69; ð9Þ

and the solution is plotted in Fig. 1. The mass of the χ1
soliton is

M1 ¼
M2

pl

m

Z
∞

0
drr2χ21ðrÞ

≈ 2.79 × 1012
"

m
10−22 eV

#−1
M⊙: ð10Þ

Its core radius, defined as the radius where the mass density
drops by a factor of 2 from its value at the origin, is

xc1 ≈ 0.082
"

m
10−22 eV

#−1
pc: ð11Þ

Other solutions of Eqs. (7)–(8) can be obtained from
χ1ðrÞ, Φ1ðrÞ by a scale transformation. That is, the
functions χλðrÞ, ΦλðrÞ, together with the eigenvalue γλ,
given by

χλðrÞ ¼ λ2χ1ðλrÞ; ð12Þ

ΦλðrÞ ¼ λ2Φ1ðλrÞ; ð13Þ

γλ ¼ λ2γ1; ð14Þ

also satisfy Eqs. (7)–(8) with correct boundary conditions
for any λ > 0. The soliton mass and core radius for χλ are

Mλ ¼ λM1; ð15Þ

xcλ ¼ λ−1xc1: ð16Þ

A mnemonic for the numerical value of λ is given by

FIG. 1. Profile of the “standard” χ1 soliton with λ ¼ 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle
(dotted green).

2Analyses of interacting fields can be found in, e.g.,
[4,5,30,31].

3Mpl ¼ 1=
ffiffiffiffi
G

p
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FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M#. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M# are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-
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This halo rotation curve peaks at x ⇡ 2.16 Rs with a
peak value

maxVcirc,h ⇡ 1.37 ⇥ 105(��h)
1
2 km/s. (47)

On the other hand, in the inner galaxy x ⌧ Rs, the circu-
lar velocity due to the soliton peaks to a local maximum
of

maxVcirc,� ⇡ 1.51 ⇥ 105

✓
c̃

0.4

◆ 1
2

(��h)
1
2 km/s, (48)

where we used Eq. (44) to fix � and Eq. (28) to relate it
to maxVcirc,�.

As anticipated in the beginning of this section, Eq. (35)
predicts approximately equal peak circular velocities for
the inner soliton component and for the host halo,

maxVcirc,�

maxVcirc,h
⇡ 1.1

✓
c̃

0.4

◆ 1
2

, (49)

independent of the particle mass m, independent of the
halo mass M200, and only weakly dependent on the de-
tails of the halo via the factor (c̃/0.4)

1
2 . Eq. (49) is plot-

ted in Fig. 3 as function of the concentration parameter.
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FIG. 3. Ratio between halo and soliton peak circular veloci-
ties as a function of the halo concentration.

While maxVcirc,� and the approximate equality
Eq. (49) are m-independent, the soliton peak velocity
occurs in an m-dependent location,

xpeak,� ⇡ 191

✓
10�22 eV

m

◆✓
maxVcirc,�

200 km/s

◆�1

pc. (50)

Fig. 4 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black, dot-
dashed orange, and dashed blue lines show the contribu-
tions to Vcirc due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M200 = 1012 M� and 5 ⇥ 1010 M� on the top and

bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
height.
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FIG. 4. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo re-
lation Eq. (35) with m = 10�22 eV. Solid black, dot-dashed
orange, and dashed blue show Vcirc due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M200 = 1012 M� and 5 ⇥ 1010 M� on the upper and
lower panels, respectively.

In Fig. 4, to define the rotation velocity for the total
system, we set the ULDM mass density for the total sys-
tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find Vcirc(x) =

p
G M(x)/x. This prescription for

matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x

� 5
3 , steeper than the usual inner NFW

form ⇢ ⇠ x
�1. This would a↵ect the detailed shape of

the rotation curve in the intermediate region between the

predictions              vs                 data
m = 10�22eV
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system, we set the ULDM mass density for the total sys-
tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find Vcirc(x) =
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G M(x)/x. This prescription for

matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
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of simulated halos in Fig. 6). In Figs. 7-10 we represent
this scatter by a shaded band, showing the results when
the � parameter inferred from Eq. (49) is changed by a
factor of 2.

It is important to check if scatter between di↵erent
galaxies could explain the discrepancy, with the four
galaxies in Figs. 7-10 being accidental outliers. To ad-
dress this question, we analyse the 175 rotation curves
contained in the SPARC data base [28]. This sample
includes, in particular, the galaxies shown in Figs. 7-10.

Our analysis is as follows. For each SPARC galaxy, we
make a crude estimate of the halo mass contained within
the observed rotation curve profile by Mgal ⇠ RV

2
/G,

where R is the radial distance of the last (highest dis-
tance) data point in the rotation curve, and V the cor-
responding velocity. We keep only galaxies with Mgal >

109
�
m/10�22 eV

��3/2
M�. We do this in order to limit

ourselves to galaxy masses that are comfortably above
the minimal halo mass (33). Our results are not sensi-
tive to the details of this mass cut. Of the 175 galaxies
in [28], 162 pass the Mgal cut for m = 10�22 eV, and all
175 pass it for m = 10�21 eV.
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FIG. 7. Measured rotation curve of UGC 1281 superimposed
on the prediction from Eq. (49) following from the soliton–
host halo relation. The ULDM mass is m = 10�22 eV (upper
panel) and m = 10�21 eV (lower panel). The shaded band
accounts for the intrinsic scatter of the soliton–host halo re-
lation.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxVcirc,h, and use it to com-
pute the soliton prediction from Eq. (49). To avoid con-
fusion between halo peak velocity and soliton peak ve-
locity, we search for the halo peak velocity restricting

to radial distance x > 3
�
m/10�22 eV

��1
kpc. (Galax-

ies with no data above x = 3
�
m/10�22 eV

��1
kpc

are discarded.) Our results are not sensitive to the

3
�
m/10�22 eV

��1
kpc halo criterion. This criterion

is only meant to make sure, that we are not confus-
ing the halo peak with a soliton peak, which would
bias our analysis. Defining the halo cut anywhere at

& 1
�
m/10�22 eV

��1
kpc guarantees that such confusion

is avoided.
Our first pass on the data includes only galaxies for

which the predicted soliton is resolved, namely, xpeak,�

from Eq. (50), with maxVcirc,� = maxVcirc,h, lies within
the rotation curve data. For these galaxies, we compute
from data the ratio

Vcirc, obs(xpeak,�)

maxVcirc,h
. (51)

Here, Vcirc, obs(xpeak,�) is the measured velocity at the
expected soliton peak position.

The results of this first pass on the data are shown in
Fig. 11. A total of 46 galaxies pass the resolved soliton
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FIG. 8. Same as Fig. 7 for UGC 4325.
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Includes new dynamics that open new phenomenological windows

Conclusions
Ultra-light bosonic DM (or light fermionic DM)

Two directions
explore all possible masses, with different time scales
explore direction of possible couplings

A) coherent oscillations

B) stochastic ‘narrow’ piece

C) changes dynamics at smaller scales

ULDM in the halo

Figure 2: A slice of density field of ψDM simulation on various scales at zzz=== 000...111. This scaled sequence
(each of thickness 60 pc) shows how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to the granular structure inside the
haloes. Distinct solitonic cores with radius ∼ 0.3− 1.6 kpc are found within each collapsed halo. The
density shown here spans over nine orders of magnitude, from 10−1 to 108 (normalized to the cosmic mean
density). The color map scales logarithmically, with cyan corresponding to density ! 10.

graphic processing unit acceleration, improving per-
formance by almost two orders of magnitude21 (see
Supplementary Section 1 for details).

Fig. 1 demonstrates that despite the completely
different calculations employed, the pattern of fil-
aments and voids generated by a conventional N-
body particle ΛCDM simulation is remarkably in-
distinguishable from the wavelike ΛψDM for the
same linear power spectrum (see Supplementary Fig.
S2). Here Λ represents the cosmological constant.
This agreement is desirable given the success of stan-
dard ΛCDM in describing the statistics of large scale
structure. To examine the wave nature that distin-
guishes ψDM from CDM on small scales, we res-
imulate with a very high maximum resolution of
60 pc for a 2 Mpc comoving box, so that the dens-
est objects formed of " 300 pc size are well re-
solved with ∼ 103 grids. A slice through this box
is shown in Fig. 2, revealing fine interference fringes
defining long filaments, with tangential fringes near

the boundaries of virialized objects, where the de
Broglie wavelengths depend on the local velocity of
matter. An unexpected feature of our ψDM simula-
tions is the generation of prominent dense coherent
standing waves of dark matter in the center of every
gravitational bound object, forming a flat core with
a sharp boundary (Figs. 2 and 3). These dark matter
cores grow as material is accreted and are surrounded
by virialized haloes of material with fine-scale, large-
amplitude cellular interference, which continuously
fluctuates in density and velocity generating quan-
tum and turbulent pressure support against gravity.

The central density profiles of all our collapsed
cores fit well with the stable soliton solution of the
Schrödinger-Poisson equation, as shown in Fig. 3
(see also Supplementary Section 2 and Fig. S3). On
the other hand, except for the lightest halo which
has just formed and is not yet virialized, the outer
profiles of other haloes possess a steepening loga-
rithmic slope, similar to the Navarro-Frenk-White

3

Schive, Chiueh, 
Broadhurst, 
arXiv: 1406.6586

3

FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M#. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M# are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-
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arXiv:1407.7762

soliton



Properties of the soliton

spherically symmetric stationary, non-relativistic solution:

4

with kinetic (potential) energy Ek (Ep). For the ansatz
(5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (20)

Note that spherical symmetry is not needed for Eq. (20)
to hold.

Considering the �� solitons, we find Ep,� = �2Ek,� =
2E� with

E� ⇡ �0.476 �
3
M

2
pl

m
, (21)

M� ⇡ 2.06 �
M

2
pl

m
. (22)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2
pl

/m)
⇡ 2.64

�����
E�

(M2
pl

/m)

�����

1
3

. (23)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|

M�

⇡ 0.23 �
2
, (24)

which can also be written as

M� ⇡ 4.3

✓
|E�|

M�

◆ 1
2 M

2
pl

m
. (25)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V
2
circ,�(r) = r@r��(r). (26)

The circular velocity rises as Vcirc,� / r at small r and

decreases as Vcirc,� / r
� 1

2 at large r, see Fig. 1. The
peak of Vcirc is obtained at

xpeak,� ⇡ 0.16 �
�1

⇣
m

10�22 eV

⌘�1
pc (27)

⇡ 460
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and the peak velocity is

maxVcirc,� ⇡ 2.3 ⇥ 105
� km/s (28)

⇡ 83
⇣

m

10�22 eV

⌘✓
M�

109 M�

◆
km/s.

III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simula-
tions of three di↵erent groups, Refs. [6, 7], Ref. [13], and
Refs. [10, 11].

The first point to note is that soliton configurations,
in a form close to the idealised form discussed in Sec. II,
actually occur dynamically in the central region of the

halo in the numerical simulations4. In Fig. 2 we col-
lect representative density profiles from Ref. [6] (blue),
Ref. [13] (orange), and Ref. [10] (green). We refer to
those papers for more details on the specific set-ups in
each simulation. To make Fig. 2, in each case, we find
the � parameter that takes the numerical result into the
�1 soliton, rescale the numerical result accordingly and
present it in comparison with the analytic �

2
1(r) profile.
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FIG. 2. Review of results from numerical simulations by
di↵erent groups. Markers show density profiles of simulated
halos from Schive et al. [6] (blue circles), Mocz et al. [13]
(orange squares), and Schwabe et al. [10] (green triangles).
The central regions of the halos are described by the soliton
(solid line).

While di↵erent groups agree that solitons form in the
centers of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [6, 7] and Ref. [13] reported scaling relations
between the central soliton and the host halo. As we show
below, the scaling relations found by both groups are con-
nected to properties of a single, isolated, self-gravitating
soliton (part of these observations were made in [10, 11]).

A. Soliton vs. host halo: the simulations of
Ref. [6, 7]

At cosmological redshift z = 0, the numerical simula-
tions of [6, 7] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
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The first simulations of cosmological ULDM galaxies [33] did not
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with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |. The field  

satisfies the Schroedinger-Poisson (SP) equations [32]
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The parameter � is proportional to the ULDM energy
per unit mass Validity of the non-relativistic regime re-
quires |�| ⌧ 1, and since we are looking for gravitation-
ally bound configurations, � < 0.
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Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�1(r), with �1. A numerical calculation gives [4, 5, 8]
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FIG. 1. Profile of the “standard” �1 soliton with � = 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle (dotted
green).

Other solutions of Eqs. (7-8) can be obtained from
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by
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Formally, solutions exist for any positive value of � and
hence for any soliton mass. However, if we select � & 1
we reach |��| > 1, outside of the regime of validity of
the non-relativistic approximation. Thus, self-consistent
solutions are limited to � ⌧ 1 and their eigenvalue
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The product of the soliton mass and core radius is inde-
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⇣

m

10�22 eV

⌘�2
kpc M�. (18)

Formally, solutions exist for any positive value of � and
hence for any soliton mass. However, if we select � & 1
we reach |��| > 1, outside of the regime of validity of
the non-relativistic approximation. Thus, self-consistent
solutions are limited to � ⌧ 1 and their eigenvalue
|��| = �

2
|�1| ⌧ 1, consistent with the non-relativistic

approximation.
The energy in an arbitrary non-relativistic ULDM con-
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with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |. The field  

satisfies the Schroedinger-Poisson (SP) equations [32]
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We look for a quasi-stationary phase-coherent solution,
described by the ansatz3
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The parameter � is proportional to the ULDM energy
per unit mass Validity of the non-relativistic regime re-
quires |�| ⌧ 1, and since we are looking for gravitation-
ally bound configurations, � < 0.
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the SP equations for � and � are given by

@
2
r

(r�) = 2r (� � �)�, (7)

@
2
r

(r�) = r�
2
. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.
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Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is
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m
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⌘�1
pc. (11)
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FIG. 1. Profile of the “standard” �1 soliton with � = 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle (dotted
green).

Other solutions of Eqs. (7-8) can be obtained from
�1(r), �1(r) by a scale transformation. That is, the func-
tions ��(r), ��(r), together with the eigenvalue ��, given
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also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M1, (15)
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xc1. (16)

A mnemonic for the numerical value of � is given by
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⇣
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. (17)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27 ⇥ 108
⇣

m

10�22 eV

⌘�2
kpc M�. (18)

Formally, solutions exist for any positive value of � and
hence for any soliton mass. However, if we select � & 1
we reach |��| > 1, outside of the regime of validity of
the non-relativistic approximation. Thus, self-consistent
solutions are limited to � ⌧ 1 and their eigenvalue
|��| = �

2
|�1| ⌧ 1, consistent with the non-relativistic

approximation.
The energy in an arbitrary non-relativistic ULDM con-

figuration is

E =
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�c� = �4�c1

�(x, t) =
Mpl

2
p
2⇡

e�imte�i�t�(x) + h.c.

� = �0.69

scaling solution

What fixes ?γ


