Cosmic Birefringence:

New Physics Explanations

Silvia Gasparotto (IFAE)

UNDARK Kick-Off 9/10/2924

Generalitat de Catalunya Departament de Recerca i Universitats

UAB Universitat Autònoma de Barcelona

Funded by the European Union

- Introduction: Axion Birefringence
- Signal from the Cosmic Microwave Background
- Possible explanations: different models
- Conclusion and future directions

Outlook

Axion Birefringence

Turner & Widrow (1988)

the effective Lagrangian for axion electrodynamics is $\mathcal{L} = -\frac{1}{2}\partial_{\mu}\theta\partial^{\mu}\theta - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \underbrace{g_{a}\theta F_{\mu\nu}\tilde{F}^{\mu\nu}}_{g_{a}\theta F_{\mu\nu}\tilde{F}^{\mu\nu}}, \qquad (3.7)$ where g_{a} is a coupling constant of the order α , and the vacuum angle $\theta = \phi_{a}/f_{a}$ ($\phi_{a} = axion$ field) $g_{a\gamma}\phi\vec{E}\cdot\vec{B}$ Parity odd Axion-photon interaction modifies the photon dispersion relation in

a parity-violating way $A_{+}^{\prime\prime}(\eta, k) + k^{2} \left(1 \mp \frac{g_{a\gamma} \varphi'}{k}\right) A_{+}(\eta, k) = 0$

$$\mathcal{I}_{\pm}'(\eta, \mathbf{k}) + \underbrace{\mathbf{k}^{2}\left(1 \mp \frac{g_{a\gamma} \phi}{\mathbf{k}}\right)}_{\omega_{\pm}^{2}} \mathbf{A}_{\pm}(\eta, \mathbf{k}) = 0$$

Left- and right handed photons propagate with a different speed

$$\omega_{\pm}\simeq k\mp \frac{g_{a\gamma}}{2}\varphi'$$

 ω_+

i. Frequency independent

i. Evolving field $\phi' \neq 0$

Rotation of the photon linear polarization

CMB photons emitted 13.8 billion years ago

Rotation accumulates over distance

Birefringence of CMB is called COSMIC BIREFRINGENCE

Lue, Wang & Kamionkowski (1997); Feng et al. (2005,2006); Liu, Lee & Ng (2006)

Cosmic Microwave Background as a perfect target

Hint of parity violation

Uniform rotation of CMB polarization of an angle β generates an EB cross-correlation

$$C_{l}^{EB,obs} = \frac{1}{2}\sin(4\beta) \left(C_{l}^{EE} - C_{l}^{BB}\right)$$

 β is degenerate with a miscalibration angle \rightarrow New method from Minami and Komatsu (2020) from reported β =0.35°±0.14° also Diego-Palazuelos et al. (2022), Eskilt (2022)

Current measure:

 $\beta = 0.342^{+0.094}_{-0.091} \text{deg} (3.6\sigma)$ Frequency independent!

Zero excluded at 99.987% C.L. from the joint analysis of Planck and WMAP data Eskilt et al (2023)

Axion Explanation

$$\beta(\hat{n}) = \frac{1}{2} \int_{\eta_{em}}^{\eta_{obs}} d\eta(\omega_{-} - \omega_{+}) = \frac{g_{a\gamma}}{2} \int_{\eta_{em}}^{\eta_{obs}} d\eta \frac{d\varphi}{d\eta} = \frac{g_{a\gamma}}{2} \left(\phi_{obs}(\hat{n}) - \phi_{em}(\hat{n}) \right)$$
Axion field displacement from CMB and today

米

Different scenarios:

Uniform axion-like background

- I. Pre-inflationary case $(f_a \gg H_I)$
- II. (Early-)Dark Energy or percentage of Dark matter
- III. Small fluctuations expected

Network of topological defects:

I. Post-inflationary case ($f_a \ll H_I$): cosmic strings and domain walls

0.25

0.20

Axion 0.10

0.00

LSS

mass 1.0e-31

 $V(\phi) = \frac{f_a^2 m_a^2}{N^2} \left(1 - \cos \theta \right)$

 $m_a \sim H_{osc}$

 $H_0 \ll m_a \ll H_{LSS}$

 $^{10^{-3}}$ H0 t

The field evolution is model-

dependent

 $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$

 $\Delta \varphi$

- II. Large quantum diffusion ($\sigma_{a_{in}} \gg f_a$): domain walls
- III. Large anisotropies, isotropic rotation on average

Implication for single-field

Axions within 15 orders of magnitude in mass could generate the signal even with a small energy density

 \rightarrow **AXIVERSE** Arvanitaki et al (2009) ...

The total birefringence signal is given by the variance

Multi- fields and the Axiverse

 (m_a, f_a)

Topological defects: Domain Wall

Isotropic rotation

$$\langle \beta \rangle = \frac{\alpha_{em}c}{4\pi} (\theta_0 - \langle \theta_{LS}(\hat{n}) \rangle)$$

Symmetry breaking broken by the field local value

Anisotropic rotation

Anisotropic power spectrum

 $C_{\ell}^{\beta\beta}(\eta) = \frac{4}{\pi} \beta_{iso}^2 \int \frac{dk}{k} J_{\ell}^2(k\Delta\eta) P_{\theta}(k)$

Depends on the field power spectrum at CMB

Birefringence and gravitational waves

Birefringence and gravitational waves

Birefringence does <u>not</u> depend on the field energy density

<u>Stochastic Gravitational-</u> wave background:

If the CMB signal is confirmed, how do we distinguish between models? The isotropic signal is very degenerate!

- I. Anisotropic counterpart
- II. Tomography to study its evolution (ask me)
- III. Looking for other polarized sources (from local universe)

Dark energy & defects

Current and future prospects

Overview of constraints and forecast from astrophysical and laboratory searches of birefringence

At higher axion masses the signal would be periodic with frequency $\omega = m_a$

Contribution to White Paper of Cosmic WISPer COST action (in preparation)

Conclusions

Thank you!

Contact: sgasparotto@ifae.es

String-wall and String network case

It was considered by Agrawal et al 2020, Jain et al 2021 & 2022 \rightarrow in the presence of strings the signal can be enhanced at small angles because after each loop-crossing birefringence gets a $\Delta\theta = \pm \alpha_{em}c \rightarrow$ it seemed that the non-detection of anisotropies is incompatible with the isotropic signal.

BUT the local gradient/value of the network which differs from the average value at recombination also contributes to the monopole which is not captured in the loop-crossing model

$$\langle \beta \rangle = \frac{0.21c}{2\pi} \left(\frac{\phi_{loc}}{f_a} - \langle \theta_S(\hat{n}) \rangle \right)$$

Environmental birefringence

It seems that the isotropic birefringence naturally arises in every axionic network

DWs at recombination and reionization

Anisotropies in the scalar power spectrum translate into anisotropies in the cosmic birefringence,

$$C_{\ell}^{\beta\beta}(\eta) = \frac{4}{\pi}\beta_{iso}^2 \int \frac{dk}{k} J_{\ell}^2(k\Delta\eta) P_{\theta}(k)$$

Contributions coming from the DW network at recombination and reionization which peak at different scales → birefringence tomography can be used to distinguish different formation/annihilation scenarios