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Theoretical motivations and phenomenology

• The strong CP problem: absence of CP violation in strong interactions

⇒ The QCD axion emerges as a by product of a mechanism solving this

fundamental puzzle of particle physics

• Axions can also explain Dark Matter abundance in the Universe

Axion mass and interactions with SM particles: ma, gSMa ∝ 1/fa

Experiments imply a large value of fa ⇒ axion is light and weakly-interacting

⇒ It can be produced in astrophysical environments and escape without being

reabsorbed

Thesis phenomenology: axion production inside white dwarfs and subsequent

conversion into X-ray photons inside their magnetosphere

⇒ gaee and gaγγ are the most important couplings
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Axion phenomenology in WDs

gaee enables axion emission through bremsstrahlung:

e− + (A,Z) → e− + (A,Z) + a

e
gaee

e

a

e, I e, I

Phenomenological consequence:

Axion conversion into detectable photons in the B-field
of the WD ⇒ axion indirect detection

gaγγ mediates axion-photon oscillation through
Inverse Primakoff process ⇒ X-ray emission

a
gaγγ

γ

WDs are not expected to emit X-ray photons ⇒ clean environment for detection
[Bilikova et al. (2010)]
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Aims of the work

Detectable X-ray signal ∝ (gaee × gaγγ)2

Aims of the work:

• Develop an analysis pipeline for this type of X-ray

signal, building a Python framework to perform
numerical computations for construct a signal
template and conduct a statistical analysis

• Extend [Dessert et al. (2019, ’22)]

• Provide an application to Chandra observation of

MWD RE J0317-853 ⇒ bound on gaγγ × gaee

• Assess the impact of different background models
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Axion emission in WDs

Axion bremsstrahlung emissivity and luminosity:

dεa

dω
=

α2
EMg2aee
4π3m2

e

ω3

eω/T − 1

∑
s

Z2
sρsFs

Asu
⇒ dLa

dω
(ω) = 4π

∫ RWD

0
drr2

dεa

dω
(r)

Plasma effects are described by Fs factors: for WD cores numerically computed

Need a WD modeling: density and composition profiles + core temperature

Application to RE J0317-853
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Axion-photon conversion

Axion electrodynamics: system of equations that mixes axions and photons
[Raffelt & Stodolsky (1988); Millar et al. (2017)]

[
i∂r + ω +

(
∆∥ ∆B

∆B ∆a

)](
A∥
a

)
= 0

In weak-mixing limit:

pa→γ =

∣∣∣∣∣
∫ ∞

RWD

dr′∆B(r′)e
i∆ar

′−i
∫ r′
RWD

dr′′∆∥(r
′′)

∣∣∣∣∣
2

• Dependence on magnetic field geometry ⇒ magnetic dipole field

[Burleigh et al. (1999)]

• Dependence on the axion mass: focus on low-mass limit ma → 0 which gives
a sizable pa→γ , good approximation for axions with ma ≪ 10−5 eV

Application to RE J0317-853: pa→γ ∼ O(10−4)×
(

gaγγ

10−11 GeV−1

)2

8/13



Axion-photon conversion

Axion electrodynamics: system of equations that mixes axions and photons
[Raffelt & Stodolsky (1988); Millar et al. (2017)]

[
i∂r + ω +

(
∆∥ ∆B

∆B ∆a

)](
A∥
a

)
= 0

In weak-mixing limit:

pa→γ =

∣∣∣∣∣
∫ ∞

RWD

dr′∆B(r′)e
i∆ar

′−i
∫ r′
RWD

dr′′∆∥(r
′′)

∣∣∣∣∣
2

• Dependence on magnetic field geometry ⇒ magnetic dipole field

[Burleigh et al. (1999)]

• Dependence on the axion mass: focus on low-mass limit ma → 0 which gives
a sizable pa→γ , good approximation for axions with ma ≪ 10−5 eV

Application to RE J0317-853: pa→γ ∼ O(10−4)×
(

gaγγ

10−11 GeV−1

)2

8/13



Axion-photon conversion

Axion electrodynamics: system of equations that mixes axions and photons
[Raffelt & Stodolsky (1988); Millar et al. (2017)]

[
i∂r + ω +

(
∆∥ ∆B

∆B ∆a

)](
A∥
a

)
= 0

In weak-mixing limit:

pa→γ =

∣∣∣∣∣
∫ ∞

RWD

dr′∆B(r′)e
i∆ar

′−i
∫ r′
RWD

dr′′∆∥(r
′′)

∣∣∣∣∣
2

• Dependence on magnetic field geometry

⇒ magnetic dipole field

[Burleigh et al. (1999)]

• Dependence on the axion mass: focus on low-mass limit ma → 0 which gives
a sizable pa→γ , good approximation for axions with ma ≪ 10−5 eV

Application to RE J0317-853: pa→γ ∼ O(10−4)×
(

gaγγ

10−11 GeV−1

)2

8/13



Axion-photon conversion

Axion electrodynamics: system of equations that mixes axions and photons
[Raffelt & Stodolsky (1988); Millar et al. (2017)]

[
i∂r + ω +

(
∆∥ ∆B

∆B ∆a

)](
A∥
a

)
= 0

In weak-mixing limit:

pa→γ =

∣∣∣∣∣
∫ ∞

RWD

dr′∆B(r′)e
i∆ar

′−i
∫ r′
RWD

dr′′∆∥(r
′′)

∣∣∣∣∣
2

• Dependence on magnetic field geometry ⇒ magnetic dipole field
[Burleigh et al. (1999)]

• Dependence on the axion mass: focus on low-mass limit ma → 0 which gives
a sizable pa→γ , good approximation for axions with ma ≪ 10−5 eV

Application to RE J0317-853: pa→γ ∼ O(10−4)×
(

gaγγ

10−11 GeV−1

)2

8/13



Axion-photon conversion

Axion electrodynamics: system of equations that mixes axions and photons
[Raffelt & Stodolsky (1988); Millar et al. (2017)]

[
i∂r + ω +

(
∆∥ ∆B

∆B ∆a

)](
A∥
a

)
= 0

In weak-mixing limit:

pa→γ =

∣∣∣∣∣
∫ ∞

RWD

dr′∆B(r′)e
i∆ar

′−i
∫ r′
RWD

dr′′∆∥(r
′′)

∣∣∣∣∣
2

• Dependence on magnetic field geometry ⇒ magnetic dipole field
[Burleigh et al. (1999)]

• Dependence on the axion mass:

focus on low-mass limit ma → 0 which gives
a sizable pa→γ , good approximation for axions with ma ≪ 10−5 eV

Application to RE J0317-853: pa→γ ∼ O(10−4)×
(

gaγγ

10−11 GeV−1

)2

8/13



Axion-photon conversion

Axion electrodynamics: system of equations that mixes axions and photons
[Raffelt & Stodolsky (1988); Millar et al. (2017)]

[
i∂r + ω +

(
∆∥ ∆B

∆B ∆a

)](
A∥
a

)
= 0

In weak-mixing limit:

pa→γ =

∣∣∣∣∣
∫ ∞

RWD

dr′∆B(r′)e
i∆ar

′−i
∫ r′
RWD

dr′′∆∥(r
′′)

∣∣∣∣∣
2

• Dependence on magnetic field geometry ⇒ magnetic dipole field
[Burleigh et al. (1999)]

• Dependence on the axion mass: focus on low-mass limit ma → 0 which gives
a sizable pa→γ , good approximation for axions with ma ≪ 10−5 eV

Application to RE J0317-853: pa→γ ∼ O(10−4)×
(

gaγγ

10−11 GeV−1

)2

8/13



Axion-photon conversion

Axion electrodynamics: system of equations that mixes axions and photons
[Raffelt & Stodolsky (1988); Millar et al. (2017)]

[
i∂r + ω +

(
∆∥ ∆B

∆B ∆a

)](
A∥
a

)
= 0

In weak-mixing limit:

pa→γ =

∣∣∣∣∣
∫ ∞

RWD

dr′∆B(r′)e
i∆ar

′−i
∫ r′
RWD

dr′′∆∥(r
′′)

∣∣∣∣∣
2

• Dependence on magnetic field geometry ⇒ magnetic dipole field
[Burleigh et al. (1999)]

• Dependence on the axion mass: focus on low-mass limit ma → 0 which gives
a sizable pa→γ , good approximation for axions with ma ≪ 10−5 eV

Application to RE J0317-853: pa→γ ∼ O(10−4)×
(

gaγγ

10−11 GeV−1

)2

8/13



Axion-induced X-ray flux prediction

dFγa

dω
∝ dLa

dω
(ω)× pa→γ(ω) ∝ g2aee × g2aγγ

Application to RE J0317-853:
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Photon flux

⇒ The X-ray signal peaks in the keV range, with its intensity modulated by a
signal parameter θs ∝ (gaee × gaγγ)2
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Observation of RE J0317-853 and analysis

Chandra observation: 37.42 ks Implement Chandra response functions
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Signal template

L(θ) =
4∏

i=1

Npix∏
j=1

µi,j(θ)
ni,j e−µi,j(θ)

ni,j !
with µi,j(θ) = si,j(θs) + bi,j(θb)

Employing different background models, compute profile likelihood for θs ⇒
determine an upper limit on the product of the couplings gaee × gaγγ
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Statistical analysis

Implement different background models

• Free background: Four parameters, one in each energy bin, rescaling the
background spatial template

• Constant background: Single parameter for all energy bins and pixels

• Linear background: Background described by a linear spectrum

• Power-law background: Background described by a power law spectrum

dNbkg

dω
= K ·

(
ω

ω0

)−α

physically well-motivated, possible astrophysical background due to
accretion or binary companion ⇒ X-ray emission [Kluzniak et al. (1989)]

Little impact on the analysis, free background for consistency with [Dessert et al.
2022]

gaee × gaγγ < 2.3× 10−25 GeV−1 (2σ) This thesis

gaee × gaγγ < 1.3× 10−25 GeV−1 (2σ) [Dessert et al. 2022]

⇒ Dessert et al. obtained a stronger bound by a factor ∼ 1.7
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Summary

Axion emission from white dwarfs
will induce a hard X-ray signature.
[Dessert, Long, & Safdi (2019)]
[Dessert, Long, & Safdi (2022)]
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observation of RE J0317-853: Strong limit on
axion couplings and quantify the impact of
different background models

⇒ gaee × gaγγ < 2.3 × 10−25 GeV−1 (2σ)
in line with [Dessert et al. (2022)]
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Outlook and improvements

• Apply the analysis to various axion models
⇒ which ones can be constrained more than others with WDs observations?

• Extend the analysis to processes mediated by other couplings
⇒ 57Fe de-excitation via axion-nucleon coupling

• Refine the computation of F factors
⇒ Numerical parametrization available in literature is not totally adequate

13/13



Backup slide: medium factors Fs

Axion bremsstrahlung emissivity spectrum:

dεa

dω
=

α2
EMg2aee
4π3m2

e

ω3

eω/T − 1

∑
s

Z2
sρsFs

Asmu

Formal expression for F from axion emissivity calculation

F =

∫
dΩ2

4π

∫
dΩa

4π

(1− β2
F )[2(1− c12)− (c1a − c2a)2]

(1− c1aβF )(1− c2aβF )(1− c12)(1− c12 + κs)

in weakly

coupled plasma
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is needed!
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Backup slide: Parameter space

⇒ ALPs: no restriction, they can lie everywhere in the parameter space



Backup slide: pa→γ computation

Axion-photon conversion probability:

pa→γ =

∣∣∣∣∣
∫ ∞

RWD

dr′∆B(r′)e
i∆ar

′−i
∫ r′
RWD

dr′′∆∥(r
′′)

∣∣∣∣∣
2

.

pa→γ(θ), with θ the angle between axion radial trajectory r̂ and magnetic axis m̂.
Dipole field + viewing angle and m̂ misalignment: [Burleigh et al. (1999)]

What value of θ should we take?

⇒ Observation time ∼ 40 ks ≫∼ 700 s rotational period of RE J0317-853
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Backup slide: pa→γ computation

Generate trajectory with uniformly distributed ϕ

+ parametrization of θ = θ(ϕ)
⇒ compute pa→γ(ϕ) = pa→γ(θ(ϕ)) and then average over ϕ:

⟨pa→γ⟩ϕ =
1

2π

∫ 2π

0
pa→γ(ϕ)dϕ using np.trapz

Repeat the numerical integration for a range of energies ω ∈ [0, 50] keV

⇒ Construct energy profile for pa→γ(ω)

0.1 0.5 1 5 10 50

ω [keV]

10−4

10−3

10−2

p a
→
γ
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Backup slide: Statistical analysis

First type of analysis: utilize only spectral information

L(θ) =
4∏

i=1

µi(θ)
nie−µi(θ)

ni!
with µi(θ) = si(θs) + bi(θb),

and signal parameter θs ∝ (gaee × gaγγ)2

1. Compute the best-fit parameters: θ̂ = {θ̂s, θ̂b} by using
scipy.minimize to perform a global minimization of

− ln (L(θs,θb))

2. Construct LLR(θs) profile for a range of hypothesized θs:

LLR(θs) = −2 ln

L(θs,
ˆ̂
θb)

L(θ̂s, θ̂b)


where

ˆ̂
θb are the background parameters optimized for a fixed value of θs.

3. Determine the upper limit: asymptotic formulae to constrain θs: we
identify the value of θs at which the LLR(θs) crosses the 95% threshold
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Backup slide: PQ symmetry

Realization of PQ symmetry in the UV is not unique; it requires colored
PQ-charged fermions (quarks) for the color anomalous shift, replacing the θ̄-term
with a dynamical field (the axion).

PQ-charged fermions can also be EM charged, leading to an EM anomalous term.
⇒ After SSB, the axion couples with photons and the PQ current:

La ⊃ a

vPQ

g2sN

16π2
Ga

µνG̃
aµν +

a

vPQ

e2E

16π2
Fµν F̃

µν +
∂µa

vPQ
JPQ
µ

Anomaly coefficients E,N and the fermionic PQ current vary by model:

• Minimal KSVZ model: PQ-charged fermions are heavy quarks, EM
neutral ⇒ axion interacts only with gluons (hadronic model)

• DFSZ model: PQ-charged fermions include SM quarks and leptons ⇒
interaction with photons and electrons; gaγγ and gaee emerge already in the
UV
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