Towards a precise determination of primordial non-Gaussianity with LSS surveys

Jose R. Bermejo Climent

Instituto de Astrofísica de Canarias

UNDARK kick-off meeting La Laguna, October 8th 2024

Introduction: inflationary physics

Cosmic inflation was introduced in the early 1980s (Guth 1981, Starobinsky 1980) **to solve the Big Bang model problems** (horizon, magnetic monopole, flatness...)

Beyond solving the Big Bang problems, it explains the formation of primordial density perturbations

Introduction: inflationary physics

Inflation is defined as an early accelerated expansion phase driven by a scalar field ϕ . The form of the potential $V(\phi)$ defines the model.

Primordial non-Gaussianity (**PNG**) encodes important information about inflation. Primordial potential with a local PNG:

 $\Phi = \phi + f_{\rm NL}(\phi^2 - \langle \phi \rangle^2)$

 $f_{\rm NL}$ is a parameter that can **rule out or confirm inflationary models**, corresponding $f_{\rm NL} = 0$ to Gaussian initial conditions

Introduction: inflationary physics

Two cosmic windows to PNG:

CMB: prefers Gaussianity: $f_{\rm NL} = -0.9 \pm 5.1$ (Planck collaboration 2020).

LSS: many upcoming measurements in the next years. Current sensitivity ~20, e.g.: $f_{\rm NL} = -12 \pm 21$ by Müller et al. 2022 using eBOSS quasars

Introduction: non-Gaussianity from LSS

A local $f_{\rm NL}$ leaves its imprint in the LSS tracers as a contribution to the **galaxy bias**, i.e. the ratio of total (dark+baryons) to visible matter:

$$\Delta b(k,z) = 2(b_g - p) f_{\rm NL} \frac{\delta_{\rm crit}}{\alpha(k)} \qquad p \simeq 1$$

$$\alpha(k) = \frac{2k^2 T(k) D(z)}{3\Omega_{\rm m}} \frac{c^2}{H_0^2} \frac{g(0)}{g(\infty)}$$

Large Scale Structure surveys are **a window to constrain inflation and fundamental physics**

Simulated slices at z=0 for various $f_{\rm NL}$ values. Dalal et al. (2008)

Introduction: non-Gaussianity from LSS

The most challenging issue for performing a good PNG measurement from LSS are **observational systematics**: extinction, star density, changes in observing conditions ...

These systematics induce "fake" clustering signal at large scales, where the PNG signal arises

Introduction: non-Gaussianity from LSS

Theoretical predictions (e.g. Bermejo-Climent et al. 2021) show also crosscorrelations between the CMB and LSS can be helpful to measure $f_{\rm NL}$ through the scale-dependent bias effect

Most significant: CMB lensing x LSS

Cross-correlations usually drop out most of the systematics

CMB lensing effect (Image credits: ESA)

Ongoing and future LSS surveys

Dark Energy Spectroscopic Instrument (DESI) at Kitt Peak, Arizona: ~40 million objects spectroscopic survey across ~1/3 of the sky. Operations started 2021 **Euclid**: ESA satellite launched in 2023. Measures both spectra and imaging to produce the largest map of the Universe ever

Ongoing and future LSS surveys

Many other experiments coming will also be useful for measuring PNG

Legacy Survey of Space and Time (LSST)

SPHEREx

PNG from DESI x Planck lensing

Aim: to perform a $f_{\rm NL}$ measurement using crosscorrelations of DESI data with the CMB lensing

Data:

Luminous Red Galaxies (**LRG**) from the DESI imaging legacy survey: a targeting survey already completed. ~9 million galaxies covering ~16k deg2

CMB lensing maps from *Planck*.

People: J. Bermejo-Climent, R. Demina, A. Krolewski, E. Chaussidon, M. Rezaie et al.

PNG from DESI x Planck lensing

The analysis required an extensive effort to understand observational systematics

We created 100 Gaussian LRG \sim mock fields for $f_{\rm NL}$ = 0, 50, -50 and 100 correlated CMB mock fields using **synfast**

٠

٠

PNG from DESI x Planck lensing

Constraints on $f_{\rm NL}$:

- Results from DESI alone limited by systematics to $\sigma(f_{\rm NL})\sim 25$
 - Adding CMB lensing improves the constraints by ~20%, getting $\sigma(f_{\rm NL}) \sim 20$

Bermejo-Climent et al. 2024 (submitted to DESI internal review, to appear in arXiv soon)

٠

PNG from LSS: what's next?

We are still limited to $\sigma(f_{\rm NL}) \sim 20$ from LSS. How can we improve this?

- New data (upcoming DESI and Euclid releases ...)
 - New techniques:
 - Adding more cosmological observables, such as Angular Redshift Fluctuations (ARF) (Hernández-Monteagudo et al. 2020)
 - Multi-tracer approach using various surveys

PNG from LSS: new cosmological observables

In 2D analyses, we usually do cosmology with the **density field** and its cross-correlations (e. g. CMB lensing or cosmic shear)

ARF: Angular Redshift Fluctuations

Redshift is introduced as a *field*

ARFs measure the deviation of the average **z** in each direction of the sky with respect to the mean redshift of the full sample

$$\delta_g(\hat{\mathbf{n}}) = \frac{\sum_{i \in \hat{\mathbf{n}}} w_i}{\langle w_i \rangle} - 1$$

$$\delta z(\hat{\mathbf{n}}) = \frac{\sum_{i \in \hat{\mathbf{n}}} w_i(z_i - \bar{z})}{\langle w_i \rangle}$$

PNG from Quaia ARFs: a new cosmological observable

Quaia (Storey-Fisher et al. 2023): a spectrophotometric quasar sample from Gaia

- ~1.3 million quasars up to z~4, full sky
- We measure both **density** and **ARF**
- + Planck PR4 CMB lensing maps

People: J. Bermejo-Climent, C. Hernández-Monteagudo, J. Camalich, A. Crespo, G. Fabbian, K. Storey-Fisher ...

PNG from Quaia ARFs: a new cosmological observable

We have already developed a pipeline to include ARFs in the analysis

PNG from Quaia ARFs: a new cosmological observable

PRELIMINARY

Using cross-correlations only, we improve the $f_{\rm NL}$ errorbars by ~40-50% after adding ARFs We might include

autocorrelations once systematics are better understood

Bermejo-Climent et al. (2025 in prep.) using Quaia and Planck lensing

- Projects on ARF already approved in **DESI** and **Euclid**: application of our existing pipeline to DESI DR1 and Euclid DR1 releases to measure $f_{\rm NL}$ from lensing, galaxy clustering and ARFs.
- Longer term goal: combination of multiple surveys (multi-tracer) approach. Explored from the theoretical perspective (forecasts) but not applied to real datasets yet. This will require to understand the correlation between systematics of different tracers.

Take home messages

- LSS observations are a window to constrain inflation and fundamental physics by measuring $f_{\rm NL}$
- Although current measurements on $f_{\rm NL}$ from LSS are limited to $\sigma(f_{\rm NL}) \sim 20$ due to observational systematics, upcoming datasets will allow us to go beyond this limit
- ARF are a new cosmological observable and we have found they are a powerful tool for improving constraints on $f_{\rm NL}$