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The Large Hadron Collider

• What: particle collider (⌀ 8.5km)


• Where: Geneva, Switzerland


• Why: study fundamental questions about 
the nature of the universe


• Who: CERN and international science 
collaborations


• How: massive radiation detectors (CMS, 
ATLAS, …) around collision sites 
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LHC Beamline ©CERN
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LHC detector simulation
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https://cds.cern.ch/record/2120661  
© 2016 CERN, for the benefit of the CMS Collaboration (License: CC-BY-4.0)

1m

Note magnetic fields

3.8T

2T

• 100B events


× 1M tracks


× 1K steps

Source: Johnson, S.R. UT seminar 2022

https://cds.cern.ch/record/2120661


Monte Carlo detector simulation

• Each event inputs a list of primaries 
(starting point for a particle track)


• Each track samples physical processes and 
may produce secondary particles


• Each interaction in a “sensitive detector” 
generates a hit to record output


• ~3× number of actual events (140 PB of data!) 
must be simulated to reduce statistical effects
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In this kind of MC, each history is an analog physical realization
Source: Johnson, S.R. UT seminar 2022



GPUs for scientific software
• General Purpose Graphics Processing Units 

(GP-GPU)

▪︎ Conceptualized in early ’00s

▪︎ Very fast and power efficient for “graphics”-like applications


• “Many-core”: massively multithreaded

▪︎ Programming models require much more care

▪︎ Not good at flexible/dynamic operations


• Performant when:

▪︎ Lots of similar work is being done at the same time

▪︎ Lots of floating point operations per datum
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CPU

GPU
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html  
©NVIDIA Corporation, reproduced with permission

Hardware characteristics determine 
programming paradigm



Intersection of MC + GPU

• HEP demand is rapidly increasing

▪︎ Large Hadron Collider High Luminosity upgrade 

requires ≥10× computational throughput for detector 
simulation


▪︎ AI/ML based “fast simulation” methods need lots of 
training data on GPU


• HPC supply is fundamentally changing

▪︎ “Heterogeneous” architectures are increasingly 

common in high performance computing

▪︎ Scientific codes can run more efficiently on GPU 

e.g., Perlmutter reports 5× average energy efficiency*

▪︎ Demand for AI/ML training and models will accelerate 

this trend
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Top500 Supers: This Is Peak Nvidia For Accelerated 

Supercomputers, Timothy Prickett Morgan, May 13, 2024.
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Goal and approach

• Research and develop novel algorithms

• Implement production-quality code

• Integrate collaboratively with experiments

• Deploy on DOE LCF resources
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LHC beamline ©CERN

Nvidia H100 GPU @Nvidia
Informal collaborators

Enable scientific discovery in HEP 

by improving throughput and energy efficiency 
using GPU-based Monte Carlo detector simulation

https://home.cern/resources/image/accelerators/lhc-images-gallery
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Code development

• 90% of source code is reusable 
library code


• 1:2 ratio of lines of 
documentation to code


• 50k lines of test code


• CI and rigorous review before 
merge
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Production-focused open source 
scientific software



Data management

• Traditional GPU data uses:

▪︎ Highly structured, dense, regular arrays

▪︎ Lots of host/device transfers


• Physics data is:

▪︎ “Awkward,” hierarchical, sometimes sparse 

structures

▪︎ Mostly constant after problem setup


• Celeritas data structures:

▪︎ Run on CPU, Nvidia, AMD, …

▪︎ Are constructed on CPU with standard C++ 
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Core algorithm for simulation: stepping loop

• External synchronization point at 
each “event” (p–p collision)


• Dependency between steps and 
independence of tracks allows 
loop interchange


• Instead of polymorphic functions 
operating on a single track, they 
launch a kernel over many tracks

13

Event
Track

Step

Initialization

Limiters
Navigation

Discrete actions
Sensitive detectors

CPU (Geant4)

Event
Step iteration

Action

GPU (Celeritas)



Geant4 integration

• Geant4 is the experiment-validated 
MC simulation code used in HEP and 
beyond (medical physics, dosimetry, …)


• Celeritas directly imports geometry, 
physics data


• e-, e+, γ sent to Celeritas (GPU)


• Reconstructed “hits” (energy 
deposition plus metadata) sent back to 
user-defined detectors
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Geant4 user application

Celeritas/G4 interface

Geant4

Celeritas GPU code

Particles Hits



High-level capabilities targeting LHC simulation

• Equivalent to G4EmStandardPhysics 

• Full-featured Geant4 detector 
geometries using VecGeom 1.x


• Runtime selectable processes, physics 
options, field definition


• Execution on CUDA (Nvidia), HIP* (AMD), 
and CPU devices
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GPU-traced rasterization of CMS 2018

*VecGeom currently requires CUDA: 
ORANGE navigation required for HIP

Source: Johnson, S.R. Geant4 Meeting 2023
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EM physics validation

• Established good agreement 
with Geant4 for:

▪︎ Energy loss fluctuations

▪︎ Multiple scattering (azimuthal angle 

distribution)

▪︎ Single Coulomb scattering


• Experiment-specific validation 
required for acceptance
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1.1.5 500 MeV positron on 1.5 mm Al foil
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Standalone EM performance

• LHC-scale simulations on DOE LCF

▪︎ 1300 × 10 GeV e-, 16 events

▪︎ ¼ Perlmutter node (NERSC) 

1 × Nvidia A100 GPU, ¼ × 64-core AMD EPYC 7763

▪︎ Celeritas GPU vs CPU 

CUDA (1 CPU thread) vs OpenMP (16 CPU threads)


• Key metrics favor GPU 
▪︎ Capacity: 50–94% loss if GPUs are ignored

▪︎ Efficiency: up to 4× performance per watt
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Entries  10000
Mean      615
Std Dev     82.41

 / ndf 2χ  239.6 / 53
Constant  11.4±   869 
Mean      0.7± 619.1 
Sigma     0.57± 67.22 
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Entries  10000
Mean      615
Std Dev     82.41

 / ndf 2χ  239.6 / 53
Constant  11.4±   869 
Mean      0.7± 619.1 
Sigma     0.57± 67.22 

Entries  10000
Mean    614.6
Std Dev     82.98

 / ndf 2χ  199.7 / 53
Constant  11.1±   864 
Mean      0.7±   619 
Sigma     0.53± 67.87 

Celeritas
Entries  10000
Mean    614.6
Std Dev     82.98

 / ndf 2χ  199.7 / 53
Constant  11.1±   864 
Mean      0.7±   619 
Sigma     0.53± 67.87 

EdepSum

Geant4
Entries  10000
Mean      615
Std Dev     82.41

 / ndf 2χ  239.6 / 53
Constant  11.4±   869 
Mean      0.7± 619.1 
Sigma     0.57± 67.22 

Geant4
Celeritas
Best fit

yz-integrated energy deposition

EM offloading with FullSimLight

• ATLAS FullSimLight: hadronic tile 
calorimeter module segment

• 64 segments in full ATLAS, 2 in this test beam

• 18 GeV π+ beam, no field

• FTFP_BERT (default) physics list 

(includes standard EM)


• ~100 lines of code to integrate 
• Offload e-, e+, γ to Celeritas

• Celeritas reconstructs hits and sends to 

user-defined G4VSensitiveDetector


• Good agreement in energy deposition
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Tognini

Source: Johnson, S.R. Geant4 Meeting 2023



Offload performance results
• 1/4 of a Perlmutter (NERSC) GPU node 

16 cores of AMD EPYC, 1 Nvidia A100


• Time includes startup overhead, Geant4 hadronic 
physics, track reconstruction, and SD callback


• GPU speedup: 2.6–2.8× at full occupancy 
Using all CPU cores with a single GPU


• CPU-only speedup: 1.1–1.3× 

• Theoretical maximum speedup: 3.0–3.3× 
Instantly killing e-, e+, γ when born 


• LHC-scale energy per event (>1 TeV) 
is needed for GPU to be effective 

• One GPU is effective with many-CPU Geant4

20

  



CMS Run 3&4 Standalone Simulations
• Standalone Geant4 app celer-g4


• 32 tt ̅events from Pythia


• FTFP_BERT physics

▪︎ Geant4 simulates hadronics

▪︎ All EM tracks offloaded to Celeritas

▪︎ Lepto-nuclear reactions neglected


• Multiple field options

▪︎ No magnetic field

▪︎ Uniform 4T field

▪︎ Discretized+interpolated RZ field (901×481 points)


• CMSSW/Geant4 throughput: 8× 
(we’re simulating a harder problem than necessary, 
but we now have an equivalent test problem)

21

1 10
Number of Threads

0

0.5

1

1.5

2

2.5

Sp
ee

du
p 

(C
M

SS
W

/C
el

er
ita

s)

HL-LHC Projected
Run-3 Projected
HL-LHC
Run-3

(a)

1000− 0 1000
Hit Position z (cm)

1

210

410

610

810

1010

dN
/d

z

Celeritas
CMSSW

t(b) CMS Run3 t

Standalone Run 3 hit distribution

CMSSW Run 3 hit distribution



CMS Run 3&4 Standalone Results

• Promising performance

▪︎ SD reconstruction adds <15% overhead

▪︎ Initial comparison of hits shows good agreement

▪︎ With task-based framework we might see better (due to 

less GPU contention)


• Possible future improvements:

▪︎ Magnetic field propagation

▪︎ Activating track sorting to get smaller kernel grid sizes

▪︎ Single-precision? (Especially on consumer cards)

22 Nvidia A100 vs AMD 7532 EPYC

Run 4 (HL-LHC); Nvidia A100

Run 3; Nvidia A100



Primary bottleneck: geometry
• Each step* may require 100 

“distance to boundary” evaluation 
* remember, ~1B steps per simulation!


• Up to ~105 distinct geometric 
elements per detector model


• Current geometry implementation 
is not optimized for GPU


• CERN (VecGeom) and ORNL 
(ORANGE via HEP-CCE2) both 
implementing solutions

23

Physics is 4% on GPU, 
but 19% on CPU



Step-dependent behavior

• Number of active particle tracks 
changes drastically due to EM shower


• Saturated GPU takes the most time 
but <50% of step iterations 
Despite using masking instead of sorting! 

• Converting the tail of long-lived tracks 
does not kill us

24 7 × 1300 × 10 GeV e-: CMS 2018 detector Source: Johnson, S.R. CAF Meeting 2023



Figure of merit: throughput

• GPUs cannot be ignored if present


• AI/ML “revolution” guarantees 
more coprocessors at all scales
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EM only, no SDs

Per-node stats for DOE supercomputers

Machine Arch Card TDP (W) Cores* Cards

Summit
CPU IBM Power9 190 ‡22 2
GPU Nvidia V100 250 80 6

Perlmutter
CPU AMD EPYC 7763 280 64 1
GPU Nvidia A100 250 108 4

Frontier
CPU AMD EPYC 7453 225 ‡64 1
GPU AMD MI250x 500 220 †4 *or SMs;  

†Each card has 2 GPUs 
‡One core reserved per GPU



Figure of merit: efficiency

• Estimated using reported 
Thermal Design Power (TDP)* 
and Celeritas throughput


• GPU consistently shows higher 
energy efficiency 🌱

▪︎ Reduced operating costs

▪︎ Higher compute density (fewer nodes, 

smaller data centers)


• A100:EPYC price is ~4× 💸

26 EM only, no SDs*May be conservative based on nvidia-smi readings



Results: impact by the numbers
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100 lines of code to integrate Celeritas into a FullSimLight tile calorimeter 
test application, with no modifications to Geant4

2.8× full-simulation 
speedup

including hadronics and SD hits, by using 1 Nvidia A100 
with 16 AMD EPYC cores for the ATLAS test beam 
application [NERSC Perlmutter]

2–20× throughput when using Celeritas on GPU (compared to Geant4 MT 
CPU) for EM test problems [NERSC Perlmutter]

4× performance 
per watt

for TestEM3 (ORANGE geometry) using Celeritas GPU 
instead of Geant4 CPU [NERSC Perlmutter]

Celeritas v0.4: https://celeritas-project.github.io/celeritas/

https://celeritas-project.github.io/celeritas/
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Python/REST interface

• JSON I/O in C++

▪︎ Integrates cleanly with containers

▪︎ Quickly “spin up” interactive notebooks for 

student exploration


• Current capability: rasterization 
for geometry validation

29 https://github.com/celeritas-project/celerpy

Challenge: generic integration with 
next-generation experiment 
frameworks



Platform-portable surface-based geometry

✓Model conversion

✓Robust surface construction

➡Model verification

➡Performance optimization

×Safety calculation

30 GPU ORANGE raytrace of ATLAS tile calorimeter

Initial targeted geometry 

• ATLAS TileCal


• CMS HGCal


• ATLAS EMEC

Challenge: most compute intensive 
aspect of EM simulation on GPU



Optical photon transport for Calvision

• Initial goal: integrated optical 
tracking loop with absorption by end 
of summer


✓Geant4 optical data import


✓Scintillation production


✓Cerenkov production

31

Challenge: thousands of optical 
photons can be emitted per track per 
step, leading to long run times

PMT array ©LZ



Neutron physics

• Critical for muon beam background 
simulations 
(AI/ML training: see K. Pedro ECA proposal)


• Technically feasible due to early 
investment and design decisions
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• Demonstrated a hybrid workflow of offloading EM particle transport 
to GPU with Geant4 tasking and Celeritas  

• Extend applications with {multiple-CPU-tasks, multiple-GPUs} 
workflows with concurrency.

• Increase the fraction of offloading: add the neutron (n) transport

– Challenges: reducing overheads and balancing tasking workloads 

Acceleritas: Summary and Outlook

HSF Detector Simulation on GPU Community Meeting,  May 3-6, 2022             Celeritas core team12

cms2018@LHC Max Gain by GPU

Add Neutron

! = 1
1 − %

• Demonstrated a hybrid workflow of offloading EM particle transport 
to GPU with Geant4 tasking and Celeritas  

• Extend applications with {multiple-CPU-tasks, multiple-GPUs} 
workflows with concurrency.

• Increase the fraction of offloading: add the neutron (n) transport

– Challenges: reducing overheads and balancing tasking workloads 

Acceleritas: Summary and Outlook

HSF Detector Simulation on GPU Community Meeting,  May 3-6, 2022             Celeritas core team12

cms2018@LHC Max Gain by GPU

Add Neutron

! = 1
1 − %

S Yung Jun, HSF Detector Simulation on GPU, May 2022

Challenge: offloading more work to 
GPU



Physics for muon-confined fusion

• Design optimization and to 
validation of theoretical models 
against experimental data


• R&D to address the feasibility of 
µCF as an energy source

33

Triton primaries Target Fusion chamber

Magnetic lenses

Source: Tognini, S

µCF takes advantage of the reduced size of d-t muonic 
molecules to achieve fusion at low temperature regimes

Challenge: improving beam simulation 
throughput for design optimization



Continuing collaborations

• Experiments for integrating


• Institutions for strategizing


• Codes for knowledge sharing


• Vendors for performance benchmarking
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AdePT
Accelera ted  Par t ic le  Transpor t

Any and all contributors and 
collaborators are welcome!



Interested?

• Check out our GitHub repository

▪︎ ★ to show interest and get updates

▪︎ Easy installation and thorough documentation

▪︎ Code structure is conducive to student projects


• Standalone “starter” tasks available

▪︎ Physics verification and code-to-code comparisons

▪︎ Geometry development

▪︎ Physics model implementations
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Code

Documentation

Celeritas v0.4: https://celeritas-project.github.io/celeritas/

https://github.com/celeritas-project/celeritas
https://celeritas-project.github.io/celeritas/user/index.html
https://celeritas-project.github.io/celeritas/
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Computational throughput

38



GPU Kernel occupancy
• Geometry is register-

intensive


• VecGeom requires 
additional dynamic stack 
(up to 32KB/thread!)
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Test problem complexity
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Full ORANGE support 
ORANGE works w/o MSC 
Currently VecGeom only 
Untested


