
K.C. Kong
Physics and Astronomy

University of Kansas

Introduction to Quantum Algorithms

Department of Physics
Oklahoma State University

August 7-9, 2024

Classical Computing
• “Efficient” computation time scales polynomially with

the problem size.
– Search ~
– , sec
– , sec

• “Inefficient” computation times scales exponentially.
– Factoring ~
– , sec
– , sec
– , hour
– , million years

n4

n = 1000 t = 1
n = 1050 t = 1.2

2n

n = 1000 t = 1
n = 1001 t = 2
n = 1012 t = 1
n = 1050 t = 3.3

Example
Inner Product Calculation

• Let be two vectors. How to compute the magnitude of the inner product ?

• Digital:

 multiplications & additions

Decompose multiplications & additions as NAND gate

• Quantum:

Run the following circuit with qubits and gates

|ψ⟩, |ϕ⟩ ∈ ℂ2n |⟨ϕ |ψ⟩ |2

2n

2n + 1 n + 2

Pr(0) − Pr(1) = |⟨ϕ |ψ⟩ |2

5

|0⟩

|ψ⟩

|ϕ⟩

×

×

H H

…
…

{
{

×

×

×

×

…

Example
Inner Product Calculation

• Let be two vectors. How to compute the magnitude of the inner product ?

• Digital:

 multiplications & additions

Decompose multiplications & additions as NAND gate

• Quantum:

Run the following circuit with qubits and gates

|ψ⟩, |ϕ⟩ ∈ ℂ2n |⟨ϕ |ψ⟩ |2

2n

2n + 1 n + 2

Pr(0) − Pr(1) = |⟨ϕ |ψ⟩ |2

5

|0⟩

|ψ⟩

|ϕ⟩

×

×

H H

…
…

{
{

×

×

×

×

…

Example: Inner product
• Let , be two dimensional vectors. How to compute the

magnitude of the inner product ?
• Digital

– multiplications and additions
– Decompose multiplications and additions as NAND gates

• Quantum

– Run the following circuits with qubits and gates

–

|ψ⟩ |ϕ⟩ ∈ ℂ2n N = 2n

|⟨ϕ |ψ⟩ |2

N = 2n

2n + 1 n + 2
Prob(0) − Prob(1) = |⟨ϕ |ψ⟩ |2

|ψ⟩ = (ψ1, ⋯, ψN)
|ϕ⟩ = (ϕ1, ⋯, ϕN)

⟨ϕ |ψ⟩ =
N

∑
i=1

ϕ*i ψi

The First Wave of Quantum
Machine Learning?The First Wave of Quantum Machine Learning

6

Long-term: Quantum Linear Algebra

Exponential or polynomial speed-up in

‣ Support vector machine

‣ Principle component analysis

‣ Bayesian methods

‣ …

Ax = b Complexity of inversion of a regular matrix=
Complexity of inversion of a sparse matrix=

O(N3)
O(N)

65

The exponential Speed-Up

Courtesy K Rhee, KAIST

The exponential Speed-Up

The exponential Speed-Up

66
Courtesy K Rhee, KAIST

The exponential Speed-Up

Different Quantum Advantages/Speedups
1. A provable quantum speedup: (gold standard)
requires a proof that there can be no classical algorithm that performs
as well or better than the quantum algorithm. (grover’s algorithm)

2. A strong quantum speedup:
compares the quantum algorithm with the best known classical
algorithm. (shore’s algorithm)

3. Common quantum speedup:
relaxes the ‘best classical algorithm’ to the ‘best available classical
algorithm’

4. Potential quantum speedup:
compares two specific algorithms and relating the speedup to this
instance only

5. Limited quantum speedup:
compares conceptually equivalent algorithms

MITP Summer School Lecture Michael Spannowsky July 2023 88

References
• Qiskit Textbook, examples and PennyLane codebook and examples

• Quantum Computing: A Gentle Introduction by E. Rieffel and W. Polak

• Machine Learning with Quantum Computers by M. Schuld and F. Petruccione

• Quantum Computation and Quantum Information by M. Nielsen and I. Chuang

• Introduction to Classical and Quantum Computing by T. Wong

• An Introduction to Quantum Machine Learning for Engineers

• A Short Introduction to Quantum Computing for Physicists by Oswaldo Zapata

HW
• Check out the following webpage

– https://kckong.ku.edu/PHSX600-801/

• Install Qiskit / PennyLane in your laptop or Google colab.

• Create your IBM Quantum account (for IBMQ Lab and IBMQ
Composer).

• Try simple Qiskit examples
– Example 1 with single gates on colab
– Example 2 with single qubit circuit on colab
– Example 3 with multiple qubits and measurements

https://kckong.ku.edu/PHSX600-801/
https://colab.research.google.com/drive/1iZdE2NcEWHVJxZ6Pk-76RONZ7i2flUOW
https://colab.research.google.com/drive/1qdICNPVhlnB8k5mawCgR5wrOk4Qk1UYT
https://colab.research.google.com/drive/14QrCfIvz7RwWX4XNc04NAu1EYWg1OPK9

• Introduction to QM, Single qubit, and system with two or more qubits
• Quantum algorithms
• Quantum Machine Learning

– QAOA and feedback based algorithm
– Two applications: collider and dark matter

• We will not discuss
– Hardware/experimental aspect of quantum computer
– Computational complexity theory
– How to use Qiskit/PennyLane
– QRAM, quantum tomography, quantum sensing
– Quantum communication, quantum information theory
– Quantum cryptography, traversable wormhole
– ……

Topics to discuss

1. Single qubit, Dirac notation, Bloch sphere and measurements
2. Quantum circuits, singlet qubit gate, two qubit gates, three qubit gates,

no cloning, superdense coding, teleportation
3. Quantum algorithms, data embedding, Deutsch algorithm, Deutsch-

Jozsa, Bernstein-Vazirani algorithm, Simon’s algorithm
4. Quantum Fourier Transformation and quantum phase estimation
5. Shor's algorithm and Grover’s algorithm
6. Quantum machine learning, distance-based classifier
7. Quantum optimization, QUBO, Adiabatic theorem, variational quantum

algorithms
8. QAOA, FALQON, ADAPT-QAOA
9. Single qubit-classifier using data re-uploading
10. Harrow-Hassidim-Lloyd Algorithm (Ax=b)
11.Quantum error correction, bit flip error correction, stabilizer formalism,

phase flip error correction

Topics to discuss

Very brief history of quantum computing
• 1924 The term “quantum mechanics” used by M. Born
• 1925 Formulation of matrix mechanics by Heisenberg, Born, Jordan
• 1925-1927: Copenhagen interpretation
• 1930 “The principles of quantum mechanics” by Dirac
• 1935 Einstein, Podolsky and Rosen
• 1935 “Quantum entanglement” and Schrödinger’s cat by Schrodinger and Einstein
• 1947 “Spooky action at a distance” in a letter to M. Born by A. Einstein
• 1976 Attempt to create quantum information theory
• 1980 Quantum mechanical model of Turing machine by Benioff (ANL)
• 1981 “Simulating Physics with Computers" by Feynman
• 1985 Quantum Turing machine by Deutsch
• 1992 Deutsch-Jozsa algorithm
• 1993 First paper on quantum teleportation
• 1994 Shor’s factoring algorithm (cf RSA encryption)
• 1996 Grover search algorithm (Bell)
• 2004 First five photon entanglement by China
• 2011 First commercially available quantum computer (D-Wave)
• 2017 First quantum teleportation of independent single-photon qubit (14km) by China
• 2018 US National Quantum Initiative Act
• 2019 Google quantum supremacy
• 2022 Nobel prize (Aspect, Clauser , Zeilinger) for violation of Bell’s inequality
• 2022 433 qubits by IBM
• 2023 Breakthrough Prize (Bennet, Brassard, Shor, Deutsch)

NATIONAL QUANTUM INITIATIVE

https://www.quantum.gov

CMS
March 27, 2024

Digital Computing
Digital computation with bits: n {0,1}n ⟶ {0,1}m, m ≤ n

Introduction
What is Digital Computing?

3

AB

A B AB
0 0 1
0 1 1
1 0 1
1 1 0

+

Digital computation with bits: n {0,1}n → {0,1}m, m ≤ n

Introduction
What is Digital Computing?

3

AB

A B AB
0 0 1
0 1 1
1 0 1
1 1 0

+

Digital computation with bits: n {0,1}n → {0,1}m, m ≤ nIntroduction
What is Digital Computing?

3

AB

A B AB
0 0 1
0 1 1
1 0 1
1 1 0

+

Digital computation with bits: n {0,1}n → {0,1}m, m ≤ n

Introduction
What is Digital Computing?

3

AB

A B AB
0 0 1
0 1 1
1 0 1
1 1 0

+

Digital computation with bits: n {0,1}n → {0,1}m, m ≤ n

Quantum computing?
Quantum computation with qubits:

n

α1
α2
⋮

α2n

∈ ℂ2n

Introduction
What is Quantum Computing?

4

Size of the sample space = 2n

Quantum computation with qubits: n

α1
α2
⋮

α2n

∈ ℂ2n →

+

Source: https://www.science.org/doi/10.1126/science.abb2823

Prob. (%)

Linear transformation under unitary matrix

Introduction
What is Quantum Computing?

4

Size of the sample space = 2n

Quantum computation with qubits: n

α1
α2
⋮

α2n

∈ ℂ2n →

+

Source: https://www.science.org/doi/10.1126/science.abb2823

Prob. (%)

Linear transformation under unitary matrix

Introduction
What is Quantum Computing?

4

Size of the sample space = 2n

Quantum computation with qubits: n

α1
α2
⋮

α2n

∈ ℂ2n →

+

Source: https://www.science.org/doi/10.1126/science.abb2823

Prob. (%)

Linear transformation under unitary matrix

Introduction
What is Quantum Computing?

4

Size of the sample space = 2n

Quantum computation with qubits: n

α1
α2
⋮

α2n

∈ ℂ2n →

+

Source: https://www.science.org/doi/10.1126/science.abb2823

Prob. (%)

Linear transformation under unitary matrix

Unitary transformation

Need transition form classical to quantum:

bits qubits

gates quantum

gates

algorithms

Classical Quantum

quantum algorithms

MITP Summer School Lecture Michael Spannowsky July 2023 65

Example
Inner Product Calculation

• Let be two vectors. How to compute the magnitude of the inner product ?

• Digital:

 multiplications & additions

Decompose multiplications & additions as NAND gate

• Quantum:

Run the following circuit with qubits and gates

|ψ⟩, |ϕ⟩ ∈ ℂ2n |⟨ϕ |ψ⟩ |2

2n

2n + 1 n + 2

Pr(0) − Pr(1) = |⟨ϕ |ψ⟩ |2

5

|0⟩

|ψ⟩

|ϕ⟩

×

×

H H

…
…

{
{

×

×

×

×

…

Example
Inner Product Calculation

• Let be two vectors. How to compute the magnitude of the inner product ?

• Digital:

 multiplications & additions

Decompose multiplications & additions as NAND gate

• Quantum:

Run the following circuit with qubits and gates

|ψ⟩, |ϕ⟩ ∈ ℂ2n |⟨ϕ |ψ⟩ |2

2n

2n + 1 n + 2

Pr(0) − Pr(1) = |⟨ϕ |ψ⟩ |2

5

|0⟩

|ψ⟩

|ϕ⟩

×

×

H H

…
…

{
{

×

×

×

×

…

Example: Inner product
• Let , be two dimensional vectors. How to compute the

magnitude of the inner product ?
• Digital

– multiplications and additions
– Decompose multiplications and additions as NAND gates

• Quantum

– Run the following circuits with qubits and gates

–

|ψ⟩ |ϕ⟩ ∈ ℂ2n N = 2n

|⟨ϕ |ψ⟩ |2

N = 2n

2n + 1 n + 2
Prob(0) − Prob(1) = |⟨ϕ |ψ⟩ |2

|ψ⟩ = (ψ1, ⋯, ψN)
|ϕ⟩ = (ϕ1, ⋯, ϕN)

⟨ϕ |ψ⟩ =
N

∑
i=1

ϕ*i ψi

|a⟩ ⊗ |b⟩ = |a⟩ |b⟩

H (|0⟩ |a⟩ |b⟩) = 1
2

(|0⟩ + |1⟩) |a⟩ |b⟩

SWAP H (|0⟩ |a⟩ |b⟩) = 1
2

SWAP (|0⟩ + |1⟩) |a⟩ |b⟩ = 1
2

(|0⟩ |a⟩ |b⟩ + |1⟩ |b⟩ |a⟩)

|ψ⟩ = H SWAP H (|0⟩ |a⟩ |b⟩) = 1
2

H (|0⟩ |a⟩ |b⟩ + |1⟩ |b⟩ |a⟩)

= 1
2 |0⟩(|a⟩ |b⟩ + |b⟩ |a⟩) + 1

2 |1⟩(|a⟩ |b⟩ − |b⟩ |a⟩)

P(0) = | (⟨0 ⊗ I) |ψ⟩ |2 = 1
2 − 1

2 |⟨a |b⟩ |2

H |x⟩ = 1
2

(|0⟩ + (−1)x |1⟩)

P(1) = | (⟨0 ⊗ I) |ψ⟩ |2 = 1
2 + 1

2 |⟨a |b⟩ |2
P(1) − P(0) = |⟨a |b⟩ |2

|0⟩
|a⟩ |ψ⟩

H

|b⟩

H

X

X

Example
Inner Product Calculation

• Let be two vectors. How to compute the magnitude of the inner product ?

• Digital:

 multiplications & additions

Decompose multiplications & additions as NAND gate

• Quantum:

Run the following circuit with qubits and gates

|ψ⟩, |ϕ⟩ ∈ ℂ2n |⟨ϕ |ψ⟩ |2

2n

2n + 1 n + 2

Pr(0) − Pr(1) = |⟨ϕ |ψ⟩ |2

5

|0⟩

|ψ⟩

|ϕ⟩

×

×

H H

…
…

{
{

×

×

×

×

…

differencesum of the “unswapped” and the “swapped”

(1) (3)(2) (4)
(1)

(2)

(3)

(4)

Proof: Inner product

Why Quantum Computing?
• Quantum simulation
• Cryptography

– Mathematics: factoring, hidden subgroup program, discrete
logarithm problem

• Optimization
• Search algorithm
• Quantum Machine Learning

– Quantum Advantages?
• Learns better with small # of data
• Faster convergence
• Less # of parameters

• What are the interesting problems?

A few popular tools for quantum
simulation

• Qiskit (IBM)

• IBM Quantum Composer

• IBM Quantum Platform

• PennyLane and Strawberry Fields (Xanadu)

• TensorFlowQuantum (google)

• CUDA Quantum (NVIDIA)

• TensorCircuit

https://quantum-computing.ibm.com/composer
https://quantum-computing.ibm.com/

Quantum computers are hard to build
• Qubits, unlike classical bits, need to interact strongly among themselves to

form entangled states, which in turn form the basis for computation in
quantum computers. But to achieve this experimentally is incredibly hard.

Quantum Hardware RoadmapQuantum Hardware Roadmap

8

P
h

ys
ic

a
l E

rr
o

r
R

at
e

0

133

267

400

Number of Qubits

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08100 101 102 103 104 105 106 107 108
10-4

10-3

10-2

10-1

Noisy Intermediate Scale Quantum (NISQ)

Beyond
classical

Today

Tomorrow

Far Future

Is there a “Moore's law” for quantum computing?
• https://arxiv.org/pdf/2303.15547

Is there a “Moore's law” for quantum computing?
• https://arxiv.org/pdf/2303.15547

Is there a “Moore's law” for quantum computing?
• https://arxiv.org/pdf/2303.15547

Is there a “Moore's law” for quantum computing?
• https://arxiv.org/pdf/2303.15547

Why Machine Learning?

▸ HL-LHC will reach 1 exabyte of data per year

CHALLENGE: BIG DATA
1 PB = 1000 TB
1 EB = 1000 PB

Taken from J. Duarte’s talk

QML: Variational Quantum Algorithms

0

175

350

525

700

1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018 2021

The number of papers (in high energy physics) that has a keyword “Machine
Learning”, “Deep Learning”, “Artificial Intelligence” or “Neural Networks” in their title.

Data is obtained via InspireHEP

• G. Cybenko, 1989 with sigmoid activation
• K. Hornik, 1991, importance of the multilayer architecture
• D Simon, 1993, P. Shor 1994, 1995, L. Grover 1996

LEP (Large Electron Positron Collider), CERN, 1989-2000

Top quark discovery at Tevatron,
Fermilab, US, 1995

The number of papers that has a keyword “Quantum Computer”, ”Quantum
Computing”,“Quantum Annealing” or “Quantum Machine Learning” in their title.

Higgs discovery at LHC,
CERN, 2012

Single Qubit

• Notation: alternative representation
• Normalization conditions
• Quantum measurements
• Different bases
• Operators on qubits
• Simple quantum circuits

IBM 127-Qubit Quantum Processor

Qubits and Pauli’s matrices
σ1 = σ x = (0 1

1 0)

σ3 = σz = (1 0
0 −1)

σ2 = σy = (0 −i
i 0)

R(⃗θ) = exp (−i
⃗θ ⋅ ⃗σ
2)

{σi , σj} ≡ σi σj + σj σi = 2δij

[σi , σj] ≡ σi σj − σj σi = 2iϵijkσk

σi σj = 2δij + i ϵijk σk

• Qubit):

• Conjugate (dual vector or bra-vector):

• A set of all (ket-vector) forms a vector space
(Hilbert space)

• Pauli’s matrices are generators of rotations in two
dimensional complex plane.

(|ψ⟩ , |ψ⟩) ≡ ⟨ψ |ψ⟩ = 1

|ψ⟩ = cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩ =
cos θ

2

eiϕ sin θ
2

⟨ψ | = cos θ
2 ⟨0 | + e−iϕ sin θ

2 ⟨1 | = (cos θ
2 e−iϕ sin θ

2)
|ψ⟩

|0⟩ ≡ (1
0) , |1⟩ ≡ (0

1)
| ± ⟩ ≡ |0⟩ ± |1⟩

2
= 1

2 (1
±1)

Computational basis

Hadamard basis

⟨ψ | = (|ψ⟩)†
0 ≤ θ < π , 0 ≤ ϕ < 2π

• Vector, vector space, Hilbert space
• Dual vector, inner product
• Dirac notation: ket-bra
• Physical state evolves in time following the

Schrödinger equation:

• The most general unitary transformation acting on
one qubit:

iℏ ∂
∂t

ψ(⃗x, t) = H ψ(⃗x, t)

U(θ) = exp (i ⃗θ ⋅ ⃗σ
2)

ψ(t) = U(t) ψ(0)

3

operator in the interaction picture is given by UI(t) = T exp[�i
R
t

0 HI(t)dt] — a shorthand for the Dyson
series

UI(t) = 1 +
1X

q=1

(�i)q

q!

Z
t

0
dt1 · · ·

Z
t

0
dtqT [HI(tq) · · ·H(t1)] , (7)

where T denotes time-ordering [15] and HI(t) = e
iH0tV (t)e�iH0t. The Dyson series can also be re-written

as

UI(t) = 1 +
1X

q=1

(�i)q
Z

t

0
dt1HI(t1) · · ·

Z
tq�1

0
dtqHI(tq) (8)

and by relabeling the integration variables, the above equation takes the form:

UI(t) =
1X

q=0

(�i)q
Z

t

0
dtq · · ·

Z
t2

0
dt1HI(tq) · · ·HI(t1) , (9)

where hereafter we will use the q = 0 term to symbolize the identity operator.
The operator UI(t) evolves the interaction-picture wave-function | I(t)i which is related to the Schrödinger-

picture wave-function via | I(t)i = e
iH0t| (t)i (in our units, ~ = 1). Similarly, the Schrödinger-picture

time-evolution operator U(t) is related to the interaction-picture operator via U(t) = e
�iH0tUI(t). In the

next section we present an equivalent form for the Dyson series, Eq. (9), by systematically evaluating the
integrals in the sum, writing V (t) as a sum of exponentials in t.

A. Generalized permutation operator representation of the perturbation Hamiltonian

We begin by denoting the eigenstates and eigenenergies of the free Hamiltonian H0 by B = {|zi} and E =
{Ez}, respectively, such that H0|zi = Ez|zi. (For simplicity we assume a discrete countable set of eigenstates
and eigenenergies). We will refer to B as the ‘computational basis’. Next, we write the perturbation
Hamiltonian V (t) as a sum of generalized permutation operators ⇧i [16]:

V (t) =
MX

i=0

⇧i(t) =
MX

i=0

Di(t)Pi , (10)

where every generalized permutation operator is further expressed as a product of a (time dependent)
diagonal (in the computational basis) operator Di and a bona-fide permutation operator Pi. Specifically, the
action of Di and Pi on a computational basis states is given by Di|zi = di(z)|zi, where di(z) is in general a
complex number, and Pi|zi = |z0i for some |z0i 2 B depending on i and z. The i = 0 permutation operator
will be reserved to the identity operator, that is, P0 = 1. Armed with these notations, the action of a
generalized permutation operator ⇧i on a basis state |zi is given by DiPi|zi = di(z0)|z0i, where z

0 depends
on both the state z and the operator index i. We note that any Hamiltonian can be readily cast in the above
form [11]. This representation, in terms of generalized permutation operators, was recently introduced in
the context of quantum Monte Carlo simulations [9–11].

At this point, we write each diagonal operator, Di(t), in Eq. (10) as an exponential sum in t, that is,

Di(t) =
KiX

k=1

e
i⇤(k)

i t
D

(k)
i

, (11)

where both ⇤(k)
i

and D
(k)
i

are (generally complex-valued) diagonal matrices and Ki denotes the number of
terms in the decomposition of Di. (For more details as to how to carry out this decomposition e�ciently,
see Refs. [17–19].) Thus, V (t) can be written as

V (t) =
MX

i=1

KX

k=1

e
i⇤(k)

i t
D

(k)
i

Pi (12)

(for simplicity, hereafter we fix Ki = K 8i, though this assumption can be easily removed).

Adiabatic Theorem

• Schrödinger equation:

• Instantaneous eigenstate:

• Initial condition:

• If evolution is slow enough,

iℏ dψ(t)
dt

= H(t) ψ(t)

H(t) ψn(t) = En(t) ψn(t)
ψ(t = 0) = ψ0
ψ(t) ≈ eiθ(t) ψ0

Born and Folk 1928

3

operator in the interaction picture is given by UI(t) = T exp[�i
R
t

0 HI(t)dt] — a shorthand for the Dyson
series

UI(t) = 1 +
1X

q=1

(�i)q

q!

Z
t

0
dt1 · · ·

Z
t

0
dtqT [HI(tq) · · ·H(t1)] , (7)

where T denotes time-ordering [15] and HI(t) = e
iH0tV (t)e�iH0t. The Dyson series can also be re-written

as

UI(t) = 1 +
1X

q=1

(�i)q
Z

t

0
dt1HI(t1) · · ·

Z
tq�1

0
dtqHI(tq) (8)

and by relabeling the integration variables, the above equation takes the form:

UI(t) =
1X

q=0

(�i)q
Z

t

0
dtq · · ·

Z
t2

0
dt1HI(tq) · · ·HI(t1) , (9)

where hereafter we will use the q = 0 term to symbolize the identity operator.
The operator UI(t) evolves the interaction-picture wave-function | I(t)i which is related to the Schrödinger-

picture wave-function via | I(t)i = e
iH0t| (t)i (in our units, ~ = 1). Similarly, the Schrödinger-picture

time-evolution operator U(t) is related to the interaction-picture operator via U(t) = e
�iH0tUI(t). In the

next section we present an equivalent form for the Dyson series, Eq. (9), by systematically evaluating the
integrals in the sum, writing V (t) as a sum of exponentials in t.

A. Generalized permutation operator representation of the perturbation Hamiltonian

We begin by denoting the eigenstates and eigenenergies of the free Hamiltonian H0 by B = {|zi} and E =
{Ez}, respectively, such that H0|zi = Ez|zi. (For simplicity we assume a discrete countable set of eigenstates
and eigenenergies). We will refer to B as the ‘computational basis’. Next, we write the perturbation
Hamiltonian V (t) as a sum of generalized permutation operators ⇧i [16]:

V (t) =
MX

i=0

⇧i(t) =
MX

i=0

Di(t)Pi , (10)

where every generalized permutation operator is further expressed as a product of a (time dependent)
diagonal (in the computational basis) operator Di and a bona-fide permutation operator Pi. Specifically, the
action of Di and Pi on a computational basis states is given by Di|zi = di(z)|zi, where di(z) is in general a
complex number, and Pi|zi = |z0i for some |z0i 2 B depending on i and z. The i = 0 permutation operator
will be reserved to the identity operator, that is, P0 = 1. Armed with these notations, the action of a
generalized permutation operator ⇧i on a basis state |zi is given by DiPi|zi = di(z0)|z0i, where z

0 depends
on both the state z and the operator index i. We note that any Hamiltonian can be readily cast in the above
form [11]. This representation, in terms of generalized permutation operators, was recently introduced in
the context of quantum Monte Carlo simulations [9–11].

At this point, we write each diagonal operator, Di(t), in Eq. (10) as an exponential sum in t, that is,

Di(t) =
KiX

k=1

e
i⇤(k)

i t
D

(k)
i

, (11)

where both ⇤(k)
i

and D
(k)
i

are (generally complex-valued) diagonal matrices and Ki denotes the number of
terms in the decomposition of Di. (For more details as to how to carry out this decomposition e�ciently,
see Refs. [17–19].) Thus, V (t) can be written as

V (t) =
MX

i=1

KX

k=1

e
i⇤(k)

i t
D

(k)
i

Pi (12)

(for simplicity, hereafter we fix Ki = K 8i, though this assumption can be easily removed).

ψ(t) = U(t) ψ(0)

Dirac Bracket Notation
• Consider a quantum system with two orthonormal states, and :

• In general, a qubit can be in an arbitrary superposition state
 with complex coefficients, and , which are

related to the probabilities to measure the state and ,
correspondingly.

• The total probability is equal to 1, therefore

• The two complex parameters and can be represented by the two real

parameters (angles) and (considering the normalization condition,
ignoring the overall phase)

|0⟩ |1⟩

ψ = α0 |0⟩ + α1 |1⟩ α0 α1
|0⟩ |1⟩

P(0) + P(1) = |α0 |2 + |α1 |2 = 1
α0 α1

θ ϕ

⟨0 |0⟩ = ⟨1 |1⟩ = 1 ⟨0 |1⟩ = ⟨1 |0⟩ = 0 ⟨i | j⟩ = δij

P(0) = |⟨0 |ψ⟩ |2 = |α0 |2

P(1) = |⟨1 |ψ⟩ |2 = |α1 |2

|ψ⟩ = cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩ =
cos θ

2

eiϕ sin θ
2

0 ≤ θ < π , 0 ≤ ϕ < 2π

Dirac and Vector Notation

• ket: , 2-dimensional complex vector (amplitude vector)|a⟩ = (a0
a1)

• bra: ⟨b | = (|b⟩)† = (b0
b1)

†
= (b*0 b*1)

• Inner product: ⟨b |a⟩ = (b*0 b*1) (a0
a1) = b*0 a0 + b*1 a1

• If , is in general a complex number.a ≠ b ⟨b |a⟩

• Outer product: |a⟩⟨b | = (a0
a1) (b*0 b*1) = (a0b*0 a0b*1

a1b*0 a1b*1)
• Standard basis: and |0⟩ = (1

0) |1⟩ = (0
1)

⟨0 |0⟩ = ⟨1 |1⟩ = 1 ⟨0 |1⟩ = ⟨1 |0⟩ = 0 ⟨i | j⟩ = δij

Dirac and Vector Notation

• ket: , 2-dimensional complex vector (amplitude vector)|a⟩ = (a0
a1)

• The squared norm of a ket = ℓ2 |a⟩ |a⟩
2

= ⟨a |a⟩ = |a0 |2 + |a1 |2

Standard Model
(Periodic Table for Elementary Particles)

d = 3 (1)

µ = 0, 1, · · · , d (2)

x
µ = (ct, ~x) (3)

�i(x) (4)

 a↵f i(x) (5)

 ↵f i(x) (6)

A
a
µ(x) F

a
µ⌫(x) (7)

SO(1, 3) (8)

d = 3 (1)

µ = 0, 1, · · · , d (2)

x
µ = (ct, ~x) (3)

�i(x) (4)

 a↵f i(x) (5)

 ↵f i(x) (6)

A
a
µ(x) F

a
µ⌫(x) (7)

SO(1, 3) (8)
d = 3 (1)

µ = 0, 1, · · · , d (2)

x
µ = (ct, ~x) (3)

�i(x) (4)

 a↵f i(x) (5)

 ↵f i(x) (6)

A
a
µ(x) F

a
µ⌫(x) (7)

SO(1, 3) (8)

Fermions are described by
Grassmann numbers!

Fermions are spinors and not
invariant under 360 degree rotation.

T → Tc

∂

∂θ

2
= 0,  ⅆθ =

∂

∂θ

ψ → ψ′ = expi
σ

2
· θ

 ψ

4 π

grassmann.nb 3

(cf) Graded Lie Algebra or supersymmetry

d = 3 (1)

µ = 0, 1, · · · , d (2)

x
µ = (ct, ~x) (3)

�i(x) (4)

 a↵f i(x) (5)

 ↵f i(x) (6)

V
A
µ (x) F

A
µ⌫(x) (7)

SO(1, 3) (8)

Aak,↵k,fk,ik,pk = h a1 ↵1f1 i1(p1) a2 ↵2f2 i2(p2)| a3 ↵3f3 i3(p3) a4 ↵f4 i4(p4)i (9)

Probability of particles 1 and 2 changing into particles 3 and 4 =
���Aak,↵k,fk,ik,pk

���
2

(10)

d = 3 (1)

µ = 0, 1, · · · , d (2)

x
µ = (ct, ~x) (3)

�i(x) (4)

 a↵f i(x) (5)

 ↵f i(x) (6)

V
A
µ (x) F

A
µ⌫(x) (7)

SO(1, 3) (8)

Aak,↵k,fk,ik,pk = h a1 ↵1f1 i1(p1) a2 ↵2f2 i2(p2)| a3 ↵3f3 i3(p3) a4 ↵f4 i4(p4)i (9)

Probability of particles 1 and 2 changing into particles 3 and 4 =
���Aak,↵k,fk,ik,pk

���
2

(10)

- SM is based on Lie Algebra.

• Each (normalized) state of the qubit can be uniquely associated
with a point on the unit sphere.

Bloch Sphere

|ψ⟩ ⟷ (θ, ϕ) ⟷ ̂r =
sin θ cos ϕ
sin θ sin ϕ

cos θ

|0⟩ : θ = 0 , ϕ = arbitrary ⟶ ̂r = (
0
0
1)

|1⟩ : θ = π , ϕ = arbitrary ⟶ ̂r = (
0
0

−1)
| + ⟩ : θ = π /2 , ϕ = 0 ⟶ ̂r = (

1
0
0)

| − ⟩ : θ = π /2 , ϕ = π ⟶ ̂r = (
−1
0
0)

| + i⟩ : θ = π /2 , ϕ = π /2 ⟶ ̂r = (
0
1
0)

| + − ⟩ : θ = π /2 , ϕ = 3π /2 ⟶ ̂r = (
0

−1
0)

• are antipodal
points on the Bloch sphere.

• Antipodal points are orthonormal, i.e., they represent two
orthonormal qubit states (in Hilbert space)

• The antipodal point is obtained by

{ |0⟩ , |1⟩}, { | + ⟩ , | − ⟩}, { | + i⟩ , | − i⟩}

Bloch Sphere

θ → π − θ , ϕ → π + ϕ

= sin θ
2 |0⟩ − eiϕ cos θ

2 |1⟩

| ψ̃⟩ = cos π − θ
2 |0⟩ + ei(ϕ+π) sin π − θ

2 |1⟩

⟨ψ̃ | = sin θ
2 ⟨0 | − e−iϕ cos θ

2 ⟨1 |

⟨ψ̃ |ψ⟩ = (sin θ
2 ⟨0 | − e−iϕ cos θ

2 ⟨1 |)
(cos θ

2 |0⟩ + eiϕ sin θ
2 |1⟩)

= sin θ
2 cos θ

2 ⟨0 |0⟩ − cos θ
2 sin θ

2 ⟨1 |1⟩ = 0

Measurement in a different basis

• Born rule: the probability that a state collapses during a
projective measurement onto a basis is given by

|ψ⟩
{ |x⟩ , |x⊥⟩}

• What if we want to measure our state
in a different basis? For example,

|ψ⟩ = cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩

θ = π
2 , ϕ = 0 ⟶ | + ⟩ = cos θ

4 |0⟩ + sin θ
4 |0⟩ = 1

2 (|0⟩ + |1⟩)
θ = π

2 , ϕ = π ⟶ | − ⟩ = cos θ
4 |0⟩ + e−iπ sin θ

4 |0⟩ = 1
2 (|0⟩ − |1⟩)

P(x) = |⟨x |ψ⟩ |2 P(x⊥) = |⟨x⊥ |ψ⟩ |2

Measurement in a different basis
P(+) = 1

2 (⟨0 | + ⟨1 |)(cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩)
2

= 1
2

cos θ
2 + 1

2
eiϕ sin θ

2
2

= 1
2 (1 + sin θ cos ϕ)

P(−) = 1
2 (1 − sin θ cos ϕ)

Rewrite the state in the new basis and |ψ⟩ | + ⟩ | − ⟩

|0⟩ = 1
2 (| + ⟩ + | − ⟩) |1⟩ = 1

2 (| + ⟩ − | − ⟩)

(| + ⟩
| − ⟩) = 1

2 (1 1
1 −1) (|0⟩

|1⟩)

|ψ⟩ = cos θ
2 |0⟩ + sin θ

2 eiϕ |1⟩ = 1
2

cos θ
2 (| + ⟩ + | − ⟩) + 1

2
sin θ

2 eiϕ(| + ⟩ − | − ⟩)
= 1

2 (cos θ
2 + sin θ

2 eiϕ) | + ⟩ + 1
2 (cos θ

2 − sin θ
2 eiϕ) | − ⟩

P(+) = 1
2 (cos θ

2 + sin θ
2 eiϕ)

2
P(−) = 1

2 (cos θ
2 − sin θ

2 eiϕ)
2

| ± ⟩ ≡ |0⟩ ± |1⟩
2

= 1
2 (1

±1)

• Global phases are physically irrelevant.
• Relative phase is measurable.

92 2 One Quantum Bit

|+i= 1p
2
(|0i+ |1i)

vs
|ii= 1p

2
(|0i+ i|1i) = 1p

2

⇣
|0i+ eip/2|1i

⌘
.

These correspond to different points on the Bloch sphere, and they can be distin-
guished by measurements in appropriate bases. Although measuring |+i and |ii in
the Z-basis yields the same statistics, i.e., |0i with probability 1/2 or |1i with prob-
ability 1/2, measuring in the X-basis {|+i, |�i}yields different results. Measuring
|+i in the X-basis always yields |+i, but measuring |ii in the X-basis yields |+i or
|�i with a 50:50 probability.

Exercise 2.13. Is there a measurement that can distinguish the following pairs of states? If yes,
give a measurement. If no, explain your reasoning.

(a) |+i= 1p
2
(|0i+ |1i) and eip/8|+i= eip/8

p
2

(|0i+ |1i).

(b) |+i= 1p
2
(|0i+ |1i) and |�i= 1p

2
(|0i� |1i).

(c) |0i and eip/4|0i.

2.4.2 Spherical Coordinates

A generic quantum state is typically called y (the Greek letter “psi,” which is pro-
nounced “sigh”), and since it is quantum, we write it as a ket |yi. Now say we have
a generic qubit |yi with some amplitudes a and b :

|yi= a|0i+b |1i,

where |a|2 + |b |2 = 1 for normalization. Since the global phase does not matter, we
can assume that a is real and positive, and b may be complex. To determine the
location of this qubit on the Bloch sphere, we first parameterize, or write in terms
of other parameters, a and b in terms of two angles q and f :

a = cos
✓

q
2

◆
, b = eif sin

✓
q
2

◆
.

With 0  q  p and 0  f < 2p , this captures all the properties we need: a is
real and positive, b is complex, and the state is normalized. Substituting, we have
rewritten the qubit’s state as

|yi= cos
✓

q
2

◆
|0i+ eif sin

✓
q
2

◆
|1i. (2.8)

Let us work through an example. Say a qubit is in the state

+: 100%
-: 0%

+: 50%
-: 50%

| ± ⟩ ≡ |0⟩ ± |1⟩
2

= 1
2 (1

±1)

• Sequential selective measurement:

• what is the probability of obtaining ?

– Probabilities are multiplicative, we get

• Now let us sum over to consider the total probability for going
through all possible routes.

|c⟩
|⟨c |b⟩ |2 |⟨b |a⟩ |2

b
b

Quantum Measurements

A B C|α⟩
|a⟩ |b⟩ |c⟩

|a⟩ |b⟩ |c⟩
|b′ ⟩
|b′ ′ ⟩

sum of probabilities = ∑
b

|⟨c |b⟩ |2 |⟨b |a⟩ |2

:
:

= ∑
b

⟨c |b⟩⟨b |a⟩⟨a |b⟩⟨b |c⟩

• Now let us sum over to consider the total probability for going
through all possible routes.

b
b

Quantum Measurements

A C|α⟩
|a⟩ |c⟩

|a⟩ |b⟩ |c⟩
|b′ ⟩
|b′ ′ ⟩

sum of probabilities = ∑
b

|⟨c |b⟩ |2 |⟨b |a⟩ |2

:
:

= ∑
b

⟨c |b⟩⟨b |a⟩⟨a |b⟩⟨b |c⟩

• If B-filter is absent, probability is |⟨c |a⟩ |2

|⟨c |a⟩ |2 = |∑
b

⟨c |b⟩⟨b |a⟩ |2 = ∑
b,b′

⟨c |b⟩⟨b |a⟩⟨a |b′ ⟩⟨b′ |c⟩
different

Quantum Gates
• Quantum gates act on qubits.
• Quantum gates transforms the state of a qubit

into other states.
• Quantum gates must be linear that keeps the

total probability equal to 1.
• Classical reversible logic gates are valid

quantum gates.
• General One-Qubit Gates: one-qubit quantum

gates are rotations on the Bloch sphere.

• Quantum gates are repressed by unitary transformations
(matrices), .U†U = UU† = I or U−1 = U†

Quantum Circuits

Algorithm
Input Output

U
|ψ⟩ U |ψ⟩

• Single qubit gates: X, Y, Z, Hadamard, phase shift etc
• Two qubit gates: Controlled , SWAP gate, Controlled Phase shift, etc
• Three quiet gates: Toffoli gates etc

U = U00 |0⟩⟨0 | + U01 |0⟩⟨1 | + U10 |1⟩⟨0 | + U11 |1⟩⟨1 | = (U00 U01
U10 U11) =

1

∑
i, j=0

Uij | i⟩⟨ j |

• A single qubit has 2 basis states, and | + ⟩ = (1
0) | − ⟩ = (0

1) Uij = ⟨i |U | j⟩

Uij = ⟨i |U | j⟩

U = IUI = (∑
i

| i⟩⟨i |) U (∑
j

| j⟩⟨ j |) = ∑
i, j

| i⟩(⟨i | U | j⟩)⟨ j | = ∑
i, j

| i⟩⟨ j |(⟨i | U | j⟩)

U = U00 |0⟩⟨0 | + U01 |0⟩⟨1 | + U10 |1⟩⟨0 | + U11 |1⟩⟨1 | = (U00 U01
U10 U11) =

1

∑
i, j=0

Uij | i⟩⟨ j |

Quantum Circuits

U
|ψ⟩ |ψ′ ⟩ = U |ψ⟩

U = U00 |0⟩⟨0 | + U01 |0⟩⟨1 | + U10 |1⟩⟨0 | + U11 |1⟩⟨1 | = (U00 U01
U10 U11)

• The set of U forms a group.

⟨ψ′ |ψ′ ⟩ = ⟨ψ |U† U |ψ⟩ = ⟨ψ |ψ⟩

U(N) = {U |U†U = I}
SU(N) = {U |U†U = I, det(U) = 1}

• Group: closure, identity, inverse, associativity

More on operators/matrices
• A function of a matrix A is defined as its Taylor expansion.

f (A) =
∞

∑
n=0

1
n! An

• The eigenvalue problem for A:

•

A |a⟩ = a |a⟩

f(A) |a⟩ =
∞

∑
n=0

1
n! An |a⟩ =

∞

∑
n=0

1
n! an |a⟩ = f(a) |a⟩

• Unitary matrix can be written as , where is a Hermitian matrix, U = eiθG H
H† = H

• Ex1) For 2 by 2,
• Ex2) translation, time evolution

U = a0I + aiσi

Single Qubit Gates
• X gate = Not operator = = bit flip = NOT gateσX

σX = X = (0 1
1 0) = |0⟩⟨1 | + |1⟩⟨0 | σx | j⟩ = | j ⊕ 1⟩

X ⊕

σx |0⟩ = |1⟩ σx |1⟩ = |0⟩

• Interpretation on the Bloch sphere

• rotation around x-axis by
• maps and

• maps and

π
|0⟩ ⟶ |1⟩ |1⟩ ⟶ |0⟩
| + i⟩ ⟶ | − i⟩ | − i⟩ ⟶ | + i⟩

addition modulo 2

| ± i⟩ = 1
2 (|0⟩ ± i |1⟩)

Single Qubit Gates: Z-gate

• Z gate = = phase flipσZ

Z

σZ = Z = (1 0
0 −1) = |0⟩⟨0 | − |1⟩⟨1 |

σZ | j⟩ = (−1) j | j⟩σZ |0⟩ = + |0⟩ σZ |1⟩ = − |1⟩

σZ | + ⟩ = (1 0
0 −1) 1

2 (1
1) = 1

2 (1
−1) = | − ⟩

σZ | − ⟩ = (1 0
0 −1) 1

2 (1
−1) = 1

2 (1
1) = | + ⟩

• Phase flip = rotation around z-axis by π
σZ | + i⟩ = | − i⟩

σZ | − i⟩ = | + i⟩

Single Qubit Gates: Y and phase shift
• Y gate = = bit and phase flip = rotation around y-axis by σY π

σY = Y = (0 −i
i 0) = iσXσZ

σY | + i⟩ = + | + i⟩

σY | − i⟩ = − | − i⟩

σY | + ⟩ = − i | − ⟩

σY | − ⟩ = + i | + ⟩

σY |0⟩ = + i |1⟩

σY |1⟩ = − i |0⟩

• Phase shift operator: Rϕ = (1 0
0 eiϕ) = Pϕ

For , ϕ = π Rπ = Z = (1 0
0 −1)

For , ϕ = π/2 Rπ/2 = S = (1 0
0 i) = Z

For , ϕ = π/4

Rπ = T = (1 0
0 eiπ/4) = 4 Z

Single Qubit Gates
• X gate = Not operator = = bit flip = NOT gateσX

σX = X = (0 1
1 0) = |0⟩⟨1 | + |1⟩⟨0 |

σX |0⟩ = |1⟩

σX |1⟩ = |0⟩

σX | j⟩ = | j ⊕ 1⟩

• Z gate = = phase flipσZ

X ⊕

Z

σZ = Z = (1 0
0 −1) = |0⟩⟨0 | − |1⟩⟨1 |

σZ | j⟩ = (−1) j | j⟩σZ |0⟩ = + |0⟩ σZ |1⟩ = − |1⟩

• Y gate = = bit and phase flipσY

σY = Y = (0 −i
i 0) = iσXσZ

σY | j⟩ = i (−1) j | j ⊕ 1⟩

Single Qubit Gates
• Hadamard operator: to switch between Z and X basis.

H H = 1
2 (1 1

1 −1) = 1
2 (|0⟩⟨0 | + |0⟩⟨1 | + |1⟩⟨0 | − |1⟩⟨1 |)

H |0⟩ = 1
2 (1 1

1 −1) (1
0) = 1

2 (1
1) = | + ⟩

H |1⟩ = 1
2 (1 1

1 −1) (0
1) = 1

2 (1
−1) = | − ⟩

H | + ⟩ = |0⟩

H | − ⟩ = |1⟩

• Most general 2 by 2 unitary matrix:

U =
cos θ

2 e−iλ sin θ
2

eiϕ sin θ
2 ei(ϕ+λ) cos θ

2

U†U = 1 ⟶ 4 conditions
2 × 4 = 8 parameters

• The operator SH changes between the Z and Y basis.

H |x⟩ = 1
2 (|0⟩ + (−1)x |1⟩)

System with two or more qubits
• : Hilbert space spanned by

• is called the Hilbert space of the combined system
(tensor product space of and .

Hi { |0⟩, |1⟩}
H ≡ H1 ⊗ H2

H1 H2

dim (H1) = 2 = dim (H2)
dim (H1 ⊗ H2) = 4

H1 H2 H1 ⊗ H2

|0⟩ |0⟩ |0⟩ = |0⟩ ⊗ |0⟩ = |00⟩
|1⟩ |1⟩ |1⟩ = |0⟩ ⊗ |1⟩ = |01⟩

|2⟩ = |1⟩ ⊗ |0⟩ = |10⟩

|3⟩ = |1⟩ ⊗ |1⟩ = |11⟩
• A system of two spin-1/2 particles (qubits):

2 ⊗ 2 = 3 ⊕ 1
computational basis

or standard basis• n-qubit system:

|ψ⟩ = α0 |0⋯00⟩ + α1 |0⋯01⟩ + α2 |0⋯10⟩ + ⋯ + α2n−1 |1⋯11⟩
2n−1

∑
i=0

|αi |
2 = 1

Tensor Products of Operators
• Linearity:

• Each term in a tensor product acts on its own component:

• Multiplication:

• Matrix representation:

(a1A1 + a2A2) ⊗ B = a1A1 ⊗ B + a2A2 ⊗ B

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD)
(A ⊗ B) |m n⟩ = (A ⊗ B)(|m⟩ ⊗ |n⟩) = A |m⟩ ⊗ B |n⟩

|a⟩ = a0 |0⟩ + a1 |1⟩ = (a0
a1)

|b⟩ = b0 |0⟩ + b1 |1⟩ = (b0
b1)

|a⟩ ⊗ |b⟩ = (a0
a1) ⊗ (b0

b1) =
a0 (b0

b1)
a1 (b0

b1)
=

a0 b0
a0 b1
a1 b0
a1 b1

• Cartesian product:

• Tensor product:

Reducible
representation

A = A1 × A2 × ⋯ × An = {(a1, a2, ⋯, an) | ai ∈ Ai}
⃗a = (a1, a2, ⋯, an) ∈ A 2 ⃗a = (2a1,2a2, ⋯,2an)

A = A1 ⊗ A2 , |a1⟩ ∈ A1 , |a2⟩ ∈ A2
2(|a1⟩ ⊗ |a2⟩) = (2 |a1⟩) ⊗ |a2⟩ = |a1⟩ ⊗ (2 |a2⟩)

dim(A1 × A2) = dim(A1) + dim(A2)

dim(A1 ⊗ A2) = dim(A1) ⋅ dim(A2)

ℝ2 = ℝ × ℝ

142 4 Multiple Quantum Bits

be made real by factoring out an global phase), and unfortunately, this is too many
parameters to represent in three-dimensions. There is no Bloch sphere representa-
tion for a general multi-qubit state.

The tensor product also works for bras, so

h0|⌦h0|= h0|h0|= h00|.

Then, the inner product of, say h01| and |00i, is obtained by matching up qubits. For
example,

h01|00i= h0|0i|{z}
1

·h1|0i|{z}
0

= 0.

So |01i and |00i are orthogonal.

Exercise 4.3. Calculate the following inner products:
(a) h10|11i.
(b) h+�|01i.
(c) h1+0|1�0i.

4.2.2 Kronecker Product

In linear algebra, the tensor product is simply the Kronecker product, which is ob-
tained by multiplying each term of the first matrix/vector by the entire second ma-
trix/vector. For example, with two qubits,

|00i= |0i|0i= |0i⌦ |0i=
✓

1
0

◆
⌦
✓

1
0

◆
=

0

BB@
1
✓

1
0

◆

0
✓

1
0

◆

1

CCA=

0

BB@

1
0
0
0

1

CCA .

|01i= |0i|1i= |0i⌦ |1i=
✓

1
0

◆
⌦
✓

0
1

◆
=

0

BB@
1
✓

0
1

◆

0
✓

0
1

◆

1

CCA=

0

BB@

0
1
0
0

1

CCA .

|10i= |1i|0i= |1i⌦ |0i=
✓

0
1

◆
⌦
✓

1
0

◆
=

0

BB@
0
✓

1
0

◆

1
✓

1
0

◆

1

CCA=

0

BB@

0
0
1
0

1

CCA .

|11i= |1i|1i= |1i⌦ |1i=
✓

0
1

◆
⌦
✓

0
1

◆
=

0

BB@
0
✓

0
1

◆

1
✓

0
1

◆

1

CCA=

0

BB@

0
0
0
1

1

CCA .

Then,

= |0⟩

= |3⟩

= |2⟩

= |1⟩

|ψ⟩ = a00 |00⟩ + a01 |01⟩ + a10 |10⟩ + a11 |11⟩ =
1

∑
i, j=0

aij | i⟩ ⊗ | j⟩

1

∑
i, j=0

|aij |
2 =

2n−1

∑
i=0

|αi |
2 = 1 , n = 2= α0 |0⟩ + α1 |1⟩ + α2 |2⟩ + α3 |3⟩ =

2n−1

∑
i=0

αi | i⟩

Tensor Products of Operators
• Tensor product: A = A1 ⊗ A2 , |a1⟩ ∈ A1 , |a2⟩ ∈ A2

2(|a1⟩ ⊗ |a2⟩) = (2 |a1⟩) ⊗ |a2⟩ = |a1⟩ ⊗ (2 |a2⟩)
dim(A1 ⊗ A2) = dim(A1) ⋅ dim(A2)

For A with {α1, α2, ⋯, αn} basis and B with {β1, β2, ⋯, βm} basis , dim(A) = n and dim(B) = m

A ⊗ B with basis {αiβj} , dim(A ⊗ B) = n ⋅ m

• Direct product:

For A with operation ∙ and B with operation ∘ , one can consider A × B with operation ⋆ .
a ∈ A (a , b) ∈ A × B
b ∈ B

(a , b) ⋆ (a′ , b′) = (a ∙ a′ , b ∘ b′) ∈ A × B

element-wise operation
• For operators A = (a00 a01

a10 a11) , B = (b00 b01
b10 b11)

A ⊗ B = (a00 a01
a10 a11) ⊗ (b00 b01

b10 b11) =
a00 (b00 b01

b10 b11) a01 (b00 b01
b10 b11)

a10 (b00 b01
b10 b11) a11 (b00 b01

b10 b11)
=

a00b00 a00b01 a01b00 a01b01
a00b10 a00b11 a01b10 a01b11
a10b00 a10b01 a11b00 a11b01
a10b10 a10b11 a11b10 a11b11

Examples
H H = 1

2 (1 1
1 −1) = 1

2 (|0⟩⟨0 | + |0⟩⟨1 | + |1⟩⟨0 | − |1⟩⟨1 |)

H |0⟩ = 1
2 (1 1

1 −1) (1
0) = 1

2 (1
1) = | + ⟩

H |1⟩ = 1
2 (1 1

1 −1) (0
1) = 1

2 (1
−1) = | − ⟩

H | + ⟩ = |0⟩

H | − ⟩ = |1⟩
H |x⟩ = 1

2 (|0⟩ + (−1)x |1⟩)

1
2

1
2

1
2

− 1
2

= (U00 U01
U10 U11)H =

⟨0 | ⟨1 |

|0⟩

|1⟩

Uij = ⟨i |U | j⟩

U = IUI = (∑
i

| i⟩⟨i |) U (∑
j

| j⟩⟨ j |) = ∑
i, j

| i⟩(⟨i | U | j⟩)⟨ j | = ∑
i, j

| i⟩⟨ j |(⟨i | U | j⟩) = ∑
i, j

| i⟩⟨ j |Uij

Examples

150 4 Multiple Quantum Bits

Exercise 4.11. Are each of the following states a product state or entangled state? If it is a product
state, give the factorization.

(a)
1p
2
(|01i+ |10i).

(b)
1p
2
(|10i+ i|11i).

Exercise 4.12. Are each of the following states a product state or entangled state? If it is a product
state, give the factorization.

(a)
1
4

⇣
3|00i�

p
3|01i+

p
3|10i� |11i

⌘
.

(b)
1p
3
|0i|+i+

r
2
3
|1i|�i.

4.4 Quantum Gates

4.4.1 One-Qubit Quantum Gates

Say we have multiple qubits, and we want to apply a single-qubit gate (like I, X ,
Y , Z, S, T , or H) to just a single qubit. For example, say we have two qubits in the
|00i = |0i ⌦ |0i state, and we want to apply the Hadamard gate to the left qubit,
but leave the right qubit alone (i.e., apply the identity gate to it). We write the gates
using a tensor product, so we write

(H ⌦ I)(|0i⌦ |0i) = H|0i⌦ I|0i
= |+i⌦ |0i

=
1p
2
(|0i+ |1i)⌦ |0i

=
1p
2
(|0i⌦ |0i+ |1i⌦ |0i) .

Compressing the notation and also writing the result as a column vector,

(H ⌦ I)|00i= 1p
2
(|00i+ |10i) = 1p

2

0

BB@

1
0
1
0

1

CCA .

To draw as a quantum circuit, we use the convention that the rightmost qubit corre-
sponds to the top row of the quantum circuit, and the leftmost qubit corresponds to
the bottom row of the quantum circuit:

|0i I

|0i H or

|0i
|0i H

4.4 Quantum Gates 151

We follow this convention so that it matches Quirk, and in Chapter 5 the IBM Quan-
tum Composer. Nielsen and Chuang follows the opposite convention, where the
leftmost qubit corresponds to the top row of the quantum circuit.

We can find H ⌦ I as a matrix a couple different ways. First, we can find how
H ⌦ I acts on each of the basis states |00i, |01i, |10i, |11i. We already found how it
acts on |00i above. Continuing with the rest,

(H ⌦ I)|01i= 1p
2
(|01i+ |11i) = 1p

2

0

BB@

0
1
0
1

1

CCA ,

(H ⌦ I)|10i= 1p
2
(|00i� |10i) = 1p

2

0

BB@

1
0
�1
0

1

CCA ,

(H ⌦ I)|11i= 1p
2
(|01i� |11i) = 1p

2

0

BB@

0
1
0
�1

1

CCA .

As in Section 3.3.1, we can write H⌦ I as a matrix by combining the column vectors
for (H ⌦ I)|00i, . . . ,(H ⌦ I)|11i as a 4⇥4 grid:

H ⌦ I =
1p
2

0

BB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CCA .

The second way to find this matrix is by taking the Kronecker product of H and I:

H ⌦ I =
1p
2

✓
1 1
1 �1

◆
⌦
✓

1 0
0 1

◆
=

1p
2

0

BB@
1 ·

✓
1 0
0 1

◆
1 ·

✓
1 0
0 1

◆

1 ·
✓

1 0
0 1

◆
�1 ·

✓
1 0
0 1

◆

1

CCA

=
1p
2

0

BB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CCA .

This matches what we previously obtained. We can also find the Kronecker product
using Mathematica or SageMath:

• In Mathematica,

H=1/Sqrt[2]*{{1,1},{1,-1}};
eye={{1,0},{0,1}};
KroneckerProduct[H,eye]

H = 1
2 (1 1

1 −1) = 1
2 (|0⟩⟨0 | + |0⟩⟨1 | + |1⟩⟨0 | − |1⟩⟨1 |)

Examples

150 4 Multiple Quantum Bits

Exercise 4.11. Are each of the following states a product state or entangled state? If it is a product
state, give the factorization.

(a)
1p
2
(|01i+ |10i).

(b)
1p
2
(|10i+ i|11i).

Exercise 4.12. Are each of the following states a product state or entangled state? If it is a product
state, give the factorization.

(a)
1
4

⇣
3|00i�

p
3|01i+

p
3|10i� |11i

⌘
.

(b)
1p
3
|0i|+i+

r
2
3
|1i|�i.

4.4 Quantum Gates

4.4.1 One-Qubit Quantum Gates

Say we have multiple qubits, and we want to apply a single-qubit gate (like I, X ,
Y , Z, S, T , or H) to just a single qubit. For example, say we have two qubits in the
|00i = |0i ⌦ |0i state, and we want to apply the Hadamard gate to the left qubit,
but leave the right qubit alone (i.e., apply the identity gate to it). We write the gates
using a tensor product, so we write

(H ⌦ I)(|0i⌦ |0i) = H|0i⌦ I|0i
= |+i⌦ |0i

=
1p
2
(|0i+ |1i)⌦ |0i

=
1p
2
(|0i⌦ |0i+ |1i⌦ |0i) .

Compressing the notation and also writing the result as a column vector,

(H ⌦ I)|00i= 1p
2
(|00i+ |10i) = 1p

2

0

BB@

1
0
1
0

1

CCA .

To draw as a quantum circuit, we use the convention that the rightmost qubit corre-
sponds to the top row of the quantum circuit, and the leftmost qubit corresponds to
the bottom row of the quantum circuit:

|0i I

|0i H or

|0i
|0i H

150 4 Multiple Quantum Bits

Exercise 4.11. Are each of the following states a product state or entangled state? If it is a product
state, give the factorization.

(a)
1p
2
(|01i+ |10i).

(b)
1p
2
(|10i+ i|11i).

Exercise 4.12. Are each of the following states a product state or entangled state? If it is a product
state, give the factorization.

(a)
1
4

⇣
3|00i�

p
3|01i+

p
3|10i� |11i

⌘
.

(b)
1p
3
|0i|+i+

r
2
3
|1i|�i.

4.4 Quantum Gates

4.4.1 One-Qubit Quantum Gates

Say we have multiple qubits, and we want to apply a single-qubit gate (like I, X ,
Y , Z, S, T , or H) to just a single qubit. For example, say we have two qubits in the
|00i = |0i ⌦ |0i state, and we want to apply the Hadamard gate to the left qubit,
but leave the right qubit alone (i.e., apply the identity gate to it). We write the gates
using a tensor product, so we write

(H ⌦ I)(|0i⌦ |0i) = H|0i⌦ I|0i
= |+i⌦ |0i

=
1p
2
(|0i+ |1i)⌦ |0i

=
1p
2
(|0i⌦ |0i+ |1i⌦ |0i) .

Compressing the notation and also writing the result as a column vector,

(H ⌦ I)|00i= 1p
2
(|00i+ |10i) = 1p

2

0

BB@

1
0
1
0

1

CCA .

To draw as a quantum circuit, we use the convention that the rightmost qubit corre-
sponds to the top row of the quantum circuit, and the leftmost qubit corresponds to
the bottom row of the quantum circuit:

|0i I

|0i H or

|0i
|0i H

4.4 Quantum Gates 151

We follow this convention so that it matches Quirk, and in Chapter 5 the IBM Quan-
tum Composer. Nielsen and Chuang follows the opposite convention, where the
leftmost qubit corresponds to the top row of the quantum circuit.

We can find H ⌦ I as a matrix a couple different ways. First, we can find how
H ⌦ I acts on each of the basis states |00i, |01i, |10i, |11i. We already found how it
acts on |00i above. Continuing with the rest,

(H ⌦ I)|01i= 1p
2
(|01i+ |11i) = 1p

2

0

BB@

0
1
0
1

1

CCA ,

(H ⌦ I)|10i= 1p
2
(|00i� |10i) = 1p

2

0

BB@

1
0
�1
0

1

CCA ,

(H ⌦ I)|11i= 1p
2
(|01i� |11i) = 1p

2

0

BB@

0
1
0
�1

1

CCA .

As in Section 3.3.1, we can write H⌦ I as a matrix by combining the column vectors
for (H ⌦ I)|00i, . . . ,(H ⌦ I)|11i as a 4⇥4 grid:

H ⌦ I =
1p
2

0

BB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CCA .

The second way to find this matrix is by taking the Kronecker product of H and I:

H ⌦ I =
1p
2

✓
1 1
1 �1

◆
⌦
✓

1 0
0 1

◆
=

1p
2

0

BB@
1 ·

✓
1 0
0 1

◆
1 ·

✓
1 0
0 1

◆

1 ·
✓

1 0
0 1

◆
�1 ·

✓
1 0
0 1

◆

1

CCA

=
1p
2

0

BB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CCA .

This matches what we previously obtained. We can also find the Kronecker product
using Mathematica or SageMath:

• In Mathematica,

H=1/Sqrt[2]*{{1,1},{1,-1}};
eye={{1,0},{0,1}};
KroneckerProduct[H,eye]

4.4 Quantum Gates 151

We follow this convention so that it matches Quirk, and in Chapter 5 the IBM Quan-
tum Composer. Nielsen and Chuang follows the opposite convention, where the
leftmost qubit corresponds to the top row of the quantum circuit.

We can find H ⌦ I as a matrix a couple different ways. First, we can find how
H ⌦ I acts on each of the basis states |00i, |01i, |10i, |11i. We already found how it
acts on |00i above. Continuing with the rest,

(H ⌦ I)|01i= 1p
2
(|01i+ |11i) = 1p

2

0

BB@

0
1
0
1

1

CCA ,

(H ⌦ I)|10i= 1p
2
(|00i� |10i) = 1p

2

0

BB@

1
0
�1
0

1

CCA ,

(H ⌦ I)|11i= 1p
2
(|01i� |11i) = 1p

2

0

BB@

0
1
0
�1

1

CCA .

As in Section 3.3.1, we can write H⌦ I as a matrix by combining the column vectors
for (H ⌦ I)|00i, . . . ,(H ⌦ I)|11i as a 4⇥4 grid:

H ⌦ I =
1p
2

0

BB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CCA .

The second way to find this matrix is by taking the Kronecker product of H and I:

H ⌦ I =
1p
2

✓
1 1
1 �1

◆
⌦
✓

1 0
0 1

◆
=

1p
2

0

BB@
1 ·

✓
1 0
0 1

◆
1 ·

✓
1 0
0 1

◆

1 ·
✓

1 0
0 1

◆
�1 ·

✓
1 0
0 1

◆

1

CCA

=
1p
2

0

BB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CCA .

This matches what we previously obtained. We can also find the Kronecker product
using Mathematica or SageMath:

• In Mathematica,

H=1/Sqrt[2]*{{1,1},{1,-1}};
eye={{1,0},{0,1}};
KroneckerProduct[H,eye]

150 4 Multiple Quantum Bits

Exercise 4.11. Are each of the following states a product state or entangled state? If it is a product
state, give the factorization.

(a)
1p
2
(|01i+ |10i).

(b)
1p
2
(|10i+ i|11i).

Exercise 4.12. Are each of the following states a product state or entangled state? If it is a product
state, give the factorization.

(a)
1
4

⇣
3|00i�

p
3|01i+

p
3|10i� |11i

⌘
.

(b)
1p
3
|0i|+i+

r
2
3
|1i|�i.

4.4 Quantum Gates

4.4.1 One-Qubit Quantum Gates

Say we have multiple qubits, and we want to apply a single-qubit gate (like I, X ,
Y , Z, S, T , or H) to just a single qubit. For example, say we have two qubits in the
|00i = |0i ⌦ |0i state, and we want to apply the Hadamard gate to the left qubit,
but leave the right qubit alone (i.e., apply the identity gate to it). We write the gates
using a tensor product, so we write

(H ⌦ I)(|0i⌦ |0i) = H|0i⌦ I|0i
= |+i⌦ |0i

=
1p
2
(|0i+ |1i)⌦ |0i

=
1p
2
(|0i⌦ |0i+ |1i⌦ |0i) .

Compressing the notation and also writing the result as a column vector,

(H ⌦ I)|00i= 1p
2
(|00i+ |10i) = 1p

2

0

BB@

1
0
1
0

1

CCA .

To draw as a quantum circuit, we use the convention that the rightmost qubit corre-
sponds to the top row of the quantum circuit, and the leftmost qubit corresponds to
the bottom row of the quantum circuit:

|0i I

|0i H or

|0i
|0i H

Tensor Products of Operators
• Commuting operators: I = σ0 , X = σ1 , Y = σ2 , Z = σ3

σi σj = δij + i ϵijk σk M =
3

∑
i=0

aiσi , ai ∈ ℂ H = H† =
3

∑
i=0

aiσi , ai ∈ ℝ

|a⟩ = a0 |0⟩ + a1 |1⟩ ∈ H1 |b⟩ = b0 |0⟩ + b1 |1⟩ ∈ H2

I1 ⊗ I2 = I1
X1 ⊗ I2 = X1

Z1 ⊗ I2 = Z1

Y1 ⊗ I2 = Y1

I1 ⊗ I2 = I2
I1 ⊗ X2 = X2

I1 ⊗ Z2 = Z2

I1 ⊗ Y2 = Y2
Z1Z2 = Z2Z1

act on 1st state act on 2nd state

|ψ⟩ = |b1b2b3⟩ bi ∈ {0 ,1}

⟨Z1⟩ = ⟨ψ |Z1 |ψ⟩ = ⟨b1 b2 b3 |Z1 ⊗ I2 ⊗ I3 |b1 b2 b3⟩ = ⟨b1 |Z1 |b1⟩⟨b2 | I2 |b2⟩⟨b3 | I3 |b3⟩

= (−1)b1

Z1 |0⟩ = + 1 |0⟩
Z1 |1⟩ = − 1 |1⟩

Z1 | j⟩ = (−1) j | j⟩

• Example:

Tensor Products of Operators
• Bell basis for a two-qubit system |Φ+⟩ = 1

2 (|00⟩ + |11⟩)
|Φ−⟩ = 1

2 (|00⟩ − |11⟩)
|Ψ+⟩ = 1

2 (|01⟩ + |10⟩)
|Ψ−⟩ = 1

2 (|01⟩ − |10⟩)

|v⟩ ⊗ (eiϕ |w⟩) = (eiϕ |v⟩) ⊗ |w⟩ = eiϕ(|v⟩ ⊗ |w⟩)
1
2 (eiϕ |00⟩ + eiϕ |11⟩) = 1

2
eiϕ(|00⟩ + |11⟩) ∼ 1

2 (|00⟩ + |11⟩)

1
2 (eiϕ |00⟩ + |11⟩) ≠ 1

2 (|00⟩ + eiϕ |11⟩) ≠ 1
2 (|00⟩ + |11⟩)

• Overall phase is not important.

• Relative phase is important and observable. The interference term is crucial in QM.

Partial Trace
• Partial trace

A ⊗ B = (a00 a01
a10 a11) ⊗ (b00 b01

b10 b11) =
a00 (b00 b01

b10 b11) a01 (b00 b01
b10 b11)

a10 (b00 b01
b10 b11) a11 (b00 b01

b10 b11)

=

a00b00 a00b01 a01b00 a01b01
a00b10 a00b11 a01b10 a01b11
a10b00 a10b01 a11b00 a11b01
a10b10 a10b11 a11b10 a11b11

(a00 tr(B) a01 tr(B)
a10 tr(B) a11 tr(B)) = tr(B)(a00 a01

a10 a11)

(b00 tr(A) b01 tr(A)
b10 tr(A) b11 tr(A)) = tr(A)(b00 b01

b10 b11)

tr2

tr1

tracing out
2nd system

tracing out
1st system

Direct Sum of Vector Space

• If with bases and with are

vector spaces, is also a vector space with bases

 and

V { |α1⟩, ⋯, |αn⟩} W { |β1⟩, ⋯, |βm⟩}
V ⊕ W

{ |α1⟩, ⋯, |αn⟩, |β1⟩, ⋯, |βm⟩}
dim(V ⊕ W) = dim(V) + dim(W)

|v⟩ = (x1
x2) |w⟩ = (y1

y2) |v⟩ ⊕ |W⟩ =

x1
x2
y1
y2

O1 |v⟩ = O1(x1
x2) O2 |w⟩ = O2(y1

y2)

(O1 + O2)(|v⟩ ⊕ |W⟩) = (O1 0
0 O2)

x1
x2
y1
y2

Separable vs Entangled states
• Separable states: if a quantum state is given by tensor product of

two states, i.e., if , is separable.

• Entangled states: if a quantum state is not separable, is an
entangled state.

|ψ⟩
|ψ⟩ = |α⟩ ⊗ |β⟩ |ψ⟩

|ψ⟩

|00⟩ = |0⟩ ⊗ |0⟩ , |01⟩ = |0⟩ ⊗ |1⟩

|ψ⟩ = 1
2 (|00⟩ + |11⟩)

|ϕ⟩ = 1
2 (|00⟩ + |01⟩) = 1

2 (|0⟩ ⊗ |0⟩ + |0⟩ ⊗ |1⟩) = 1
2

|0⟩ ⊗ (|0⟩ + |1⟩)
 if Bob measures , Alice still has 50% probability for and .⟶ |0⟩ |0⟩ |1⟩

• Entangled states are crucial resources for QC, as there is no classical
analog.

• Density matrix: more later

Summary of fixed 1-qubit gates:
102 3 Quantum Computing

Table 3.3 Some useful single-qubit logic gates and their representations

Gate Circuit representation Matrix representation Dirac representation

X X

(
0 1
1 0

)

|1⟩⟨0| + |0⟩⟨1|

Y Y

(
0 −i
i 0

)

i |1⟩⟨0| − i |0⟩⟨1|

Z Z

(
1 0
0 −1

)

|1⟩⟨0| − |0⟩⟨1|

H H
1√
2

(
1 1
1 −1

)
1√
2
(|0⟩ + |1⟩)⟨0| + 1√

2
(|0⟩ − |1⟩)⟨1|

S S
1√
2

(
1 0
0 i

)
1√
2
|0⟩⟨0| + 1√

2
i |1⟩⟨1|

R R
1√
2

(
1 0
0 e(−iπ/4)

)
1√
2
|0⟩⟨0| + 1√

2
e(−iπ/4)|1⟩⟨1|

As has been made clear from the above expression, the role of H is to create super-
positions of qubits.

Of course, it is important to operate on more qubits at the same time as well.
The paradigmatic 2-qubit gate is the so-called CNOT gate, which is an example of a
controlled gate. The state of a qubit is changed, based on the value of another, control,
qubit. In the case of theCNOTgate, theNOToperation (or X operation) is performed,
when the first qubit is in state |1⟩; otherwise, the second qubit is unchanged

|00⟩ %→ |00⟩, |01⟩ %→ |01⟩, |10⟩ %→ |11⟩, |11⟩ %→ |10⟩. (3.43)

Accordingly, the matrix representation of the CNOT gate is given by

CNOT =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .

The CNOT gate (3.43) is a special case of a more general controlled U gate

|00⟩ %→ |00⟩, |01⟩ %→ |01⟩, |10⟩ %→ |1⟩U |0⟩, |11⟩ %→ |1⟩U |1⟩, (3.44)

where U is an arbitrary single-qubit unitary gate. For the CNOT, we obviously have
U = X . Any multiple qubit gate may be composed by a sequence of single-qubit
gates and CNOT gates [18]. In Table3.4, we summarise some useful multi-qubit
gates.

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

34

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

34

MITP Summer School Lecture Michael Spannowsky July 2023 69

Two Qubit Gates: CNOT and CU gates
• CNOT gate = Controlled Not =Controlled X
• NOT operation is performed on 2nd qubit, when the 1st

qubit is in state . Otherwise 2nd qubit is unchanged.|1⟩ ⊕

|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |1⟩ ⊗ U |0⟩ = |1⟩ ⊗ (U00 |0⟩ + U01 |1⟩)
|11⟩ → |1⟩ ⊗ U |1⟩ = |1⟩ ⊗ (U10 |0⟩ + U11 |1⟩)

|00⟩′
|01⟩′
|10⟩′
|11⟩′

=
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|00⟩
|01⟩
|10⟩
|11⟩

(I 0
0 X) = exp (i

π
4 (I − Z1)(I − X2))

| i j⟩ → | i i ⊕ j⟩ (mod 2)
• Generally, controlled U-gate

|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩

U

CU = (I 0
0 U) = exp (i

1
2 (I − Z1)H2) for U = eiH2 = (U00 U01

U10 U11)
U: any arbitrary
unitary matrix.

U=X, Y, Z leads to
CX, CY, CZ gates.eiθA = cos θ + i A sin θ for A2 = I

154 4 Multiple Quantum Bits

CNOT|00i= |00i,
CNOT|01i= |01i,
CNOT|10i= |11i,
CNOT|11i= |10i.

The left qubit is called the control qubit, and the right qubit is called the target
qubit. Note the control qubit is unchanged by CNOT, whereas the target qubit
becomes the XOR (exclusive OR) of the inputs:

CNOT|ai|bi= |ai|a�bi.

Thus, CNOT is a quantum XOR gate. Also, since the X gate is the NOT gate,
the CNOT gate is also called the CX gate or controlled-X gate.
In Entanglion (see Fig. 4.1), the player who uses the CNOT engine card is the
target qubit, and the other player is the control qubit. So, you can move between
planets Zero and One by playing a CNOT engine card when the other player is
at One.
Acting on a superposition,

CNOT(c0|00i+ c1|01i+ c2|10i+ c3|11i)
= c0CNOT|00i+ c1CNOT|01i+ c2CNOT|10i+ c3CNOT|11i
= c0|00i+ c1|01i+ c2|11i+ c3|10i
= c0|00i+ c1|01i+ c3|10i+ c2|11i.

So, the amplitudes of |10i and |11i are swapped.
As a matrix, the columns correspond to CNOT acting on |00i, |01i, |10i, and
|11i:

CNOT =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA .

For example, acting on a general superposition,

CNOT(c0|00i+ c1|01i+ c2|10i+ c3|11i) =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

0

BB@

c0
c1
c2
c3

1

CCA=

0

BB@

c0
c1
c3
c2

1

CCA .

So, the amplitudes of |10i and |11i are swapped, as expected.
As a quantum circuit, CNOT spans two qubits or two lines:

•

Two Qubit Gates: SWAP and CPhase gates
• SWAP gate: X

X

SWAP =
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

= 1
2 [I ⊗ I + X ⊗ X + Y ⊗ Y + Z ⊗ Z]

|ab⟩ → |ba⟩ |00⟩ → |00⟩
|01⟩ → |10⟩
|10⟩ → |01⟩
|11⟩ → |11⟩

• CPhase gate = Controlled phase shift:
shift phase by only if it acts on ϕ |1⟩

|ab⟩ → |ab⟩ eiϕ for a = b = 1
|ab⟩ otherwise

CPhase(ϕ) =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ

= |0⟩⟨0 | ⊗ I + |1⟩⟨1 | ⊗ Pϕ , Pϕ = (1 0
0 eiϕ) = |0⟩⟨0 | + |1⟩⟨1 |eiϕ

CPhase(π) =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

= CZ = Controlled Z
Z

Two Qubit Gates: Bell state

• Example: how to obtain Bell state.

⊕
H|0⟩

|0⟩
|ψ⟩

|ψ⟩ = CNOT (H ⊗ I) [|0⟩ ⊗ |0⟩]
= CNOT [1

2
(|0⟩ + |1⟩) ⊗ |0⟩]

= CNOT [1
2

(|00⟩ + |10⟩)]
= 1

2
(|00⟩ + |11⟩)

= 1
2

1
0
0
1

H = 1
2 (1 1

1 −1) = 1
2 (|0⟩⟨0 | + |0⟩⟨1 | + |1⟩⟨0 | − |1⟩⟨1 |)

H |0⟩ = | + ⟩

H |1⟩ = | − ⟩

H | + ⟩ = |0⟩

H | − ⟩ = |1⟩

H |x⟩ = 1
2 (|0⟩ + (−1)x |1⟩)

Quantum gate can be parametrised

Pauli rotations:

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) −ei(−

θ1
2 + θ3

2) sin(θ2
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) ei(

θ1
2 + θ3

2) cos(θ2
2)

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0⟩ or |1⟩. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) −ei(−

θ1
2 + θ3

2) sin(θ2
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) ei(

θ1
2 + θ3

2) cos(θ2
2)

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0⟩ or |1⟩. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) −ei(−

θ1
2 + θ3

2) sin(θ2
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) ei(

θ1
2 + θ3

2) cos(θ2
2)

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0⟩ or |1⟩. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) −ei(−

θ1
2 + θ3

2) sin(θ2
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) ei(

θ1
2 + θ3

2) cos(θ2
2)

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0⟩ or |1⟩. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.

generalised form via

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) −ei(−

θ1
2 + θ3

2) sin(θ2
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) ei(

θ1
2 + θ3

2) cos(θ2
2)

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0⟩ or |1⟩. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

34

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

34

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

34

MITP Summer School Lecture Michael Spannowsky July 2023 70

Example: Turning a Hamiltonian term into a gate

Recall

Assume

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

R(2t)

H1 = Z (512)

U = iZt (513)

RZ(✓) = ei
✓
2Z (514)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

R(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

R(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

36

Example 1

Example 2

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

R(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

36

Assume

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

R(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

36

Assume, universal gate operations on device are

Since

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

36

(proof via CBH Formula)

MITP Summer School Lecture Michael Spannowsky July 2023 82

Example 3

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

H = Z ⌦ Z (519)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

H = Z ⌦ Z (519)

e�Z⌦Zt
6= e�iZt

⌦ e�iZt (520)

36

note

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

H = Z ⌦ Z (519)

e�Z⌦Zt
6= e�iZt

⌦ e�iZt (520)

(Z ⌦ Z)2 = I (521)

36

with

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

H = Z ⌦ Z (519)

e�Z⌦Zt
6= e�iZt

⌦ e�iZt (520)

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

36

one finds

for the action on states we find

which can be written in matrix form as

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

H = Z ⌦ Z (519)

e�Z⌦Zt
6= e�iZt

⌦ e�iZt (520)

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

36

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

|11i (526)

|01i (527)

|10i (528)

|00i (529)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

|11i (526)

|01i (527)

|10i (528)

|00i (529)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

|11i (526)

|01i (527)

|10i (528)

|00i (529)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

|11i (526)

|01i (527)

|10i (528)

|00i (529)

37

if # of 1 is even one gets -
if #of 1 is odd one gets + (parity of state)

circuit that
implements that

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

|11i (526)

|01i (527)

|10i (528)

|00i (529)

RZ(2t)

H RZ(2t) H

RZ(✓)

RZ(2t)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

RZ(2t) =


e�it 0
0 eit

�

|11i (526)

|01i (527)

|10i (528)

|00i (529)

RZ(2t)

H RZ(2t) H

RZ(✓)

RZ(2t)

37

with

MITP Summer School Lecture Michael Spannowsky July 2023 83

No-cloning theorem
• Unknown quantum states can not be copied or cloned.

– Suppose U is a unitary transformation that clones
 for all quantum state

– Let and be two orthogonal quantum states.

U(|a⟩ |0⟩) = |a⟩ |a⟩ |a⟩
|a⟩ |b⟩

U(|a⟩ |0⟩) = |a⟩ |a⟩

U(|b⟩ |0⟩) = |b⟩ |b⟩

|c⟩ = 1
2 (|a⟩ + |b⟩)

U(|c⟩ |0⟩) = 1
2 [U |a⟩ |0⟩ + U |b⟩ |0⟩]

= 1
2 [|a⟩ |a⟩ + |b⟩ |b⟩]

U |c⟩ |0⟩ = |c⟩ |c⟩ = 1
2 (|a⟩ + |b⟩) 1

2 (|a⟩ + |b⟩)

= 1
2 (|a⟩ |a⟩ + |a⟩ |b⟩ + |b⟩ |a⟩ + |b⟩ |b⟩)

≠

No-cloning theorem

• No unitary operation that can clone all quantum states.
• However it is possible to construct a quantum state from a known

quantum state.

• It is possible to obtain n particles in an entangled state
 from unknown state .

• It is not possible to create n particle state

 from an unknown

state .

• Profound implication in quantum information and error correction.

a |00⋯0⟩ + b |11⋯1⟩ a |0⟩ + b |1⟩

(a |0⟩ + b |1⟩) ⊗ ⋯ ⊗ (a |0⟩ + b |1⟩)
a |0⟩ + b |1⟩

Superdense Coding

⊕
H|0⟩1

|0⟩2

H |1⟩ = 1
2 (|0⟩ − |1⟩)

CNOT |a b⟩ = |a a ⊕ b⟩

CNOT (H ⊗ I)(|0⟩1 ⊗ |0⟩2) = CNOT 1
2 (|0⟩1 + |1⟩1) ⊗ |0⟩2

= CNOT 1
2 (|00⟩ + |10⟩) = 1

2 (|00⟩ + |11⟩)

Encoder Decoder

Entangled States

|q1⟩ |q2⟩

|q1⟩a

b

a

b

• How to create two entangled states
H |x⟩ = 1

2 (|0⟩ + (−1)x |1⟩)

H |0⟩ = 1
2 (|0⟩ + |1⟩)

 Charles H. Bennett
Stephen Wiesner

1970, 1992

Superdense Coding
a

b

A

B ⊕
H

⊕

a

b

a

b

(1) (2) (3) (4) (5)

(1) are classical bits.a, b ∈ {0,1}

|ψ1⟩ = 1
2 [|00⟩ + (−1)a |11⟩]

|ψ0⟩ = 1
2 [|00⟩ + |11⟩]

• Initial state of qubits A
and B is the entangled
Bell state.

if a = 1, |1⟩ ⟶ − |1⟩
|0⟩ ⟶ + |0⟩

if a = 0, |0⟩ ⟶ + |0⟩
|1⟩ ⟶ + |1⟩

Controlled phase gate = CZ ()ϕ = π
A

Change the phase for Alice’s qubit (1st) qubit

= quantum state of entire system|ψ⟩

Superdense Coding
a

b

A

B ⊕
H

⊕

a

b

a

b

(1) (2) (3) (4) (5)

(2) If b=0, the first qubit stays unchanged.
CNOT : (00) ⟶ (00)

If b=1, the first qubit changes bit. (01) ⟶ (01)
(10) ⟶ (11)
(11) ⟶ (10)|ψ2⟩ = 1

2 [|b0⟩ + (−1)a | b̄1⟩]
b = 0 ⟺ b̄ = 1
b = 1 ⟺ b̄ = 0

|ψ1⟩ = 1
2 [|00⟩ + (−1)a |11⟩]

|ψ0⟩ = 1
2 [|00⟩ + |11⟩]

b: classical bit Alice’s qubit

Superdense Coding
a

b

A

B ⊕
H

⊕

a

b

a

b

(1) (2) (3) (4) (5)

(3) Bob performs CNOT.

Alice gives her qubit to Bob.

|ψ3⟩ = CNOT |ψ2⟩

= CNOT 1
2 [|b0⟩ + (−1)a | b̄1⟩]

= 1
2 [|bb⟩ + (−1)a | b̄b⟩]

CNOT |b0⟩ = |bb⟩
CNOT | b̄1⟩ = | b̄b⟩

|ψ1⟩ = 1
2 [|00⟩ + (−1)a |11⟩]

|ψ0⟩ = 1
2 [|00⟩ + |11⟩]

|ψ2⟩ = 1
2 [|b0⟩ + (−1)a | b̄1⟩]

Change the 2nd
qubit conditioned
upon 1st qubit.

Superdense Coding
a

b

A

B ⊕
H

⊕

a

b

a

b

(1) (2) (3) (4) (5)

(4) Bob applies Hadamard on Alice’s qubit (1st qubit).

|ψ1⟩ = 1
2 [|00⟩ + (−1)a |11⟩]

|ψ0⟩ = 1
2 [|00⟩ + |11⟩]

|ψ2⟩ = 1
2 [|b0⟩ + (−1)a | b̄1⟩]

|ψ3⟩ = 1
2 [|bb⟩ + (−1)a | b̄b⟩]

|ψ4⟩ = (H ⊗ I) |ψ3⟩ = (H ⊗ I) 1
2 [|bb⟩ + (−1)a | b̄b⟩]

= 1
2

1
2 [|0b⟩ + (−1)b |1b⟩ + (−1)a(|0b⟩ + (−1)b̄ |1b⟩)]

= 1
2 [(1 + (−1)a) |0b⟩ + ((−1)b + (−1)a+b̄) |1b⟩] H |x⟩ = 1

2 (|0⟩ + (−1)x |1⟩)

Superdense Coding
a

b

A

B ⊕
H

⊕

a

b

a

b

(1) (2) (3) (4) (5)

(4) Bob applies Hadamard.

|ψ1⟩ = 1
2 [|00⟩ + (−1)a |11⟩]

|ψ0⟩ = 1
2 [|00⟩ + |11⟩]

|ψ2⟩ = 1
2 [|b0⟩ + (−1)a | b̄1⟩]

|ψ3⟩ = 1
2 [|bb⟩ + (−1)a | b̄b⟩]

|ψ4⟩ = 1
2 [(1 + (−1)a) |0⟩ + ((−1)b + (−1)a+b̄) |1⟩] ⊗ |b⟩

= 1
2 [(1 + (−1)a) |0⟩ + (−1)b(1 − (−1)a) |1⟩] ⊗ |b⟩

(5) Bob performs measurements on both qubits.

Superdense Coding

|ψ4⟩ = (−1)ab |ab⟩ = (−1)ab |a⟩ ⊗ |b⟩

0 0 1 1

0 1 0 0

1 0 1 0=2

1 1 0 1

a b b̄ |B⟩a + b̄ |A⟩

|ψ4⟩ = |A⟩ ⊗ |B⟩ = 1
2 [(1 + (−1)a) |0⟩ + ((−1)b + (−1)a+b̄) |1⟩] ⊗ |B⟩

|1⟩

|0⟩ |1⟩
|0⟩

− |1⟩

|0⟩

|1⟩

|0⟩

• Measurement of two qubits yield two classical bits a and b with 100% probability.
• By initially sharing some entanglement, one can send two bits of information by

sending a single qubit.

• Shared entanglement powerful resource for quantum cryptography→

Superdense Coding
a b

1
2 (|00⟩ + |11⟩)

Transformation
(Alice) New state

0 0

0 1

1 0

1 1

I ⊗ I |ψ0⟩

X ⊗ I |ψ0⟩

Z ⊗ I |ψ0⟩

Y ⊗ I |ψ0⟩

1
2 (|00⟩ − |11⟩)

1
2 (|10⟩ + |01⟩)

1
2 (− |10⟩ + |01⟩)

CNOT (Bob)
1
2 (|00⟩ + |10⟩)= 1

2 (|0⟩ + |1⟩)⊗ |0⟩

1
2 (|00⟩ − |10⟩)= 1

2 (|0⟩ − |1⟩)⊗ |0⟩

1
2 (|11⟩ + |01⟩)= 1

2 (|1⟩ + |0⟩)⊗ |1⟩

1
2 (− |11⟩ + |01⟩)= 1

2 (− |1⟩ + |0⟩)⊗ |1⟩

Alice gives
her qubit
to Bob.

|ψ0⟩ = 1
2 (|00⟩ + |11⟩)

H ⊗ I
|0⟩ ⊗ |0⟩

|1⟩ ⊗ |0⟩

|0⟩ ⊗ |1⟩

− |1⟩ ⊗ |1⟩

• Bob measures two
qubits in the standard
basis to obtain two-bit
binary encoding of the
number that Alice
wishes to send.

Comments
• This result shouldn't be surprising: it is a known result that 𝑛 qubits cannot be used

to store more than 𝑛 bits of information.
• To devise a super-superdense coding scheme to transmit more than two bits of

information with only two qubits, would mean to find a way to encode and decode
more than two bits of information in the overall state of two qubits, and we know
that this is not possible.

• Nonetheless, the superdense coding protocol does provide advantages with
respect to the classical case. The qubit used as channel can be generated and
shared a long time before the communication begins, and just be kept "in store" for
whenever Alice and Bob feel the need to use it. When they finally decide to
communicate, they can now "compress" two bits of information into a single qubit,
thus effectively doubling their channel capacity, at the cost of "consuming" the pre-
shared qubit.

• In other words, you can think of the superdense protocol as a way to "preload" the
communication, in order to make it more efficient in the future. What is neat and
"quantum" about this is that it can be done without any assumption on the actual
information that will be transmitted later. This would not be possible in a classical
context. This works for two entangled qubits only. (Security + no-cloning)

• There are many research articles on super-dense coding.

Three Qubit Gates
• Toffoli gate=Controlled CNOT=CCNOT=CCX=T

– If 1st qubit is , perform CNOT on the second and third qubits.|1⟩

⊕

|000⟩
|001⟩
|010⟩

|111⟩

|011⟩
|100⟩
|101⟩
|110⟩

|110⟩
|111⟩

T =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

= (I 0
0 CNOT)

T = exp[i
π
8 (I − Z1)(I − Z2)(I − X3)]

Three Qubit Gates
• Fredkin gate=Controlled SWAP=CSWAP gate

– If 1st qubit is , swap the second and third qubits.|1⟩

|000⟩
|001⟩
|010⟩

|111⟩

|011⟩
|100⟩
|101⟩
|110⟩

T =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

= (I 0
0 SWAP)

X
X

|111⟩

|100⟩
|110⟩
|101⟩

Two Qubit Gates: Bell state

• Example: how to obtain Bell state.

⊕
H|0⟩

|0⟩
|ψ⟩

|ψ⟩ = CNOT (H ⊗ I) [|0⟩ ⊗ |0⟩]
= CNOT [1

2
(|0⟩ + |1⟩) ⊗ |0⟩]

= CNOT [1
2

(|00⟩ + |10⟩)] = 1
2

(|00⟩ + |11⟩)

= 1
2

(|00⟩ + |11⟩)

= 1
2

1
0
0
1

An example: GHZ state
|0⟩1

|0⟩2 |ψ⟩⊕
H

⊕|0⟩3

|ψ⟩ = |000⟩ + |111⟩
2

Greenberger-Horne-Zeilinger (GHZ) state, 1989

|ψ⟩ = (I1 ⊗ CNOT23)(CNOT12 ⊗ I3)(H ⊗ I2 ⊗ I3) |0⟩ ⊗ |0⟩ ⊗ |0⟩

= (I1 ⊗ CNOT23) 1
2 (|00⟩ + |11⟩) ⊗ |0⟩

= (I1 ⊗ CNOT23) 1
2 (|000⟩ + |110⟩)

= 1
2 (|0⟩ ⊗ CNOT |00⟩ + |1⟩ ⊗ CNOT |10⟩) = |000⟩ + |111⟩

2

For N-qubit system: |GHZ⟩ = |0⟩⊗N + |1⟩⊗N

2
= |00⋯0⟩ + |11⋯1⟩

2

Maximally entangled quantum state• IBMQ

- Problem Set 3 (due 1:00 pm, February 9, 2024 Friday) -

1. Basic operations with bit strings. Consider two n-bit strings, x and y:

|xi = |xn�1 xn�2 · · · x1 x0i , (1)

|yi = |yn�1 yn�2 · · · y1 y0i , (2)

where xi , yi 2 {0, 1}. The Hamming distance, dH(x, y), is defined as the number of bits in which

the two strings di↵er. The Hamming weight is defined as dH(x) = dH(x, 0), which is the number of

1-bit in x, or the Hamming distance between x and 0. Another useful operation is x · y =
n�1P
i=0

xiyi,

which is the number of common 1-bit in x and y.

(a) Show
2n�1P
x=0

(�1)x·x = 0. (1 point)

(b) Show 1
2n

2n�1P
x=0

(�1)x·y = �y0 ⌘ �yn�10 · · · �y10�y00. (1 point)

2. CNOT gate and a circuit identity. We define CNOT = CNOT10 gate as

CNOTij = CNOT with qubit i as the control and qubit j as the target . (3)

For example, CNOT10|0ji = |0ji and CNOT10|1ji = |1 j� 1i or CNOT10|ai|bi = |ai|a� bi. We use

the following diagram to denote the CNOT gate:

FIG. 1: CNOT = CNOT10 gate.

If we want the control and target to be flipped, it would be CNOT01 and we would draw the circuit

as Another way to flip the control and target qubits is to apply Hadamard gates to both sides of the

CNOT: In other words, the following identity holds valid:

⇣
H ⌦H

⌘
CNOT10

⇣
H ⌦H

⌘
= CNOT01 . (4)

(a) Prove this circuit identity by directly/explicitly computing the left-handed and the right-handed

sides. (2 points)

https://quantum-computing.ibm.com/composer/files/new?initial=N4IgdghgtgpiBcIDMBaAjgVwEYEsAuKA4gBIBaIANCGhAM5QIgDyACgKIByAigIIDKAWQAEAJgB0ABgDcAHTA4wAYwA2GACYwhM6jGU4sARjELF22WDQAnGAHMhaANpIAuubkALew4mu5igB5ePhReBr5KgY5hIY4i4QD08UIAAooA9qpQYLRC3hQGFHGUIBq0ipY4AA54OGlgjCAAvkA

Teleportation
• Use two classical bits and one Bell pair to move a state from

qubit 1 to qubit 3.

Telemon

Alice Bob

Two classical bits

entangled
qubit

entangled
qubit

|ψ⟩

|0⟩

H

|0⟩

⊕⊕

H X Z |ψ⟩
CX

CZ

Teleportation
• Use two classical bits and one Bell pair to move a state from

qubit 1 to qubit 3.

(1) (2) (3) (5)(4)

|ψ⟩

|0⟩

H

|0⟩

⊕⊕

H X Z |ψ⟩

Qubit 1

Qubit 2

Qubit 3

CX

CZ

initial state = |ψ0⟩ = |ψ⟩1 ⊗ |0⟩2 ⊗ |0⟩3

|ψ1⟩ = H3 |ψ⟩1 ⊗ |0⟩2 ⊗ |0⟩3 = |ψ⟩1 ⊗ |0⟩2 ⊗ 1
2 (|0⟩ + |1⟩)

|ψ2⟩ = CNOT32 |ψ⟩1 ⊗ |0⟩2 ⊗ 1
2 (|0⟩ + |1⟩)

= |ψ⟩1 ⊗ 1
2 (|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

conditioned on q3

}
} Bob

Alice

- Problem Set 3 (due 1:00 pm, February 9, 2024 Friday) -

1. Basic operations with bit strings. Consider two n-bit strings, x and y:

|xi = |xn�1 xn�2 · · · x1 x0i , (1)

|yi = |yn�1 yn�2 · · · y1 y0i , (2)

where xi , yi 2 {0, 1}. The Hamming distance, dH(x, y), is defined as the number of bits in which

the two strings di↵er. The Hamming weight is defined as dH(x) = dH(x, 0), which is the number of

1-bit in x, or the Hamming distance between x and 0. Another useful operation is x · y =
n�1P
i=0

xiyi,

which is the number of common 1-bit in x and y.

(a) Show
2n�1P
x=0

(�1)x·x = 0. (1 point)

(b) Show 1
2n

2n�1P
x=0

(�1)x·y = �y0 ⌘ �yn�10 · · · �y10�y00. (1 point)

2. CNOT gate and a circuit identity. We define CNOT = CNOT10 gate as

CNOTij = CNOT with qubit i as the control and qubit j as the target . (3)

For example, CNOT10|0ji = |0ji and CNOT10|1ji = |1 j� 1i or CNOT10|ai|bi = |ai|a� bi. We use

the following diagram to denote the CNOT gate:

FIG. 1: CNOT = CNOT10 gate.

If we want the control and target to be flipped, it would be CNOT01 and we would draw the circuit

as Another way to flip the control and target qubits is to apply Hadamard gates to both sides of the

CNOT: In other words, the following identity holds valid:

⇣
H ⌦H

⌘
CNOT10

⇣
H ⌦H

⌘
= CNOT01 . (4)

(a) Prove this circuit identity by directly/explicitly computing the left-handed and the right-handed

sides. (2 points)

Teleportation

(1) (2) (3) (5)(4)

|ψ⟩

|0⟩

H

|0⟩

⊕⊕

H X Z |ψ⟩

Qubit 1

Qubit 2

Qubit 3

CX

CZ

|ψ2⟩ = |ψ⟩1 ⊗ 1
2 (|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

for |ψ⟩ = α |0⟩ + β |1⟩|ψ3⟩ = CNOT12 |ψ⟩1 ⊗ 1
2 (|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

= CNOT12 (α |0⟩ + β |1⟩) ⊗ 1
2 (|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

= CNOT12
1
2 (α |000⟩ + α |011⟩ + β |100⟩ + β |111⟩)

= 1
2 (α |000⟩ + α |011⟩ + β |110⟩ + β |101⟩)

}
} Bob

Alice

Teleportation

(1) (2) (3) (5)(4)

|ψ⟩

|0⟩

H

|0⟩

⊕⊕

H X Z |ψ⟩

Qubit 1

Qubit 2

Qubit 3

CX

CZ

|ψ3⟩ = 1
2 (α |000⟩ + α |011⟩ + β |110⟩ + β |101⟩)

|ψ4⟩ = H1 |ψ3⟩ = 1
2 [α(|000⟩ + |100⟩) + α(|011⟩ + |111⟩) + β(|010⟩ − |110⟩) + β(|001⟩ − |101⟩)]

qubit1 qubit2 correction step

0 0
0 1
1 0
1 1

α |0⟩ + β |1⟩
β |0⟩ + α |1⟩
α |0⟩ − β |1⟩

−β |0⟩ + α |1⟩

I
X
Z

ZX

final state
α |0⟩ + β |1⟩
α |0⟩ + β |1⟩
α |0⟩ + β |1⟩
α |0⟩ + β |1⟩

Initial state:
 |ψ⟩ = α |0⟩ + β |1⟩

qubit3

Quantum Algorithms and Data Embedding
Classical Algorithm Quantum Algorithm

Dataset D
Input x

Output y

Dataset D
Input x

Output y

Input encoding

Processing

Read out

Quantum System

State preparation

Unitary evolution

Measurement

Quantum Algorithms and Data Embedding
Classical data Requirement Quantum state

⃗x ∈ {0 ,1}⊗n

⃗x = (x1, x2, ⋯, xn) ∈ {0 ,1}
|ψ⟩ = |x1 x2 ⋯ xn⟩

= |x1⟩ ⊗ |x2⟩ ⊗ ⋯ ⊗ |xn⟩

⃗x ∈ ℝ2n

xi ∈ ℝ

2n

∑
i=1

|xi |
2 = 1 |ψx⟩ =

2n

∑
i=1

xi | i ⟩

A ∈ ℝ2n×2m

Aij ∈ ℝ
i = 1,⋯,2n

j = 1,⋯,2m ∑
i, j

|Aij |
2 = 1 |ψA⟩ = ∑

i, j
Aij | i ⟩ ⊗ | j ⟩

A ∈ ℝ2n×2n ∑
i

Aii = 1 A† = A
A*ij = Aji

ρA = ∑
i, j

Aij | i ⟩ ⟨ j |

x ∈ [0, 2π)x ∈ ℝ

A ∈ ℝ2n×2n

A ∈ ℝ2n×2n

A† = A

A† ≠ A (in general)

U(x) = e−ixH

HA = A

HA = (0 A
A† 0)

Basis
Encoding

Amplitude
Encoding

Time-evolution
Encoding

Hamiltonian
Encoding

Binary encoding into basis states

Represent numbers as binaries, each binary
digit requires a qubit

data vector quantum state
binary fraction rep.

MITP Summer School Lecture Michael Spannowsky July 2023 56

sign

basis vector coefficient {0,1}

| i = ↵|0i+ �|1i (532)

|�i = �|0i+ �|1i (533)

(A⌦B)(| i ⌦ |�i) (534)

(A⌦B)(| i ⌦ |�i) = (A| i)⌦ (B|�i) = a| i ⌦ b|�i = ab(| i ⌦ |�i) (535)

| i ⌦ |�i = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|0i ⌦ |0i+ ↵�|0i ⌦ |1i+ ��|1i ⌦ |0i+ ��|1i ⌦ |1i

⇢ = p"| "ih" |+ p#| #ih# | (536)

p" =
1

1 + e�E/kT
, p# = 1� p" (537)

x =
⌧�1X

k=1

bk
1

2k
(538)

38

• Binary fraction = expression in power of 1/2

In decimal form: 0. jℓ jℓ+1 ⋯ jm = jℓ
2 + jℓ+1

22 + ⋯ + jm
2m−ℓ+1

j = j127 + j226 + j325 + j424 + j523 + j622 + j721 + j820

j
23 = j124 + j223 + j322 + j421 + j520 + j62−1 + j72−2 + j82−3

j1 j2 j3 j4 j5 . j6 j7 j8 ⏟binary fraction: 0 . j6 j7 j8

Angle/Rotation encoding
When used on an 𝑛-qubit circuit, this feature map of angle encoding can take
up to 𝑛 numerical inputs 𝑥1, ... , 𝑥𝑛. The action of its circuit consists in the
application of a rotation gate on each qubit 𝑗 parametrised by the value 𝑥𝑗 . In
this feature map, we are using the 𝑥𝑗 values as angles in the rotations, hence
the name of the encoding.

Example
x normalised [0,2pi)

as RZ|0> doesnt do anything

MITP Summer School Lecture Michael Spannowsky July 2023 58

Quantum versions of classical algorithms
• Any quantum computation is reversible prior to measurement. In

contrast, classical computations are NOT in general reversible.
– (ex) classical NOT operation is reversible while AND, OR NAND

are not
– Every classical computation does have a classical reversible

analog (which takes slightly more computational resources)
– The construction of efficient classical reversible versions of

arbitrary Boolean circuits easily generalizes to construction of
quantum circuits (that implement general classical circuits)

• Any classical reversible computation with n-input and n-ouput simply
permutes bit stringsN = 2n

Classical computation:

Quantum computation:

π : ZN ⟶ ZN

Uπ :
N−1

∑
x=0

ax |x⟩ ⟶
N−1

∑
x=0

ax |π(x)⟩

Quantum versions of classical algorithms

• Any classical computation n-inputs and m-outputs defines

1
0

3
2

1
0

3
2

πn = 2, N = 22 = 4 |0⟩ = |00⟩
|1⟩ = |01⟩
|2⟩ = |10⟩
|3⟩ = |11⟩

f : ZN ⟶ ZM

x ⟶ f (x)
N = 2n M = 2m

 can be extended to a reversible function acting on n+m bits→ πf
πf : ZL ⟶ ZL L = 2n+m

(x, y) ⟶ (x, y ⊕ f (x)) = bitwise exclusive OR⊕
 = n-bit stringx = m-bit stringy = m-bit stringf(x) = n+m-bit stringL

(x,0) ⟶ (x, f (x))• For y=0, acts like : π f

• is reversible, there is a
corresponding unitary transformation
πf

Uf
|x⟩
|y⟩

|x⟩
|y ⊕ f(x)⟩

Uf (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩

A simple QA with two qubits
• Consider a simple function,
• For possible functions

– Identity: and

– Bit-flip function: and

– Constant function: or

f(x) : {0,1} ⟶ {0,1}

f(0) = 0 f(1) = 1
f(0) = 1 f(1) = 0
f(x) = 0 f(x) = 1

Uf
|x⟩
|y⟩

|x⟩
|y ⊕ f(x)⟩

Uf (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩

one-bit domain one-bit range

• Reconstruct a unitary transformation such
that , which

corresponds to

Uf
(x, y) ⟶

Uf

(x, y ⊕ f(x))

1

0

X

1

0

Y

1

0

X

1

0

Y

1

0

X

1

0

Y

1

0

X

1

0

Y

• is mode 2 addition: and .

• is not suitable because is not unitary in general.

•

⊕ 0 ⊕ 0 = 0 = 1 ⊕ 1 0 ⊕ 1 = 1 = 0 ⊕ 1
x ⟶ f(x) f(x)

(x, y)
Uf⟶ (x, y ⊕ f(x))

Uf⟶ (x, y ⊕ f(x) ⊕ f(x)) = (x, y)

Uf (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩

A simple QA with two qubits
• Take advantage of “quantum parallelism” (a qubit can have

both and)

• Apply Hadamard gate to the first qubit and then apply U.

|0⟩ |1⟩

Uf
|x⟩
|y⟩

|x⟩
|y ⊕ f(x)⟩

Uf
|0⟩
|0⟩

|0⟩
|0 ⊕ f(0)⟩

Uf
|0⟩
|0⟩

|ψ⟩H H |0⟩ = 1
2 (|0⟩ + |1⟩)

|ψ⟩ = Uf (H |0⟩ ⊗ |0⟩) = 1
2

Uf (|0⟩ + |1⟩) ⊗ |0⟩ = 1
2

Uf (|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |0⟩)
|ψ⟩ = 1

2 (|0⟩ ⊗ | f (0)⟩ + |1⟩ ⊗ | f (1)⟩) = ∑
x=0,1

1
2

|x⟩ ⊗ | f (x)⟩

|ψ⟩ = 1
2

Uf (|0⟩ ⊗ | f (0)⟩ + |1⟩ ⊗ | f (1)⟩) = ∑
x=0,1

1
2

|x⟩ ⊗ | f (x)⟩

A simple QA with two qubits
• contains information on both f(0) and f(1)

– Superposition of f(0) and f(1)
– Need to perform measurement to access the info
– However, measurement returns only one value of x and f(x)

|ψ⟩

Uf
|0⟩
|0⟩

|ψ⟩H

• We want to find out whether a particular
function, with one input bit and one output
bit is constant or balanced. Classically, we
need to evaluate the function twice (i.e.,
for input = 0 and input = 1), but
remarkably, we only need to evaluate the
function once using quantum algorithm,
by using Deutsch’s algorithm.

Deutsch Algorithm
1985

Deutsch Algorithm
• Deutsch algorithm exploits QA to obtain information about global

property of f(x).
• A function of a single qubit can be either constant or

balanced
f(0) = f(1)

f(0) ≠ f(1)

Uf
|0⟩

|1⟩

H

H

H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩H ⊗ H⟶
Uf⟶

H ⊗ I⟶

(1) (2) (3)

(1)

|ψ0⟩ ≡ |0⟩ ⊗ |1⟩ = |01⟩

|ψ1⟩ = H ⊗ H |01⟩ = 1
2 (|0⟩ + |1⟩) ⊗ 1

2 (|0⟩ − |1⟩)
= 1

2 (|00⟩ − |01⟩ + |10⟩ − |11⟩) = 1
2 (∑

x
|x⟩) ⊗ (|0⟩ − |1⟩)

Deutsch Algorithm

Uf
|0⟩

|1⟩

H

H

H

(1) (2) (3)

(2)

|ψ0⟩ ≡ |0⟩ ⊗ |1⟩ = |01⟩

|ψ1⟩ = 1
2 (∑

x
|x⟩) ⊗ (|0⟩ − |1⟩)

Uf (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩

|ψ2⟩ = Uf |ψ1⟩

For :f(x) = 0 Uf [|x⟩ ⊗ (|0⟩ − |1⟩)] = Uf (|x⟩ ⊗ |0⟩) − Uf (|x⟩ ⊗ |1⟩)

= |x⟩ ⊗ (|0⟩ − |1⟩) = (−1) f(x) |x⟩ ⊗ (|0⟩ − |1⟩)
= |x⟩ ⊗ |0 + f (x)⟩ − |x⟩ ⊗ |1 + f (x)⟩

For :f(x) = 1 Uf [|x⟩ ⊗ (|0⟩ − |1⟩)] = |x⟩ ⊗ (|1⟩ − |0⟩) = (−1) f(x) |x⟩ ⊗ (|0⟩ − |1⟩)
|ψ2⟩ = Uf |ψ1⟩ = 1

2 [∑
x

(−1) f(x) |x⟩]⊗ 1
2 (|0⟩ − |1⟩) Phase Kick-Back: Deutsch

algorithm encodes the value
of f(x) in the first qubit rather
than in the second qubit.

Deutsch Algorithm

Uf
|0⟩

|1⟩

H

H

H

(1) (2) (3)

(3)

|ψ0⟩ ≡ |0⟩ ⊗ |1⟩ = |01⟩

|ψ1⟩ = 1
2 (∑

x
|x⟩) ⊗ (|0⟩ − |1⟩)

Uf (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩

|ψ3⟩ = (H ⊗ I) |ψ2⟩ = (H ⊗ I) 1
2 [∑

x
(−1) f(x) |x⟩]⊗ 1

2 (|0⟩ − |1⟩)

H
1
2 [∑

x
(−1) f(x) |x⟩]= 1

2
H [(−1) f(0) |0⟩ + (−1) f(1) |1⟩]

= 1
2 [(−1) f(0) |0⟩ + |1⟩

2
+ (−1) f(1) |0⟩ − |1⟩

2]

= 1
2 [((−1) f(0) + (−1) f(1)) |0⟩ + ((−1) f(0) − (−1) f(1)) |1⟩]

Deutsch Algorithm
• Deutsch algorithm exploits QA to obtain information about global

property of f(x).
• A function of a single qubit can be either constant or

balanced
f(0) = f(1)

f(0) ≠ f(1)

|ψ3⟩ = 1
2 [((−1) f(0) + (−1) f(1)) |0⟩ + ((−1) f(0) − (−1) f(1)) |1⟩]

Uf
|0⟩

|1⟩
|ψ3⟩

H

H

H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩H ⊗ H⟶
Uf⟶

H ⊗ I⟶

• If measurement gives .|0⟩, f(0) = f(1) ⟶ f(x) = constant
• If measurement gives .|1⟩, f(0) ≠ f(1) ⟶ f(x) = balanced
• Can be generalized to function with multiple input values, Deutsch-

Josza algorithm

Quantum computing jargon
• Query complexity:

– In Deutsch’s algorithm we are not using a quantum
computer to evaluate a “classically difficult” function per
se, but rather using quantum phenomena to reduce the
number of queries we need to make to an unknown
function, to ascertain some information thereabout.

• Oracles and black boxes:
– In Deutsch’s algorithm, and other query complexity

algorithms, we query U, which is known as a “black box”,
or often in quantum computing an “oracle”. The oracle in
Deutsch’s algorithm is sufficiently simple that we can
explicitly express each possible option, but frequently in
quantum computing problems are framed in terms of
oracles, even when this is not the case.

Basic operations with bit strings
• and are two n-bit strings:x y |x⟩ = |xn−1 xn−2 ⋯ x1 x0 ⟩

|y⟩ = |yn−1 yn−2 ⋯ y1 y0 ⟩
xi , yi ∈ {0,1}

• Hamming distance = = the number of bits in which the
two strings differ.

dH(x, y)

• Hamming weight = = = the number of 1-bit in =
the Hamming distance between and .

dH(x) dH(x,0) x
x 0

• = the number of common 1-bit in and x ⋅ y x y
• = the bitwise exclusive OR = bitwise addition under mod 2x ⊕ y
• = the bitwise ANDx ∧ y
• = = the bit string that flips 0 and 1∼ x x ⊕ 111⋯1

|x⟩ = |10101 ⟩
|y⟩ = |11100 ⟩

dH(x, y) = ?

• x ⋅ y = dH(x ∧ y)

Useful Identities

• x ⋅ y = 1
2 (1 − (−1)x⋅y) mod 2

• x ⋅ y + x ⋅ z = x ⋅ (y ⊕ z) mod 2
• dH(x ⊕ y) = dH(x) + dH(y) mod 2

•

2n−1

∑
x=0

(−1)x⋅x = 0

•

2n−1

∑
x=0

(−1)x⋅y = {2n , if y = 0
0 , otherwise

b/c successive and terms cancel2i 2i + 1

•

2n−1

∑
x=0

(−1)x⋅x = 0 •

2n−1

∑
x=0

(−1)x⋅y = {2n , if y = 0
0 , otherwise

For n = 2 : x ∈ {0, 1, 2, 3}, or {00, 01, 10, 11}

2n−1

∑
x=0

(−1)x⋅x = (−1)0 + (−1)1 + (−1)1 + (−1)2 = 0

x ⋅ x ∈ {0, 1, 1, 2}

2n−1

∑
x=0

(−1)x⋅y =
2n−1

∑
x=0

(−1)xn−1yn−1+xn−2yn−2+⋯+x0y0

= (
1

∑
x0=0

(−1)x0y0)(
1

∑
x1=0

(−1)x1y1) × ⋯⋯ × (
1

∑
xn−1=0

(−1)xn−1yn−1)

= (1 + (−1)y0)(1 + (−1)y1)⋯⋯(1 + (−1)yn−1)
= 0 unless y0 = y1 = ⋯ = yn−1 = 0

W ≡ H ⊗ H ⊗ ⋯ ⊗ H ≡ H⊗n

Walsh-Hadamard Transformation
apply to each qubit in an n-qubit systemH

W |0⟩ = H ⊗ H ⊗ ⋯ ⊗ H(|0⟩ ⊗ ⋯ ⊗ |0⟩) N = 2n

|0⟩ = |00⋯00⟩

|1⟩ = |00⋯01⟩
|2⟩ = |00⋯11⟩

|N − 1⟩ = |11⋯11⟩
⋮

Computational
basis

Shorthand
Notation

W |0⟩ = 1
N

N−1

∑
x=0

|x⟩

= (H |0⟩) ⊗ ⋯ ⊗ (H |0⟩)
= (1

2
(|0⟩ + |1⟩)) ⊗ ⋯ ⊗ (1

2
(|0⟩ + |1⟩))

= 1
2n (|00⋯00⟩ + |00⋯01⟩ + |00⋯10⟩⋯ + |11⋯11⟩)

Linear combination of all possible states

Walsh-Hadamard Transformation
W ≡ H ⊗ H ⊗ ⋯ ⊗ H ≡ H⊗n

W |0⟩ = 1
N

N−1

∑
x=0

|x⟩

apply to each qubit in an n-qubit systemH

N = 2n

• How does act on ?W |r⟩

|r⟩ = |rn−1 rn−2 ⋯ r1 r0 ⟩
|s⟩ = |sn−1 sn−2 ⋯ s1 s0 ⟩

ri , si ∈ {0,1}

W |r⟩ = ∑
s

Wrs |s⟩

W |r⟩ = (H ⊗ H ⊗ ⋯ ⊗ H) |rn−1 rn−2 ⋯ r1 r0 ⟩

= 1
2n [|0⟩ + (−1)rn−1 |1⟩]⊗ ⋯ ⊗ [|0⟩ + (−1)r0 |1⟩]

=
1

∑
sn−1=0

(−1)sn−1⋅rn−1 |sn−1⟩⏟ =
1

∑
s0=0

(−1)s0⋅r0 |s0⟩⏟= 1
2n

N−1

∑
s=0

(−1)sn−1⋅rn−1 |sn−1⟩ ⊗ ⋯ ⊗ (−1)s1⋅r1 |s1⟩ ⊗ (−1)s0⋅r0 |s0⟩

W(|r⟩) = 1
2n

2n−1

∑
s=0

(−1)s⋅r |s⟩ Wrs = Wsr = 1
2

n (−1)r⋅s

Deutsch-Jozsa Algorithm
• Given a function that is known to be either constant (0 on all

inputs or 1 on all inputs) or balanced (1 for exactly half of the input domain
and 0 for the other half), and ,

determine whether the function is constant or balanced.

f : Z2n ⟶ Z2

Uf : |x⟩ ⊗ |y⟩ ⟶ |x⟩ ⊗ |x ⊕ f(x)⟩
f

• Phase change for a subset of basis vectors
Consider a superposition : |ψ⟩ = 1

2n ∑
x

|x⟩

Boolean function : f : Z2n ⟶ Z2 where f (x) = {1 , if x ∈ X ⊂ Z2n

0 , otherwise
Uf [|ψ⟩ ⊗ | − ⟩] = Uf [1

2n ∑
x

|x⟩ ⊗ 1
2

(|0⟩ − |1⟩)]
= ∑

x
(−1) f(x) |ψ⟩ ⊗ | − ⟩

where X = {x | f (x) = 1}

1992

For : |ψ⟩ = ∑
x

ax |x⟩

Sϕ
X :

N−1

∑
x=0

ax |x⟩ ⟶ ∑
x∈X

ax eiϕ |x⟩ + ∑
x∉X

ax |x⟩

Deutsch Algorithm

Uf
|0⟩

|1⟩

H

H

H

(1) (2) (3)

(2)

|ψ0⟩ ≡ |0⟩ ⊗ |1⟩ = |01⟩

|ψ1⟩ = 1
2 (∑

x
|x⟩) ⊗ (|0⟩ − |1⟩)

Uf (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩

|ψ2⟩ = Uf |ψ1⟩

For :f(x) = 0 Uf [|x⟩ ⊗ (|0⟩ − |1⟩)] = Uf (|x⟩ ⊗ |0⟩) − Uf (|x⟩ ⊗ |1⟩)

= |x⟩ ⊗ (|0⟩ − |1⟩) = (−1) f(x) |x⟩ ⊗ (|0⟩ − |1⟩)
= |x⟩ ⊗ |0 + f (x)⟩ − |x⟩ ⊗ |1 + f (x)⟩

For :f(x) = 1 Uf [|x⟩ ⊗ (|0⟩ − |1⟩)] = |x⟩ ⊗ (|1⟩ − |0⟩) = (−1) f(x) |x⟩ ⊗ (|0⟩ − |1⟩)
|ψ2⟩ = Uf |ψ1⟩ = 1

2 [∑
x

(−1) f(x) |x⟩]⊗ 1
2 (|0⟩ − |1⟩) Phase Kick-Back: Deutsch

algorithm encodes the value
of f(x) in the first qubit rather
than in the second qubit.

Deutsch-Jozsa Algorithm

Uf

|0⟩⊗n

|1⟩

|ψ⟩W

H | − ⟩

Uf

|0⟩⊗n

|1⟩

|ψ⟩W

H |1⟩H

|ψ0⟩ = W |0⟩ = 1
N

N−1

∑
x=0

|x⟩

|ψ⟩ = ∑
x

(−1) f(x) |ψ0⟩

Can reuse the ancilla qubit

|ψ⟩ = 1
N

N−1

∑
i=1

(−1) f(i) | i ⟩

N = 2n = dim of Hilbert space
n = number of qubits

|ϕ⟩ = W |ψ⟩ = 1
N

N−1

∑
i=1

(−1) f(i) W | i ⟩ = 1
N

N−1

∑
i=1

(−1) f(i)
N−1

∑
j=0

1
N

(−1)i⋅j | j ⟩

For constant f, (−1) f(i) = (−1) f(0) is a global phase .

|ϕ⟩ = (−1) f(0) 1
N ∑

j
(∑

i
(−1)i⋅j) | j⟩ = (−1) f(0) |0⟩

•
2n−1

∑
x=0

(−1)x⋅y = {2n , if y = 0
0 , otherwise

⏟ only nonzero when j = 0

W(|r⟩) = 1
2n

2n−1

∑
s=0

(−1)s⋅r |s⟩

Deutsch-Jozsa Algorithm
|ϕ⟩ = W |ψ⟩ = 1

N

N−1

∑
i=1

(−1) f(i) W | i ⟩ = 1
N

N−1

∑
i=1

(−1) f(i)
N−1

∑
j=0

1
N

(−1)i⋅j | j ⟩

For balanced f, |ϕ⟩ = 1
2n ∑

j
(∑

i∈X
(−1)i⋅j − ∑

i∉X
(−1)i⋅j) | j⟩ where X = {x | f (x) = 1}

 does not contain |ϕ⟩ |0⟩ .⟺
For amplitude is zero.j = 0,

∑
i∈X

(−1)i⋅j − ∑
i∉X

(−1)i⋅j = 0 for j = 0

• Measurement of state (in the standard basis) will return with probability
1, if is constant, and will return a non-zero with probability 1, if is
balanced.

• Classical algorithm must evaluate at least times to solve the problem
with certainty, while quantum algorithm solves with a single evaluation of .

• There is an exponential separation between the query complexity of the QA and
query complexity of any classical algorithm.

• There are classical algorithms that solve the problem in fewer evaluations but
only with high probability of success (not 100% probability).

|ϕ⟩ |0⟩
f | j⟩ f

f 2n−1 + 1
Uf

Deutsch-Jozsa Algorithm

Uf

|0⟩⊗n

|1⟩

|ψ⟩W

H |1⟩H

W

H = 1
2 (1 1

1 −1) = 1
2 ∑

x,y∈{0,1}
(−1)xy |y⟩⟨x |

| + ⟩ = 1
2 (|0⟩ + |1⟩)

| − ⟩ = 1
2 (|0⟩ − |1⟩)

W ≡ H⊗n = 1
2 ∑

x,y∈{0,1}
(−1)xy |y⟩⟨x |

⊗n

H2 = I

= 1
2 ∑

x0,y0

(−1)x0y0 |y0⟩⟨x0 | ⊗ ⋯ ⊗ 1
2 ∑

x0,y0

(−1)xn−1,yn−1 |yn−1⟩⟨xn−1 |

= 1
2

n ∑
x,y∈{0,1}⊗n

(−1)x⋅y |y⟩⟨x | x ⋅ y = xoy0 + x1y1 + ⋯ + xn−1yn−1

H⊗n 1
2

n ∑
x

|x⟩ = 0 H⊗n |0⟩ = 1
2

n ∑
x

|x⟩

Bernstein-Vazirani Algorithm
• A n-bit function , which outputs a singlet bit, is guaranteed to

be of the form , where s is an unknown n-bit string and

. Find the unknown string .

• Best classical algorithm uses calls to . Each query gives one
bit of information of (because outputs one bit).

f : {0,1}⊗n ⟶ {0,1}
fs(x) = x ⋅ s

x ⋅ s = x0s0 + ⋯ + xn−1sn−1 =
n−1

∑
i=0

xisi (mod 2) s = (s0s1⋯sn−1)

𝒪(n) fs(x) = x ⋅ s mod 2
s f

Uf (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩

fs(x) = x ⋅ s mod 2

Uf = ∑
x

∑
y

|x⟩⟨x | ⊗ |y ⊕ f (x)⟩⟨y |

Uf = ∑
x∈{0,1}⊗n

∑
y∈{0,1}⊗n

|x⟩⟨x | ⊗ |y ⊕ s ⋅ x⟩⟨y |

Uf
|0⟩⊗n

|1⟩

|ψs⟩W

H | − ⟩

• How do we find with less than queries? Use superposition (over all possible input bit strings)s n →

|ψs⟩ = 1
2n ∑

x∈{0,1}⊗n

(−1) f(x) |x⟩ = 1
2n ∑

x∈{0,1}⊗n

(−1)x⋅s |x⟩

Uf (|ψ⟩ ⊗ | − ⟩) = 1
2n ∑

x
(−1) f(x) |x⟩ ⊗ | − ⟩

1997

Bernstein-Vazirani Algorithm
• states are orthogonal!|ψs⟩ ⟨ψs |ψt⟩ = δst

⟨ψs |ψt⟩ = 1
2n ∑

x∈{0,1}⊗n

(−1)x⋅s ⟨x | ∑
y∈{0,1}⊗n

(−1)y⋅t |y⟩ = 1
2n ∑

x,y
(−1)x⋅s+y⋅t ⟨x |y⟩

= 1
2n ∑

x∈{0,1}⊗n

(−1)x⋅s+x⋅t = 1
2n ∑

x∈{0,1}⊗n

(−1)x⋅(s⊕t)
x ⋅ s + x ⋅ t = x ⋅ (s ⊕ t) (mod 2)
x ⋅ s = x0s0 + ⋯ + xn−1sn−1

∑
x∈{0,1}⊗n

(−1)x⋅k = ∑
x∈{0,1}⊗n

(−1)x0k0+⋯+xn−1kn−1 = ∑
x0∈{0,1}

(−1)x0k0 ∑
x1∈{0,1}

(−1)x1k1⋯ ∑
xn−1∈{0,1}

(−1)xn−1kn−1

= 2δk00 × 2δk10⋯ × 2δkn−10 = 2nδk0
2n−1

∑
x=0

(−1)x⋅y = {2n , if y = 0
0 , otherwise

⟨ψs |ψt⟩ = δs⊕t,0 = δs t

• Orthogonal set of vectors from a basis and we can “measure in this basis”.
• Equivalent to performing unitary transformation and measuring in the

computational basis, from which we should be able to extract the string .s

W ≡ H⊗n = 1
2

n ∑
x,y∈{0,1}⊗n

(−1)x⋅y |y⟩⟨x | = ∑
y∈{0,1}⊗n

|y⟩⟨ψy | ⟨ψs | = 1
2n ∑

x∈{0,1}⊗n

(−1)x⋅s ⟨x |

Bernstein-Vazirani Algorithm
• Apply to : H⊗n |ψs⟩ H⊗n |ψs⟩ = ∑

y
|y⟩⟨ψy |ψs⟩ = |s⟩

Us
|0⟩⊗n

|1⟩

|s⟩W

H |1⟩H

W
|0⟩

|1⟩

|s0⟩H

H

|1⟩

H

H

Us
H

H H

W

|0⟩

|0⟩

|s1⟩

|sn−1⟩
Circuit for Berstein-Vazirani algorithm

in 100% probability

• Simpler explanation:
Berstein-Vazirani algorithm
behaves as if it were a circuit
consisting only of CNOT
operations from ancilla to the
qubits corresponding to 1-bit
of s.

⊕
H H

H H

⊕

=

Bernstein-Vazirani Algorithm
• Berstein-Vazirani algorithm behaves as if it were a circuit consisting

only of CNOT operations from ancilla to the qubits corresponding to 1-
bit of s. s = 01101

⊕
⊕

⊕

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|1⟩

|0⟩

|1⟩

|1⟩

|0⟩

|1⟩

|1⟩⊕ ⊕ ⊕

0

1

0

1

1

ancilla

• For s=01101, the black box for
behaves as if it contained this
circuit, consisting of CNOT gates
for each 1-bit of s.

Us • BV algorithm behaves as if it were
implemented by this simple circuit,
consisting of a CNOT for each 1-bit
of s.

Simon’s Algorithm
• Given a 2-to-1 function such that for all

, find the hidden string . (Simon’s algorithm shows
structural similarities to Shor’s algorithm)

f f(x) = f(x ⊕ a)
x ∈ ℤn

2 a ∈ ℤn
2

Uf : |x⟩ ⊗ |y⟩ ⟶ |x⟩ ⊗ |y ⊕ f (x)⟩
|x⟩ = |x0x1⋯xn−1⟩

xi ∈ {0,1}

N = 2nUf [W |0⟩⊗n ⊗ |0⟩] = Uf
1
N ∑

x
|x⟩ ⊗ |0⟩ = 1

N ∑
x

|x⟩ ⊗ | f (x)⟩

• Suppose we perform a measurement on 2nd qubit and is
the measured value. Then the 1st qubit becomes

.

f(x0)
1
2 (|x0⟩ + | f (x0)⟩) = 1

2 (|x0⟩ + |x ⊕ a⟩)

Uf
|0⟩⊗n

1

|0⟩2

W W

Simon’s Algorithm
• Apply Walsh-Hadamard:

W [1
2

(|x0⟩ + |x0 ⊕ a⟩)] = 1
2 [1

2
n ∑

y
{(−1)x0⋅y + (−1)(x0⊕a)⋅y} |y⟩]

W(|r⟩) = 1
2n

2n−1

∑
s=0

(−1)s⋅r |r⟩

Wrs = Wsr = 1
2

n (−1)r⋅s

= 1

2
n+1 ∑

y
(−1)x0⋅y (1 + (−1)a⋅y) |y⟩

= 1

2
n+1 ∑

y⋅a=even
(−1)x0⋅y |y⟩

Uf
|0⟩⊗n

1

|0⟩2

W W

• Measurement on the 1st qubit results in a random such that .

• Unknown must satisfy .

y y ⋅ a = 0 mod 2
ai y0a0 + y1a1 + ⋯yn−1an−1 = 0 mod 2

Simon’s Algorithm
• Repeat the same procedure until n linearly independent equations

have been found. Each time computation is repeated, at least 50% of
the time, the resulting equation can be independent.

• Repeating 2n times, there is a 50% chance that n-linearly independent
equations can be found.

• The equation can be solved to find the string in steps.

• With high likelihood, the hidden string will be found with calls to
 , followed by steps to solve the resulting set of equations.

• Classical algorithm needs calls to .

a 𝒪(n2)
a 𝒪(n)

Uf 𝒪(n2)
𝒪(2n/2) f

Simon’s Algorithm: probability of finding
n-linearly independent equations

• Consider we have a string, .

• 1st measurement:

• After 1st measurement, what is the probability that next measurement will be
linearly independent?

• Probability that next measurement will be linearly independent:

• Probability that next string is linearly independent:

• Probability of being linearly independent:

x = (x1x2x3⋯xn)
P1 = 1

P2 = 1 − 1/2n

P3 = 1 − 2/2n

xm+1 Pm = 1 − 2m /2n

n − 1

P = (1 − 1
2n)(1 − 2

2n)⋯(1 − 2n−2

2n) ≥ 1 −
n

∑
k=2

1
2k = 1 −

1
4 (1 − 1

2n−1)
1 − 1

2

≥ 1
2 + 1

2n

(1 − a)(1 − b) = 1 − a − b + ab ≥ 1 − a − b for 0 < a, b < 1

Discrete Fourier Transformation
• Simon’s algorithm Shor’s algorithm (factoring numbers) makes use of QFT.
• Discrete Fourier Transformation (DFT): signal processing, quantum theory

(position momentum).

• Assume a vector of N complex numbers:

• DFT is a mapping from N complex # to N complex #.

⟶

↔
f fk , k = 0,1,⋯, N − 1

DFT : fk ⟶ f̃j = 1
N

N−1

∑
k=0

w−jk fk w = exp(2πi
N)

Inverse DFT : f̃k ⟶ fj = 1
N

N−1

∑
k=0

wjk f̃k

fj = 1
N

N−1

∑
k=0

wjk f̃k = 1
N

N−1

∑
k=0

wjk (1
N

N−1

∑
ℓ=0

w−ℓk fℓ) = 1
N

N−1

∑
ℓ

N−1

∑
k=0

w(j−ℓ)k fℓ =
N−1

∑
ℓ

fℓ δjℓ = fj

1
N

N−1

∑
k=0

w(j−ℓ)k =
1
N

1 − exp(2πi
N (j − ℓ)N)

1 − exp(2πi
N)

= 0 , if j ≠ ℓ

1 , if j = ℓ

1
N

N−1

∑
k=0

w(j−ℓ)k = δjℓ

⏟ nonzero only
when j = ℓ

Discrete Fourier Transformation

7.7 Discrete Fourier Transform 307

Image credit: Adapted from https://commons.wikimedia.org/wiki/File:

Anatomy_of_the_Human_Ear_blank.svg

The air in the ear canal carries these vibrations to the eardrum, a stretchy mem-
brane, causing it to vibrate. The vibrations continue through three bones, the small-
est in the human body, called ossicles. The third ossicle rests on the oval window,
another stretchy membrane, and the vibrations transmit through it into the cochlea,
a spiral-shaped hollow bone. Inside the cochlea are tiny hair receptors that convert
the vibrations into nerve signals that are sent to the brain’s hearing center and inter-
preted as sound.2

The following waveform shows the vibrations of a piano playing a C major chord
(made of middle C and the E and G notes above it) for one second:

0 0.2 0.4 0.6 0.8 1
Time (s)

-1

-0.5

0

0.5

1

A
m

p
li

tu
d
e

The details of the vibrations are hard to see, so let us zoom in to the first 0.05
seconds:

2 In the 2013 Academy Award-winning film Gravity, many of the scenes are silent because there
is no air in space to transmit sound.

308 7 Quantum Algorithms

0 0.01 0.02 0.03 0.04 0.05
Time (s)

-1

-0.5

0

0.5

1

A
m

p
li

tu
d
e

You can download a WAV file of the one-second piano tune at https://tinyur
l.com/2p86zew6. The WAV file, and the previous waveforms, consists of 44100
points for the one second of sound, and we say that the sound was sampled at a rate
of 44100 Hertz (Hz), or 44100 points per second. Since the first plot is one second
long, it has 44100 points, and since the second plot is 0.05 seconds long, it contains
2205 points. The 44100 points can be downloaded from https://tinyurl.com/

jsavt7ez, and they begin and end with the following (x,y) coordinates:

0.00000,-0.46933
0.00002,-0.46011
0.00005,-0.44931
0.00007,-0.41455
0.00009,-0.38632
0.00011,-0.34164
0.00014,-0.28851

...
0.99993,0.12177
0.99995,0.12454
0.99998,0.13571

Now, say we want to find the frequencies that make up the previous C chord, which
correspond to the pitches or notes that make up the sound. If we let the num-
ber of samples be N = 44100 and label the previous amplitudes a0 = �0.46933,
a1 = �0.46011, . . . , aN�1 = 0.13571, then the discrete Fourier transform of the
waveform is a sequence of N points f0, f1, . . . , fN�1 defined to be

fk =
1p
N

N�1

Â
j=0

a je2pi jk/N . (7.6)

For example,

f0 =
1p

44100

⇣
�0.46933e2pi(0)(0)/44100 �0.46011e2pi(1)(0)/44100 + . . .

+0.13571e2pi(44099)(0)/44100
⌘
=�0.0973861,

f1 =
1p

44100

⇣
�0.46933e2pi(0)(1)/44100 �0.46011e2pi(1)(1)/44100 + . . .

Vibrations of a piano playing a C major chord (made of middle C
and the E and G notes above it) for one second

Example from
introduction to
classical and

quantum
computing by

Wong

44100 points

2205 points

Discrete Fourier Transformation
Sound was sampled at a rate of 44100 Hertz (Hz), or 44100 points per second.

308 7 Quantum Algorithms

0 0.01 0.02 0.03 0.04 0.05
Time (s)

-1

-0.5

0

0.5

1

A
m

p
li

tu
d

e

You can download a WAV file of the one-second piano tune at https://tinyur
l.com/2p86zew6. The WAV file, and the previous waveforms, consists of 44100
points for the one second of sound, and we say that the sound was sampled at a rate
of 44100 Hertz (Hz), or 44100 points per second. Since the first plot is one second
long, it has 44100 points, and since the second plot is 0.05 seconds long, it contains
2205 points. The 44100 points can be downloaded from https://tinyurl.com/

jsavt7ez, and they begin and end with the following (x,y) coordinates:

0.00000,-0.46933
0.00002,-0.46011
0.00005,-0.44931
0.00007,-0.41455
0.00009,-0.38632
0.00011,-0.34164
0.00014,-0.28851

...
0.99993,0.12177
0.99995,0.12454
0.99998,0.13571

Now, say we want to find the frequencies that make up the previous C chord, which
correspond to the pitches or notes that make up the sound. If we let the num-
ber of samples be N = 44100 and label the previous amplitudes a0 = �0.46933,
a1 = �0.46011, . . . , aN�1 = 0.13571, then the discrete Fourier transform of the
waveform is a sequence of N points f0, f1, . . . , fN�1 defined to be

fk =
1p
N

N�1

Â
j=0

a je2pi jk/N . (7.6)

For example,

f0 =
1p

44100

⇣
�0.46933e2pi(0)(0)/44100 �0.46011e2pi(1)(0)/44100 + . . .

+0.13571e2pi(44099)(0)/44100
⌘
=�0.0973861,

f1 =
1p

44100

⇣
�0.46933e2pi(0)(1)/44100 �0.46011e2pi(1)(1)/44100 + . . .

N=44,100
a0
a1

a4

aN−1

308 7 Quantum Algorithms

0 0.01 0.02 0.03 0.04 0.05
Time (s)

-1

-0.5

0

0.5

1

A
m

p
li

tu
d

e

You can download a WAV file of the one-second piano tune at https://tinyur
l.com/2p86zew6. The WAV file, and the previous waveforms, consists of 44100
points for the one second of sound, and we say that the sound was sampled at a rate
of 44100 Hertz (Hz), or 44100 points per second. Since the first plot is one second
long, it has 44100 points, and since the second plot is 0.05 seconds long, it contains
2205 points. The 44100 points can be downloaded from https://tinyurl.com/

jsavt7ez, and they begin and end with the following (x,y) coordinates:

0.00000,-0.46933
0.00002,-0.46011
0.00005,-0.44931
0.00007,-0.41455
0.00009,-0.38632
0.00011,-0.34164
0.00014,-0.28851

...
0.99993,0.12177
0.99995,0.12454
0.99998,0.13571

Now, say we want to find the frequencies that make up the previous C chord, which
correspond to the pitches or notes that make up the sound. If we let the num-
ber of samples be N = 44100 and label the previous amplitudes a0 = �0.46933,
a1 = �0.46011, . . . , aN�1 = 0.13571, then the discrete Fourier transform of the
waveform is a sequence of N points f0, f1, . . . , fN�1 defined to be

fk =
1p
N

N�1

Â
j=0

a je2pi jk/N . (7.6)

For example,

f0 =
1p

44100

⇣
�0.46933e2pi(0)(0)/44100 �0.46011e2pi(1)(0)/44100 + . . .

+0.13571e2pi(44099)(0)/44100
⌘
=�0.0973861,

f1 =
1p

44100

⇣
�0.46933e2pi(0)(1)/44100 �0.46011e2pi(1)(1)/44100 + . . .

308 7 Quantum Algorithms

0 0.01 0.02 0.03 0.04 0.05
Time (s)

-1

-0.5

0

0.5

1

A
m

p
li

tu
d
e

You can download a WAV file of the one-second piano tune at https://tinyur
l.com/2p86zew6. The WAV file, and the previous waveforms, consists of 44100
points for the one second of sound, and we say that the sound was sampled at a rate
of 44100 Hertz (Hz), or 44100 points per second. Since the first plot is one second
long, it has 44100 points, and since the second plot is 0.05 seconds long, it contains
2205 points. The 44100 points can be downloaded from https://tinyurl.com/

jsavt7ez, and they begin and end with the following (x,y) coordinates:

0.00000,-0.46933
0.00002,-0.46011
0.00005,-0.44931
0.00007,-0.41455
0.00009,-0.38632
0.00011,-0.34164
0.00014,-0.28851

...
0.99993,0.12177
0.99995,0.12454
0.99998,0.13571

Now, say we want to find the frequencies that make up the previous C chord, which
correspond to the pitches or notes that make up the sound. If we let the num-
ber of samples be N = 44100 and label the previous amplitudes a0 = �0.46933,
a1 = �0.46011, . . . , aN�1 = 0.13571, then the discrete Fourier transform of the
waveform is a sequence of N points f0, f1, . . . , fN�1 defined to be

fk =
1p
N

N�1

Â
j=0

a je2pi jk/N . (7.6)

For example,

f0 =
1p

44100

⇣
�0.46933e2pi(0)(0)/44100 �0.46011e2pi(1)(0)/44100 + . . .

+0.13571e2pi(44099)(0)/44100
⌘
=�0.0973861,

f1 =
1p

44100

⇣
�0.46933e2pi(0)(1)/44100 �0.46011e2pi(1)(1)/44100 + . . .

7.7 Discrete Fourier Transform 309

+0.13571e2pi(44099)(1)/44100
⌘
=�0.118737+0.136405i,

f2 =
1p

44100

⇣
�0.46933e2pi(0)(2)/44100 �0.46011e2pi(1)(2)/44100 + . . .

+0.13571e2pi(44099)(2)/44100
⌘
=�0.106039+0.0597867i,

...

f44098 =
1p

44100

⇣
�0.46933e2pi(0)(44098)/44100 �0.46011e2pi(1)(44098)/44100 + . . .

+0.13571e2pi(44099)(44098)/44100
⌘
=�0.106039�0.0597867i

f44099 =
1p

44100

⇣
�0.46933e2pi(0)(44099)/44100 �0.46011e2pi(1)(44099)/44100 + . . .

+0.13571e2pi(44099)(44099)/44100
⌘
=�0.118737�0.136405i.

Calculating these by hand would be incredibly tedious, as each fk contains 44100
terms in its sum. In the next subsection, we will discuss how to calculate these
using a computer algebra system. For now, let us continue interpreting these num-
bers. Notice f1 is the complex conjugate of f44099. Similarly, f2 is the complex
conjugate of f44098, and so forth, through f22051 = f ⇤

22049. That is, fk = f ⇤
N�k for

k = 1,2, . . . ,N/2� 1, so f0 and fN/2 are unique. In general, the fk’s are complex
numbers. Let us take the norm of each of them. We get

|f0|= 0.097386
|f1|= 0.180844
|f2|= 0.121732

...
|f44098|= 0.121732
|f44099|= 0.180844.

Due to the symmetry of the discrete Fourier transform, |f1| = |f44099|, |f2| =
|f44098|, etc. Plotting k on the x-axis and |fk| on the y-axis with k = 0,1, . . . ,22050,
we get the frequency spectrum of the waveform:

Discrete Fourier Transformation

7.7 Discrete Fourier Transform 309

+0.13571e2pi(44099)(1)/44100
⌘
=�0.118737+0.136405i,

f2 =
1p

44100

⇣
�0.46933e2pi(0)(2)/44100 �0.46011e2pi(1)(2)/44100 + . . .

+0.13571e2pi(44099)(2)/44100
⌘
=�0.106039+0.0597867i,

...

f44098 =
1p

44100

⇣
�0.46933e2pi(0)(44098)/44100 �0.46011e2pi(1)(44098)/44100 + . . .

+0.13571e2pi(44099)(44098)/44100
⌘
=�0.106039�0.0597867i

f44099 =
1p

44100

⇣
�0.46933e2pi(0)(44099)/44100 �0.46011e2pi(1)(44099)/44100 + . . .

+0.13571e2pi(44099)(44099)/44100
⌘
=�0.118737�0.136405i.

Calculating these by hand would be incredibly tedious, as each fk contains 44100
terms in its sum. In the next subsection, we will discuss how to calculate these
using a computer algebra system. For now, let us continue interpreting these num-
bers. Notice f1 is the complex conjugate of f44099. Similarly, f2 is the complex
conjugate of f44098, and so forth, through f22051 = f ⇤

22049. That is, fk = f ⇤
N�k for

k = 1,2, . . . ,N/2� 1, so f0 and fN/2 are unique. In general, the fk’s are complex
numbers. Let us take the norm of each of them. We get

|f0|= 0.097386
|f1|= 0.180844
|f2|= 0.121732

...
|f44098|= 0.121732
|f44099|= 0.180844.

Due to the symmetry of the discrete Fourier transform, |f1| = |f44099|, |f2| =
|f44098|, etc. Plotting k on the x-axis and |fk| on the y-axis with k = 0,1, . . . ,22050,
we get the frequency spectrum of the waveform:

7.7 Discrete Fourier Transform 309

+0.13571e2pi(44099)(1)/44100
⌘
=�0.118737+0.136405i,

f2 =
1p

44100

⇣
�0.46933e2pi(0)(2)/44100 �0.46011e2pi(1)(2)/44100 + . . .

+0.13571e2pi(44099)(2)/44100
⌘
=�0.106039+0.0597867i,

...

f44098 =
1p

44100

⇣
�0.46933e2pi(0)(44098)/44100 �0.46011e2pi(1)(44098)/44100 + . . .

+0.13571e2pi(44099)(44098)/44100
⌘
=�0.106039�0.0597867i

f44099 =
1p

44100

⇣
�0.46933e2pi(0)(44099)/44100 �0.46011e2pi(1)(44099)/44100 + . . .

+0.13571e2pi(44099)(44099)/44100
⌘
=�0.118737�0.136405i.

Calculating these by hand would be incredibly tedious, as each fk contains 44100
terms in its sum. In the next subsection, we will discuss how to calculate these
using a computer algebra system. For now, let us continue interpreting these num-
bers. Notice f1 is the complex conjugate of f44099. Similarly, f2 is the complex
conjugate of f44098, and so forth, through f22051 = f ⇤

22049. That is, fk = f ⇤
N�k for

k = 1,2, . . . ,N/2� 1, so f0 and fN/2 are unique. In general, the fk’s are complex
numbers. Let us take the norm of each of them. We get

|f0|= 0.097386
|f1|= 0.180844
|f2|= 0.121732

...
|f44098|= 0.121732
|f44099|= 0.180844.

Due to the symmetry of the discrete Fourier transform, |f1| = |f44099|, |f2| =
|f44098|, etc. Plotting k on the x-axis and |fk| on the y-axis with k = 0,1, . . . ,22050,
we get the frequency spectrum of the waveform:

7.7 Discrete Fourier Transform 309

+0.13571e2pi(44099)(1)/44100
⌘
=�0.118737+0.136405i,

f2 =
1p

44100

⇣
�0.46933e2pi(0)(2)/44100 �0.46011e2pi(1)(2)/44100 + . . .

+0.13571e2pi(44099)(2)/44100
⌘
=�0.106039+0.0597867i,

...

f44098 =
1p

44100

⇣
�0.46933e2pi(0)(44098)/44100 �0.46011e2pi(1)(44098)/44100 + . . .

+0.13571e2pi(44099)(44098)/44100
⌘
=�0.106039�0.0597867i

f44099 =
1p

44100

⇣
�0.46933e2pi(0)(44099)/44100 �0.46011e2pi(1)(44099)/44100 + . . .

+0.13571e2pi(44099)(44099)/44100
⌘
=�0.118737�0.136405i.

Calculating these by hand would be incredibly tedious, as each fk contains 44100
terms in its sum. In the next subsection, we will discuss how to calculate these
using a computer algebra system. For now, let us continue interpreting these num-
bers. Notice f1 is the complex conjugate of f44099. Similarly, f2 is the complex
conjugate of f44098, and so forth, through f22051 = f ⇤

22049. That is, fk = f ⇤
N�k for

k = 1,2, . . . ,N/2� 1, so f0 and fN/2 are unique. In general, the fk’s are complex
numbers. Let us take the norm of each of them. We get

|f0|= 0.097386
|f1|= 0.180844
|f2|= 0.121732

...
|f44098|= 0.121732
|f44099|= 0.180844.

Due to the symmetry of the discrete Fourier transform, |f1| = |f44099|, |f2| =
|f44098|, etc. Plotting k on the x-axis and |fk| on the y-axis with k = 0,1, . . . ,22050,
we get the frequency spectrum of the waveform:

N=44,100310 7 Quantum Algorithms

0 5000 10000 15000 20000
Frequency (Hz)

0

2

4

6

8

10

12

14

A
m

p
li

tu
d

e

This is hard to read, so let us zoom into the first 1000 points of the x-axis:

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

0

2

4

6

8

10

12

14

A
m

p
li

tu
d

e

Here, the x-axis corresponds to the frequency, which is measured in Hertz (Hz) and
corresponds to the pitch, so a higher frequency is a higher pitch note. The y-axis
corresponds to the strength of note, so there are several frequencies that are stronger
than the rest. The biggest is around 262 Hz. This corresponds to Middle C on the
piano, which has a frequency of 261.6256 Hz. There is another large spike around
330 Hz, and this corresponds to the E key on the piano above Middle C, and this has
a frequency of 329.6276 Hz. Beyond that, there is another spike at 392 Hz, and this
corresponds to the next G key on the piano, which has a frequency of 391.9954 Hz.
These three piano keys were pressed in order to create the music, so they contribute
strongly to the sound. Note the other prominent frequencies are resonances of these
three fundamental frequencies, and they occur at integer multiples of the aforemen-
tioned frequencies. For example, the spike at 522 Hz is twice Middle C’s 262 Hz,
the spike at 660 Hz is twice the E key’s 330 Hz, the spike at 784 Hz is roughly three
times Middle C’s 262 Hz and twice the G key’s 392 Hz, and the spike at 990 Hz is
three times the E key’s 330 Hz.
Exercise 7.26. Consider a sequence of four points

a0 = 0.841,
a1 = 0.909,
a2 = 0.141,
a3 =�0.757.

Calculate the discrete Fourier transform of this (i.e., f0, f1, and f2) using Eq. (7.6). You may use
a calculator, but not a computer algebra system.

310 7 Quantum Algorithms

0 5000 10000 15000 20000
Frequency (Hz)

0

2

4

6

8

10

12

14

A
m

p
li

tu
d
e

This is hard to read, so let us zoom into the first 1000 points of the x-axis:

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

0

2

4

6

8

10

12

14

A
m

p
li

tu
d
e

Here, the x-axis corresponds to the frequency, which is measured in Hertz (Hz) and
corresponds to the pitch, so a higher frequency is a higher pitch note. The y-axis
corresponds to the strength of note, so there are several frequencies that are stronger
than the rest. The biggest is around 262 Hz. This corresponds to Middle C on the
piano, which has a frequency of 261.6256 Hz. There is another large spike around
330 Hz, and this corresponds to the E key on the piano above Middle C, and this has
a frequency of 329.6276 Hz. Beyond that, there is another spike at 392 Hz, and this
corresponds to the next G key on the piano, which has a frequency of 391.9954 Hz.
These three piano keys were pressed in order to create the music, so they contribute
strongly to the sound. Note the other prominent frequencies are resonances of these
three fundamental frequencies, and they occur at integer multiples of the aforemen-
tioned frequencies. For example, the spike at 522 Hz is twice Middle C’s 262 Hz,
the spike at 660 Hz is twice the E key’s 330 Hz, the spike at 784 Hz is roughly three
times Middle C’s 262 Hz and twice the G key’s 392 Hz, and the spike at 990 Hz is
three times the E key’s 330 Hz.
Exercise 7.26. Consider a sequence of four points

a0 = 0.841,
a1 = 0.909,
a2 = 0.141,
a3 =�0.757.

Calculate the discrete Fourier transform of this (i.e., f0, f1, and f2) using Eq. (7.6). You may use
a calculator, but not a computer algebra system.

7.7 Discrete Fourier Transform 309

+0.13571e2pi(44099)(1)/44100
⌘
=�0.118737+0.136405i,

f2 =
1p

44100

⇣
�0.46933e2pi(0)(2)/44100 �0.46011e2pi(1)(2)/44100 + . . .

+0.13571e2pi(44099)(2)/44100
⌘
=�0.106039+0.0597867i,

...

f44098 =
1p

44100

⇣
�0.46933e2pi(0)(44098)/44100 �0.46011e2pi(1)(44098)/44100 + . . .

+0.13571e2pi(44099)(44098)/44100
⌘
=�0.106039�0.0597867i

f44099 =
1p

44100

⇣
�0.46933e2pi(0)(44099)/44100 �0.46011e2pi(1)(44099)/44100 + . . .

+0.13571e2pi(44099)(44099)/44100
⌘
=�0.118737�0.136405i.

Calculating these by hand would be incredibly tedious, as each fk contains 44100
terms in its sum. In the next subsection, we will discuss how to calculate these
using a computer algebra system. For now, let us continue interpreting these num-
bers. Notice f1 is the complex conjugate of f44099. Similarly, f2 is the complex
conjugate of f44098, and so forth, through f22051 = f ⇤

22049. That is, fk = f ⇤
N�k for

k = 1,2, . . . ,N/2� 1, so f0 and fN/2 are unique. In general, the fk’s are complex
numbers. Let us take the norm of each of them. We get

|f0|= 0.097386
|f1|= 0.180844
|f2|= 0.121732

...
|f44098|= 0.121732
|f44099|= 0.180844.

Due to the symmetry of the discrete Fourier transform, |f1| = |f44099|, |f2| =
|f44098|, etc. Plotting k on the x-axis and |fk| on the y-axis with k = 0,1, . . . ,22050,
we get the frequency spectrum of the waveform:

310 7 Quantum Algorithms

0 5000 10000 15000 20000
Frequency (Hz)

0

2

4

6

8

10

12

14

A
m

p
li

tu
d
e

This is hard to read, so let us zoom into the first 1000 points of the x-axis:

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

0

2

4

6

8

10

12

14

A
m

p
li

tu
d
e

Here, the x-axis corresponds to the frequency, which is measured in Hertz (Hz) and
corresponds to the pitch, so a higher frequency is a higher pitch note. The y-axis
corresponds to the strength of note, so there are several frequencies that are stronger
than the rest. The biggest is around 262 Hz. This corresponds to Middle C on the
piano, which has a frequency of 261.6256 Hz. There is another large spike around
330 Hz, and this corresponds to the E key on the piano above Middle C, and this has
a frequency of 329.6276 Hz. Beyond that, there is another spike at 392 Hz, and this
corresponds to the next G key on the piano, which has a frequency of 391.9954 Hz.
These three piano keys were pressed in order to create the music, so they contribute
strongly to the sound. Note the other prominent frequencies are resonances of these
three fundamental frequencies, and they occur at integer multiples of the aforemen-
tioned frequencies. For example, the spike at 522 Hz is twice Middle C’s 262 Hz,
the spike at 660 Hz is twice the E key’s 330 Hz, the spike at 784 Hz is roughly three
times Middle C’s 262 Hz and twice the G key’s 392 Hz, and the spike at 990 Hz is
three times the E key’s 330 Hz.
Exercise 7.26. Consider a sequence of four points

a0 = 0.841,
a1 = 0.909,
a2 = 0.141,
a3 =�0.757.

Calculate the discrete Fourier transform of this (i.e., f0, f1, and f2) using Eq. (7.6). You may use
a calculator, but not a computer algebra system.

262 330

392

Middle C = 261.6256 Hz

E = 329.6276 Hz

G = 391.9954 Hz 262x2 330x2 392x2

Resonances

Resonances=integer multiple of fundamental frequencies

Another example of FT

Discrete Fourier Transformation
• Convolution (circular convolution, periodic convolution, cyclic convolution)

DFT : fk ⟶ f̃j = 1
N

N−1

∑
k=0

w−jk fk

w = exp(2πi
N) Inverse DFT : f̃k ⟶ f̃j = 1

N

N−1

∑
k=0

wjk f̃k

1
N

N−1

∑
k=0

w(j−ℓ)k = δjℓ

(f * g)j =
N−1

∑
i=0

fi gj−i , where g−m = gN−m (periodic condition)

• DFT turns convolution into point wise vector multiplication.

DFT of f * g = c̃k = f̃k g̃k

c̃k = 1
N

N−1

∑
j=0

w−jk (f * g)j = 1
N

N−1

∑
j=0

w−jk (
N−1

∑
i=0

fi gj−i)

= 1
N

N−1

∑
j=0

w−jk
N−1

∑
i=0

(1
N ∑

ℓ
wiℓf̃ℓ)(1

N ∑
m

w(j−i)mg̃m) = 1

N
3 ∑

j,i,ℓ,m
f̃ℓ g̃m w−jk wiℓ w jm w−im = f̃k g̃k

δmk
δik

⏟δℓk

(f * g)(t) = ∫
∞

−∞
f (τ)g(t − τ)dτ

Fast Fourier Transformation
f̃j = 1

N

N−1

∑
k=0

w−jk fk

w = exp(2πi
N)

f̃0

f̃1
⋮

f̃N−1

= 1
N

1 1 1 ⋯ 1
1 w−1 w−2 ⋯ wN−1

1 w−2 w−4 ⋯ w−2

⋮ ⋮ ⋮ ⋮ ⋮
1 wN−1 w2N−2 ⋯ w

f0
f1
⋮

fN−1

D−1 = D†⏟Unitary

wN = 1

wN−1 = wNw−1 = w−1

• How many math operations are needed for DFT?
• N multiplications for each complex multiplications
• Addition complex addition

f̃j → N2

→ N(N − 1)

Fast Fourier Transformation
f̃j = 1

N

N−1

∑
k=0

w−jk fk

w = exp(2πi
N)

f̃0

f̃1
⋮

f̃N−1

= 1
N

1 1 1 ⋯ 1
1 w−1 w−2 ⋯ wN−1

1 w−2 w−4 ⋯ w−2

⋮ ⋮ ⋮ ⋮ ⋮
1 wN−1 w2N−2 ⋯ w

f0
f1
⋮

fN−1
wN = 1

wN−1 = wNw−1 = w−1

• FFT offers less math operations.

Assume :N = 2n wk+N/2 = − wk , wk+N = wk

f̃j = 1
N

N−1

∑
k=0

w−ik fi = 1
N [

N/2−1

∑
i=0

w−2ijei +
N/2−1

∑
i=0

w−(2i+1)joi]

wN = exp(2πi
N)

f = (f0, f1, f2, f3, ⋯, fN−2, fN−1)
= (e0, o0, e1, o1, ⋯, eN/2, oN/2)

exp[2πi
N

(−2ij)] = exp[2πi
N/2 (−ij)] = w−ij

N/2

w−jw−2ij = w−jw−ij
N/2

Fast Fourier Transformation

f̃j = 1
N

N−1

∑
k=0

w−ik fi = 1
N [

N/2−1

∑
i=0

w−2ijei +
N/2−1

∑
i=0

w−(2i+1)joi]

wN = exp(2πi
N)

f = (f0, f1, f2, f3, ⋯, fN−2, fN−1)
= (e0, o0, e1, o1, ⋯, eN/2, oN/2)

exp[2πi
N

(−2ij)] = exp[2πi
N/2 (−ij)] = w−ij

N/2

w−jw−2ij = w−jw−ij
N/2

f̃j = 1
N [

N/2−1

∑
i=0

(ei + w−j
N oi) w−ij

N/2] wN/2 = exp(πi
N)

f̃j = ẽj + w−j
N õj j = 0, 1, ⋯, N − 1 2 f̃j = ẽj + w−j

N õj, 0 ≤ j ≤ N
2 − 1

2 f̃j = ẽj − w−j
N õj,

N
2 ≤ j ≤ N − 1

DFT of f in terms of DFT of e and o.

DFT of e and f are periodic with period N/2.

Fast Fourier Transformation

• To compute and :

• Need to compute need
complex multiplication as opposed to in DFT.

• A reduction of about a factor of 2 for large N.
• For , the number of multiplication is bounded

by

e o 2 (N
2)

2
= N2

2
N
2 w−j

N õj → N2

2 + N
2

N2

N = 2n

2nn = N log N

A simple application of FFT
• Consider two polynomials with complex coefficients

f (x) = a0 + a1x + a2x2 + ⋯ + aN−1xN−1

g(x) = b0 + b1x + b2x2 + ⋯ + bN−1xN−1

⇒ f (x) g(x) =
N−1

∑
i, j=0

ai bj xi+j =
2N−2

∑
k=0

ck xk

ck =
N−1

∑
ℓ

aℓ bk−ℓ

Sum is over valid polynomial terms.
If , no terms in the sum.k − ℓ < 0

• Computation requires multiplicationN2

• looks like convolution.ck
• Consider 2N dim vectors:

a = (a0, ⋯, aN−1,0,⋯,0)
b = (b0, ⋯, bN−1,0,⋯,0)

ck =
2N−1

∑
ℓ

aℓ bk−ℓ (mod 2N)

• Compute DFT of vectors a and b point wise multiplication of the
two vectors Inverse DFT requires operations

→
→ → 𝒪(N log N)

f̃k g̃k = c̃k = DFT of f * g f * g =
N−1

∑
j=0

fj gi−j

Quantum Fourier Transformation

yk = 1
2

n

2n−1

∑
j=0

wjk xj w = exp(2πi
2n)

• For classical discrete Fourier transformation

N = 2n

• QFT is defined similarly F : | j⟩ ⟶ 1
2

n

2n−1

∑
k=0

wjk |k⟩ = F | j⟩

• For arbitrary quantum states, F : |x⟩ = 1
2

n

2n−1

∑
j=0

xj | j⟩ ⟶ |y⟩ = 1
2

n

2n−1

∑
k=0

yk |k⟩

F |x⟩ = 1
2

n

2n−1

∑
j=0

xj F | j⟩ = 1
2

n

2n−1

∑
j=0

1
2

n

2n−1

∑
k=0

xj w jk |k⟩

• For a single quantum state, F | j⟩ = 1
2

n

2n−1

∑
j=0

wjk |k⟩ F | j′ ⟩ = 1
2

n

2n−1

∑
j′ =0

wj′ k′ |k′ ⟩

⟨ j′ |F†F | j⟩ = 1
2n

2n−1

∑
k=0

2n−1

∑
k′ =0

w−j′ k′ wjk⟨k′ |k⟩ = 1
2n

2n−1

∑
k=0

w(j−j′)k = δjj′

1
2n

2n−1

∑
k=0

w(j−ℓ)k = δjℓ and QFT is a unitary transformation.F†F = 1

Quantum Fourier Transformation
1
2n

2n−1

∑
k=0

w(j−ℓ)k = δjℓ
For j = j12n−1 + j22n−2 + ⋯ + jn20 =

n

∑
i=1

ji 2n−i

k = k12n−1 + k22n−2 + ⋯ + kn20 =
n

∑
i=1

ki 2n−i

F | j⟩ = 1
2

n

2n−1

∑
k=0

wjk |k⟩ = 1
2

n

2n−1

∑
k=0

exp(2πij
2n

n

∑
ℓ=1

kℓ2n−ℓ) |k⟩

= 1
2

n

2n−1

∑
k=0

exp(2πij
n

∑
ℓ=1

kℓ2−ℓ) |k⟩

= 1
2

n

2n−1

∑
k=0

exp(2πijk12−1) exp(2πijk22−2) ⋯exp(2πijkn2−n) |k⟩

= 1
2

n

1

∑
k1=0

⋯
1

∑
kn=0

exp(2πijk12−1) exp(2πijk22−2) ⋯exp(2πijkn2−n) |k1 k2 ⋯ kn ⟩⏟= |0⟩ + exp(2πij2−n) |1⟩

w = exp(2πi
2n)

⏟= |0⟩ + exp(2πij2−1) |1⟩

N = 2n

Quantum Fourier Transformation

F | j⟩ = 1
2

n (|0⟩ + exp(2πij
2) |1⟩) (|0⟩ + exp(2πij

22) |1⟩)⋯(|0⟩ + exp(2πij
2n) |1⟩)

= 1
2

n

n

⨂
k=1

(|0⟩ + exp(2πij
2k) |1⟩)

• Binary fraction = expression in power of 1/2

In decimal form: 0. jℓ jℓ+1 ⋯ jm = jℓ
2 + jℓ+1

22 + ⋯ + jm
2m−ℓ+1

ji = 0 ,1

1 ≤ k ≤ n

0 ≤ j ≤ 2n − 1

 is not necessarily an integer: j j
2k = j1 j2 ⋯ jn−k ⋅ jn−k+1 ⋯ jn =

n

∑
ν=1

jν 2n−ν−k

If and ,n = 8 k = 3 j = j127 + j226 + j325 + j424 + j523 + j622 + j721 + j820

j
23 = j124 + j223 + j322 + j421 + j520 + j62−1 + j72−2 + j82−3

j1 j2 j3 j4 j5 . j6 j7 j8 ⏟binary fraction: 0 . j6 j7 j8

Quantum Fourier Transformation
j = j12n−1 + j22n−2 + ⋯ + jn−323 + jn−222 + jn−121 + jn20 =

n

∑
ν=1

jν2n−ν

exp(2πi
j

2k) = exp(2πi j1 j2⋯jn−k . jn−k+1⋯jn ⋯ jn) = exp(2πi 0 . jn−k−1 ⋯ jn)

j
2k = j12n−1 + j22n−2 + ⋯ + jn−323 + jn−222 + jn−121 + jn20

2k =
n

∑
ν=1

jν 2n−ν

2k =
n

∑
ν=1

jν 2n−ν−k

= j1 j2⋯jn−k . jn−k+1⋯jn

F | j⟩ = 1
2

n (|0⟩ + exp(2πij
2) |1⟩) (|0⟩ + exp(2πij

22) |1⟩)⋯(|0⟩ + exp(2πij
2n) |1⟩)

= 1
2

n

n

⨂
k=1

(|0⟩ + exp(2πij
2k) |1⟩) = 1

2
n

n

⨂
k=1

(|0⟩ + exp(2πi 0 . jn−k−1 ⋯ jn) |1⟩)
= 1

2
n (|0⟩ + exp(2πi 0 . jn) |1⟩) (|0⟩ + exp(2πi 0 . jn−1 jn) |1⟩)

⋯(|0⟩ + exp(2πi 0 . j1 j2⋯jn) |1⟩)

Quantum Circuit for QFT
• transforms into | jℓ⟩ 1

2 [|0⟩ + exp(2πi 0 . jℓ⋯jn) |1⟩]
= 1

2 [|0⟩ + e2πi 0.jℓ e2πi0.0jℓ+1⋯jn/2 |1⟩]⏟ ⏟exp(2πi
jℓ
2) = exp(πijℓ) = (−1) jℓ use Rk = (1 0

0 e2πi/2k)
Controlled by the
value of th qubit.jk

if {jk = 0 , R = 1
jk = 1 , R = Rk

1st qubit: |0⟩ + exp(2πi 0 . jℓ⋯jn) |1⟩

Start with | j⟩ = | j1⟩ | j2 j3⋯jn⟩
H1⟶ 1

2 (|0⟩ + (−1) j1 |1⟩) | j2 j3⋯jn⟩

= 1
2 (|0⟩ + e2πi 0.j1 |1⟩) | j2 j3⋯jn⟩

R2 on q1 with q2 control 1
2 (|0⟩ + e2πi 0.j1 e2πi j2/22 |1⟩) | j2 j3⋯jn⟩

= 1
2 (|0⟩ + e2πi 0.j1 j2 |1⟩) | j2 j3⋯jn⟩

exp(2πi
j1
2) = exp(2πi 0.j1)

R2 = (1 0
0 e2πi/22)

Quantum Circuit for QFT
R3 on q1 with q3 control 1

2 (|0⟩ + e2πi 0.j1 j2 j3 |1⟩) | j2 j3⋯jn⟩

1
2 (|0⟩ + e2πi 0.j1 j2 j3⋯jn |1⟩) | j2 j3⋯jn⟩

continue down
to qn

The entire procedure is repeated for all other qubits, j2 , j3 , ⋯ jn
1
2

n [|0⟩ + e2πi 0.j1⋯jn |1⟩][|0⟩ + e2πi 0.j2⋯jn |1⟩] ⋯ [|0⟩ + e2πi 0.jn |1⟩]
Use SWAP gate or relabel to obtain: F | j⟩ = 1

2
n

n

⨂
k=1

(|0⟩ + exp(2πij
2k) |1⟩)

1
2

n [|0⟩ + e2πi 0.jn |1⟩][|0⟩ + e2πi 0.j2⋯jn |1⟩] ⋯ [|0⟩ + e2πi 0.j1⋯jn |1⟩]

Quantum Circuit for QFT
1
2 [|0⟩ + e2πi 0.j1⋯jn |1⟩]

1
2 [|0⟩ + e2πi 0.j2⋯jn |1⟩]

= 1
2 [|0⟩ + e2πi 0.j1 |1⟩]

1
2 [|0⟩ + (−1) jn |1⟩]

H R2 R3 Rn

H R2 R3 Rn

H

| j1⟩

| j2⟩

| j3⟩

| jn⟩

How many gates are required?
: H + (n-1) controlled R gatesq1
: H + (n-2) controlled R gatesq2

: H + 0 controlled R gatesqn

→
→
→

n
n-1

1
} n(n + 1)

2
Also need 𝒪(n /2) SWAP gates
Overall scaling of QFT is 𝒪(n2)

• Classical Fourier Transform scales as
• FFT: for

𝒪(N2) = 𝒪((2n)2)
𝒪(Nln(N)) N = 2n

Quantum Phase Estimation and
Finding Eigenvalues

• Good example of phase kickback and use of QFT
• Unitary operator
• How to find eigenvalue? = How to measure the phase?

• How to find to a given level of precision?

• Find the best n-bit estimate of the phase

• Given a unitary matrix and one of its eigenvectors , find or
estimate its eigenvalue.

ϕ
ϕ

U |u⟩

U : U |u⟩ = eiϕ |u⟩ , 0 ≤ ϕ < 2π

U2j |u⟩ = (eiϕ)2j |u⟩ = eiϕ 2j |u⟩

Quantum Circuit for QPE

H|0⟩

|0⟩

|u⟩

|0⟩

|0⟩

H

H

H

U20

QFT†

U21 U2n−2 U2n−1

(0) (3)(2)(1)

{
{

n control
registers

m eigenstate
registers

QPE = H + controlled − U2j + QFT†

Quantum Circuit for QPE
H|0⟩

|0⟩

|u⟩

|0⟩

|0⟩

H

H

H

U20

QFT†

U21 U2n−2 U2n−1

(0) (3)(2)(1)

{
{

n
co

nt
ro

l
re

gi
st

er
s

m
 e

ig
en

st
at

e
re

gi
st

er
s

QPE = H + controlled − U2j + QFT†
|ψ0⟩ = |0⟩⊗n ⊗ |u⟩

|ψ1⟩ = (H |0⟩)⊗n ⊗ |u⟩ = 1
2

n (|0⟩ + |1⟩)⊗n ⊗ |u⟩

|ψ2⟩ =
n−1

∏
j=0

CU2j 1
2

n (|0⟩ + |1⟩)⊗n ⊗ |u⟩

Quantum Circuit for QPE
H|0⟩

|0⟩

|u⟩

|0⟩

|0⟩

H

H

H

U20

QFT†

U21 U2n−2 U2n−1

(0) (3)(2)(1)

{
{

n
co

nt
ro

l
re

gi
st

er
s

m
 e

ig
en

st
at

e
re

gi
st

er
s

|ψ2⟩ =
n−1

∏
j=0

CU2j 1
2

n (|0⟩ + |1⟩)⊗n ⊗ |u⟩

1
2 (|0⟩ + |1⟩) ⊗ |u⟩ CU2j 1

2 (|0⟩ ⊗ |u⟩ + U2j |1⟩ ⊗ |u⟩)
= 1

2 (|0⟩ + eiϕ 2j |1⟩) ⊗ |u⟩

Quantum Circuit for QPE
|ψ2⟩ = 1

2
n (|0⟩ + eiϕ 2n−1 |1⟩)(|0⟩ + eiϕ 2n−2 |1⟩)⋯(|0⟩ + ei2ϕ |1⟩)(|0⟩ + eiϕ |1⟩) ⊗ |u⟩

= 1
2

n

2n−1

∑
y=0

eiϕy |y⟩ ⊗ |u⟩} Phase kick-back: phase factor has been
propagated back from the second eigenstate
register to the first control register

eiϕy

QFT |a⟩ = 1
2

n

2n−1

∑
k=0

e2πiak/2n |k⟩ 2πia
2n = iϕ ϕ = 2π(a

2n + δ)
a = an−1an−2⋯a0

• is the best n-bit binary approximation of

• is the associated error.

2πa
2n ϕ .

0 ≤ |δ | ≤ 1
2n+1

|ψ3⟩ = QFT−1 |ψ2⟩ = 1
2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πi(a−x)y/2n e2πiδy |x⟩ ⊗ |u⟩

QFT−1 |y⟩ = 1
2

n

2n−1

∑
x=0

e−2πixy)/2n |x⟩

Operate only n control register.

w = exp(2πi
2n)

F | j⟩ = 1
2

n

2n−1

∑
j=0

wjk |k⟩

Quantum Circuit for QPE
|ψ3⟩ = QFT−1 |ψ2⟩ = 1

2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πi(a−x)y/2n e2πiδy |x⟩ ⊗ |u⟩

Operate only n control register.

(1) If , δ = 0
1
2n

2n−1

∑
y=0

exp(2πi(a − x)y
2n) = δax ⟶ |ψ3⟩ = |a⟩ ⊗ |u⟩ ⟶ ϕ = 2πa

2n

(2) If , δ ≠ 0 Measuring 1st register and getting the state is the best n-bit

estimate of . The corresponding probability is

|x⟩ = |a⟩
ϕ Pa = |Ca |2 ≥ 4

π2 ≈ 0.405

Quantum Circuit for QPE

|ψ3⟩ = QFT−1 |ψ2⟩ = 1
2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πix(ϕ−y/2n) |y⟩ ⊗ |u⟩
|ψ2⟩ = 1

2
n

2n−1

∑
x=0

e2πixϕ |x⟩ ⊗ |u⟩

QFT−1 |x⟩ = 1
2

n

2n−1

∑
y=0

e−2πixy/2n |y⟩

Probability of observing =|y⟩ P(y) = 1
2n

2n−1

∑
x=0

e2πix(ϕ−y/2n)

2

= 1
22n

1 − r2n

1 − r

2

, r ≡ exp[2πi(ϕ − y
2n)]

(1) If , ϕ = y
2n

(2) If , ϕ ≠ y
2n

|ψ3⟩ = |y⟩ ⊗ |u⟩ P(ϕ = y
2n) = 100 %

closest n − bit approximation to ϕ = 0.ν1ν2⋯νn ≡ ν ϕ − ν ≡ δ , 0 ≤ |δ | ≤ 1
2n+1

r ≡ exp[2πi(ϕ − y
2n)] = exp(2πiδ)

P(y) = 1
22n

1 − r2n

1 − r

2

,

length of minor arc
length of cord = 2πδ2n

|1 − r2n |
≤ half circumference

diameter ≤ πR
2R

= π
2 ⟶ |1 − r2n | ≥ 4δ2n

-1
r2n = [exp(2πiδ)]2n = exp(2πiδ2n) = eiθ

1
-1

1

θ

r2n Length of minor arc
= θ = 2πδ2n

Length of a cord from 1 to
=

r2n

|1 − r2n |

ϕ = 2πa
2n

Quantum Circuit for QPE

P(y) = 1
22n

1 − r2n

1 − r

2

≥ 1
22n (4δ2n

2πδ)
2

= 4
π2 > 0.405

length of minor arc
length of cord = 2πδ

|1 − r |
> 1 , |1 − r | < 2πδ

1

-1

-1

1

θ

r = e2πiδ Length of minor arc = θ = 2πδ
Length of a cord from 1 to =r |1 − r |

• We will get the correct answer with probability greater than a constant.

• Probability of getting incorrect outcome can be calculated using |δ | > 1
2n+1

1-1

1

θ

r2n

-1

|1 − r2n | < 2
length of minor arc

length of cord = 2πδ
|1 − r |

< π
2 , |1 − r | > 4δ

P(y) = 1
22n

1 − r2n

1 − r

2

≤ 1
22n (2

4δ)
2

= 1
22n(2δ)2 If , δ = c

2n P(c) ≤ 1
4c2

• N-bit estimate of phase is obtained with a high probability.
• Need to repeat the calculation multiple times.
• Increasing n will increase the probability of success (not obvious but true).
• Increasing n (# of qubits) will improve the precision of the phase estimate.

ϕ length of minor arc
length of cord ≤ half circumference

diameter ≤ πR
2R

= π
2

Machine Learning?

What is Machine Learning?
• Typically problems in physics can be formulated in terms of a search for some

function , from the space of the observed to a low dimensional
space of a desired target space/label , which optimizes some metric (of our
choice). The metric is often called a loss function and written as .

• A learning algorithm would find the function that optimizes over all possible
values of .

f : 𝕏 → 𝕐 𝕏
𝕐

L(⃗y, f(⃗x))
L

(⃗x, ⃗y)
• But this is intractable owning to the

curse of dimensionality and an infinite
number of functions to choose from.
Instead one has labeled training data

 sampled from .
Furthermore the function space is
restricted to a model - a highly flexible
family of functions parameterized
by

• Sounds familiar?

{ ⃗xi, ⃗yi}N
i=1 p(⃗x, ⃗y)

fϕ(⃗x)
ϕ .

Universal Approximation Theorem
• A feed-forward network with a single hidden layer containing a finite

number of neurons can approximate continuous functions on compact
subsets of R, under mild assumptions on the activation function.n

• A. N. Kolmogorov, 1957
• G. Cybenko, 1989 with sigmoid activation
• K. Hornik, 1991, importance of the multilayer architecture
• Z. Lu et al, 2017, with deep neural network and ReLu activation

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

The Basics Fourier series Examples

Fourier series

Let p > 0 be a fixed number and f(x) be a periodic function

with period 2p, defined on (�p, p). The Fourier series of f(x) is
a way of expanding the function f(x) into an infinite series

involving sines and cosines:

f(x) =
a0
2

+

1X

n=1

an cos(
n⇡x

p
) +

1X

n=1

bn sin(
n⇡x

p
) (2.1)

where a0, an, and bn are called the Fourier coe�cients of f(x),
and are given by the formulas

a0 =
1

p

Z p

�p
f(x) dx, an =

1

p

Z p

�p
f(x) cos(

n⇡x

p
) dx, (2.2)

bn =
1

p

Z p

�p
f(x) sin(

n⇡x

p
) dx,

Approximation with Artificial Neural Networks 15

Figure 3.1
The mother function of the Haar basis (a = 1, b = ½); Approximation with the Haar basis (n = 30)

Comment:
If we want an approximation with n + 1 Haar functions, the simplest construction is:

),())((
0

1 bxwxfA i

n

i
in ∑

=
+ = , { }ni ...0∈∀ :)(ii xfw = ,

n
b

2
1=

We excluded a from the parameters, because changing a has no real effect on the
threshold function. Proving the approximation of the feed-forward neural networks by
building the Haar basis (1st order spline basis) is theoretically correct, but that
construction doesn’t give us an effective way of approximating functions. We can
notice that the number of used neurons can be reduced:

())()()()()(),(
1

100
00

bxwwbxwbxbxwbxw i

n

i
iiii

n

i
ii

n

i
i −−+−=+−−= ∑∑∑

=
−

==
ϕϕϕϕ ,

where
n
ixi = ,

n
b

2
1= ,),(),(bxxbx ii −= ,)()(ii xxx −= ϕϕ , { }ni ...0∈∀ .

At the left side 2(n+1) neurons required, but with a single trick, we can reduce it to:
n+1. With the reduced number of neurons the weights of the approximation are:

)())((
0

1 bxwxfA i

n

i
in −= ∑

=
+ ϕ

)(00 xfw =

∑
−

=
−=

1

0
)(

i

j
jii wxfw

Approximation with Artificial Neural Networks 19

Figure 3.2
The tent mother function; Approximation with tent functions (n = 10)

Comment:
We can use the trick of reducing the number of neurons again, and the similar
recursive formulas are valid for the weights as in case of the threshold function.

3.4. Case of the Logistic Function:

Theorem 3.4.1 (approximation with the logistic function):
An arbitrary continuous function, defined on [0,1] can be arbitrary well uniformly
approximated by a multilayer feed-forward neural network with one hidden layer
using the logistic function as activation function (ϕ) .

Idea of a proof (3.4.1):
With the notations of theorem 7.2. We can build a bell shaped basis/mother function
again with the trick of arranging the neurons (we can take the difference of two
shifted logistic function):

)()(),,(baxbaxbax −−+= ϕϕ

),,(),(baxxax ii −=
n
ixi =

Without the loss of generality we can fix b to an arbitrary nonzero value. We can
notice that the width of the bells depends only on the parameter a and the height of the
bells depends on the parameter b. For the proof we want the weighted sum of our
basis functions to interpolate at the points xi:

),(),,)((
0

)1(2 jj

n

j
jn axwxawfA ∑

=
+ =

{ }ni ...0∈∀ :)f(),,)(()1(2 iin xxawfA =+

Approximation with Artificial Neural Networks 21

Figure 3.3
The bell shaped basis function (a = 1, b = 1); Approximation with the bells (n = 8)

Hypothesis:
This kind of approach can be generalised to any monotone-increasing activation
function that has 0)0(≠ϕ . For example for the threshold function and the piecewise
linear function. (See Appendix1 for an example in MapleV)

We used Gershgorin’s theorem during the idea of proof of theorem 3.4.1:

Gershgorin’s theorem:
Each eigenvalue of n

jiijaA 1,)(== lies in at least one of the Gershgorin disks:

≤− ∑
≠ij

ijii aazz : { }ni ..1∈

Comment:
If each pair of the n Gershgorin disks has an empty intersection, then each disk
contains exactly one eigenvalue of A, which is therefore simple.

ReLu = max(0, x)

Neural network is a function-approximator.

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

=

Example by Joe Klein

Rectified Linear Unit

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

ReLu = max(0, x)

Neural network is a function-approximator.

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

=

Example by Joe Klein

Rectified Linear Unit

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

ReLu = max(0, x)

Neural network is a function-approximator.

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

10/9/19, 3(53 PMUniversal approximation theorem - Wikipedia

Page 2 of 3https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let be a nonconstant, bounded, and continuous function (called the activation function). Let
 denote the m-dimensional unit hypercube . The space of real-valued continuous functions on

is denoted by . Then, given any and any function , there exist an integer , real
constants and real vectors for , such that we may define:

as an approximate realization of the function ; that is,

for all . In other words, functions of the form are dense in .

This still holds when replacing with any compact subset of .

The universal approximation theorem for width-bounded networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function and any , there exists a fully-connected ReLU
network with width , such that the function represented by this network satisfies

The theorem of limited expressive power for width- networks can be expressed mathematically as follows:[4]

For any Lebesgue-integrable function satisfying that is a positive measure set
in Lebesgue measure, and any function represented by a fully-connected ReLU network with width

, the following equation holds:

Representation theorem
No free lunch theorem
Stone–Weierstrass theorem
Fourier series

See also

=

Physical Qubits
• Photon polarization
• Trapped ions
• Cold atoms
• Nuclear magnetic resonances: spin of nuclei
• Quantum dots
• Defect qubits
• Superconductors

Quantum versions of simple classical gates
Let (binary variables)b0, b1 ∈ {0,1}

NOT

XOR

AND

already reversible X = |0⟩⟨1 | + |1⟩⟨0 |

b1 b0
0 0
0 1
1 0
1 1

b1 XOR b0
0
1
1
0

⊕
|b1⟩

|b1⟩ |b1 ⊕ b0⟩

|b1⟩

|00⟩ ⟶ |0 0 ⊕ 0⟩ = |00⟩
|01⟩ ⟶ |0 1 ⊕ 0⟩ = |01⟩
|10⟩ ⟶ |1 1 ⊕ 0⟩ = |11⟩
|11⟩ ⟶ |1 1 ⊕ 1⟩ = |10⟩

b1 b0
0 0
0 1
1 0
1 1

b1 AND b0
0
0
0
1

Impossible to perform a reversible
AND operation with two bits.

Quantum versions of simple classical gates

⊕

|000⟩
|001⟩
|010⟩

|111⟩

|011⟩
|100⟩
|101⟩
|110⟩

|110⟩
|111⟩

|000⟩

T |b1 b0 0⟩ = |b1 b0 b1 ∧ b0⟩
T |b1 b0 1⟩ = |b1 b0 1 ⊕ b1 ∧ b0⟩

∧ = classical AND

• Toffoli gate = T = CCX = CCNOT = Controlled-controlled NOT gate

• Toffoli gate T can be used to construct a
complete set of Boolean connectives
(NOT, AND, XOR, NAND)
T |1 1 x⟩ = |1 1 ∼ x⟩
T |x y 0⟩ = |x y x ∧ y⟩
T |1 x y⟩ = |1 x x ⊕ y⟩
T |x y 1⟩ = |x y ∼ (x ∧ y)⟩

∼ = NOT

• Alternative: Fredkin gate
F=controlled SWAP

F |x 0 1⟩ = |x x ∼ x⟩
F |x y 1⟩ = |x (y ∨ x) y ∨ (∼ x)⟩
F |x 0 y⟩ = |x (y ∧ x) y ∧ (∼ x)⟩

T =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

= (I 0
0 CNOT)

X
X

