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Quantum Optimization
• Optimization problems are everywhere: math, science, business, finance etc 

– In general, time-consuming.  
– In many cases, can not be solved in polynomial time.  
– Need approximation algorithms: find approximation of the best solution 

rather than the best solution (time complexity is reduced).  
• Two classes 

– Continuous optimization  
– Discrete optimization: combinatorial optimization 

• Quadratic Unconstrained Binary Optimization (QUBO) 
• Apply quantum algorithms to solve optimization problem 

– (1) Gate model: use universal gates (Pauli’s), problem-independent. 
– (2) Non-gate model (quantum annealer): relies on adiabatic theorem to 

find a minimum energy of Hamiltonian corresponding to the minimum 
value of some cost function.



Quadratic Unconstrained Binary 
Optimization (QUBO)

• QUBO: combinatorial optimization problem with a wide 
range of applications from finance to ML (partitioning, graph 
coloring, task allocation, max-sat, max-cut etc) 

• Find a binary vector  which minimizes  

• In matrix notation,  where 

x* f

f(x) = xTQx, Q ∈ ℝn×n

f : ℤn
2 ⟶ ℝ

f(x) =
n

∑
i=1

i

∑
j=1

qij xi xj +
n

∑
i=1

hi xi
xi ∈ ℤ2 = {0,1}, hi, qij ∈ ℝ

Quadratic polynomial over binary variable 

x* = argmin
x ∈ ℤn

2

f(x)

x = xnxn−1⋯x2x1
(binary strings of n-bits)



• In matrix notation,  where  

• QUBO:  
– NP hard problem 
– Quadratic function might have several local minima 
– Close connection to Ising model

f(x) = xTQx, Q ∈ ℝn×n

f (x) = − 2x1 − 3x2 + 8x3 + 4x4 + 4x1x2 + 5x1x3 + 6x2x3 + 10x3x4

= (x1 x2 x3 x4)
−2 2 5/2 0
2 −3 3 0

5/2 3 8 5
0 0 5 4

x1
x2
x3
x4

= xT Q x
xi = x2

i

Quadratic Unconstrained Binary 
Optimization (QUBO)

xi ∈ Z2 = {0, 1}



P vs NP
• In Theoretical Computer Science, the two most basic classes of problems are 

P and NP.   
• P includes all problems that can be solved efficiently.  

– For example: add two numbers. The formal definition of "efficiently" is in time that's 
polynomial in the input's size. 

• NP (nondeterministic polynomial (time)) includes all problems that given a 
solution, one can efficient verify that the solution is correct. 

– An example is the following problem: given a bunch of numbers, can they be split into 
two groups such that the sum of one group is the same as the other. Clearly, if one is 
given a solution (two groups of numbers), it's simple to verify that the sum is the 
same. (This is a partitioning problem).   

• What's unknown is whether problems such as the one above have an efficient 
algorithm for finding the solution. This is the (in)famous (unsolved) P = NP 
problem, and the common conjecture is that no such algorithm exists.   

• Now, NP hard problems are such problems that were shown that if they can be 
efficiently solved (which, as mentioned, is believed to not be the case), then 
each and every problem in NP (each and every problem whose results can be 
efficiently verified) can be efficiently solved. In other words, if you're up to 
showing that P=NP, you might want to take a stand at any of those NP-hard 
problems since they are "equivalent" in some way to all others.



Ising Model
• Mathematical model for ferromagnetism in statistical 

mechanics. 
• The energy of spin configuration for a given lattice is 

given by the following classical Hamiltonian  

•   is called an interaction, spin-spin coupling, and  is an external 
magnetic field, interacting with spin . 

• The configuration probability is given by the Boltzmann distribution  

• Quantum Ising model:

Jij hi
si

E(s) = − ∑
i, j

Jij si sj − ∑
i

hi si s = {si}, si ∈ {−1,1}

P(s) = e−βH(s)

∑s e−βH(s) , β = 1
kBT

H = − ∑
i, j

Jij σz
i σz

j − ∑
i

hi σz
i



Quadratic Unconstrained Binary 
Optimization (QUBO)

• QUBO: combinatorial optimization problem with a wide 
range of applications from finance to ML (partitioning, graph 
coloring, task allocation, max-sat, max-cut etc) 

• Find a binary vector  which minimizes  

• In matrix notation,  where 

x* f

f(x) = xTQx, Q ∈ ℝn×n
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n
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QUBO example: Max-cut Problem
• Max-Cut is the NP-hard problem of finding a partition of 

the graph's vertices into an two distinct sets that 
maximizes the number of edges between the two sets. 

• Undirected Graph:  G = (V, E) 
– V: set of nodes, and  E: set of edges  

• Partition vertices into two complementary sets such that 
the number of edges between the two sets is as large as 
possible.

• As the Max-Cut Problem is NP-hard, 
no polynomial-time algorithms for 
Max-Cut in general graphs are 
known.



• The cost function to be maximized: 

• Introducing                  , the cost function can be rewritten 

C(x) = ∑
(i, j)∈E

(xi + xj − 2xixj) where xi ∈ {0,1}

C(s) = 1
2 ∑

(i, j)∈E
(1 − sisj) ⟶ C(s) = 1

2 ∑
(i, j)∈E

(1 − σz
i σz

j )
xi = si + 1

2

xi + xj − 2xixj = 1, if xi and xj belong in different sets .
xi + xj − 2xixj = 0, if xi and xj belong in the same set .

(i, j) : the edge index
i : vertex index

σz = (1 0
0 −1) σz

i : Pauli′ s Z matrix actingon the ith vertex
σz

j : Pauli′ s Z matrix actingon the jth vertex
σz |0⟩ = + 1 |0⟩
σz |1⟩ = − 1 |1⟩

|0⟩ = (1
0) |1⟩ = (0

1)

QUBO example: Max-cut Problem

si ∈ Z2 = {−1,1}

Matrices = linear operators = observables

Eigenvalues = what are actually measured in experiments



Ising formulations of many NP problems
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We provide Ising formulations for many NP-complete and NP-hard problems, including

all of Karp’s 21 NP-complete problems. This collects and extends mappings to the Ising

model from partitioning, covering and satisfiability. In each case, the required number of

spins is at most cubic in the size of the problem. This work may be useful in designing

adiabatic quantum optimization algorithms.
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1. Introduction

1.1. Quantum Adiabatic Optimization

Recently, there has been much interest in the possibility of using adiabatic quantum optimization (AQO)
to solve NP-complete and NP-hard problems [1, 2].1 This is due to the following trick: suppose we have a
quantum Hamiltonian HP whose ground state encodes the solution to a problem of interest, and another
Hamiltonian H0, whose ground state is “easy” (both to find and to prepare in an experimental setup).
Then, if we prepare a quantum system to be in the ground state of H0, and then adiabatically change
the Hamiltonian for a time T according to

H(t) =

(

1− t

T

)

H0 +
t

T
HP, (1)

then if T is large enough, and H0 and HP do not commute, the quantum system will remain in the ground
state for all times, by the adiabatic theorem of quantum mechanics. At time T , measuring the quantum
state will return a solution of our problem.

There has been debate about whether or not these algorithms would actually be useful: i.e., whether
an adiabatic quantum optimizer would run any faster than classical algorithms [3, 4, 5, 6, 7, 8, 9], due to
the fact that if the problem has size N , one typically finds

T = O
[

exp
(

αNβ
)]

, (2)

1In this paper, when a generic statement is true for both NP-complete and NP-hard problems, we will refer to these
problems as NP problems. Formally this can be misleading as P is contained in NP, but for ease of notation we will simply
write NP.

2
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H = − ∑
i, j

Jij σz
i σz

j − ∑
i

hi σz
i



• It is possible to generalize the Ising model 
beyond QUBO. 

– Polynomial unconstrained binary optimization 
(PUBO)  

– Higher-order unconstrained binary optimization 
(HUBO)  

– Unconstrained binary quadratic problem 
(UBQP) 

–  Constrained optimization problems



Adiabatic Theorem

• Schrodinger equation:             

• Instantaneous eigenstate:       

• Initial condition:                          

• If evolution is slow enough,     

iℏ dψ(t)
dt

= H(t) ψ(t)

H(t) ψn(t) = En(t) ψn(t)
ψ(t = 0) = ψ0
ψ(t) ≈ eiθ(t) ψ0

Born and Folk 1928

3

operator in the interaction picture is given by UI(t) = T exp[�i
R
t

0 HI(t)dt] — a shorthand for the Dyson
series

UI(t) = 1 +
1X

q=1

(�i)q

q!

Z
t

0
dt1 · · ·

Z
t

0
dtqT [HI(tq) · · ·H(t1)] , (7)

where T denotes time-ordering [15] and HI(t) = e
iH0tV (t)e�iH0t. The Dyson series can also be re-written

as

UI(t) = 1 +
1X

q=1

(�i)q
Z

t

0
dt1HI(t1) · · ·

Z
tq�1

0
dtqHI(tq) (8)

and by relabeling the integration variables, the above equation takes the form:

UI(t) =
1X

q=0

(�i)q
Z

t

0
dtq · · ·

Z
t2

0
dt1HI(tq) · · ·HI(t1) , (9)

where hereafter we will use the q = 0 term to symbolize the identity operator.
The operator UI(t) evolves the interaction-picture wave-function | I(t)i which is related to the Schrödinger-

picture wave-function via | I(t)i = e
iH0t| (t)i (in our units, ~ = 1). Similarly, the Schrödinger-picture

time-evolution operator U(t) is related to the interaction-picture operator via U(t) = e
�iH0tUI(t). In the

next section we present an equivalent form for the Dyson series, Eq. (9), by systematically evaluating the
integrals in the sum, writing V (t) as a sum of exponentials in t.

A. Generalized permutation operator representation of the perturbation Hamiltonian

We begin by denoting the eigenstates and eigenenergies of the free Hamiltonian H0 by B = {|zi} and E =
{Ez}, respectively, such that H0|zi = Ez|zi. (For simplicity we assume a discrete countable set of eigenstates
and eigenenergies). We will refer to B as the ‘computational basis’. Next, we write the perturbation
Hamiltonian V (t) as a sum of generalized permutation operators ⇧i [16]:

V (t) =
MX

i=0

⇧i(t) =
MX

i=0

Di(t)Pi , (10)

where every generalized permutation operator is further expressed as a product of a (time dependent)
diagonal (in the computational basis) operator Di and a bona-fide permutation operator Pi. Specifically, the
action of Di and Pi on a computational basis states is given by Di|zi = di(z)|zi, where di(z) is in general a
complex number, and Pi|zi = |z0i for some |z0i 2 B depending on i and z. The i = 0 permutation operator
will be reserved to the identity operator, that is, P0 = 1. Armed with these notations, the action of a
generalized permutation operator ⇧i on a basis state |zi is given by DiPi|zi = di(z0)|z0i, where z

0 depends
on both the state z and the operator index i. We note that any Hamiltonian can be readily cast in the above
form [11]. This representation, in terms of generalized permutation operators, was recently introduced in
the context of quantum Monte Carlo simulations [9–11].

At this point, we write each diagonal operator, Di(t), in Eq. (10) as an exponential sum in t, that is,

Di(t) =
KiX

k=1

e
i⇤(k)

i t
D

(k)
i

, (11)

where both ⇤(k)
i

and D
(k)
i

are (generally complex-valued) diagonal matrices and Ki denotes the number of
terms in the decomposition of Di. (For more details as to how to carry out this decomposition e�ciently,
see Refs. [17–19].) Thus, V (t) can be written as

V (t) =
MX

i=1

KX

k=1

e
i⇤(k)

i t
D

(k)
i

Pi (12)

(for simplicity, hereafter we fix Ki = K 8i, though this assumption can be easily removed).

ψ(t) = U(t) ψ(0)



Adiabatic Theorem
• Adiabatic theorem: A physical system remains in its instantaneous eigenstate, if a given 

perturbation is acting on it slowly enough and if there is a gap between the eigenvalue 
and the rest of the Hamiltonian’s spectrum. (Max Born and Vladimir Folk 1928) 

• Under a slowly changing Hamiltonian H(t) with instantaneous eigenstate  and the 
corresponding energy , a quantum system evolves from initial state 

  to final state  where 

  with the dynamical phase   and 

geometrical phase  

• Adiabatic approximation: the rate of change of Hamiltonian  is small and there is 
finite gap 

 

•  so if the system begins in an eigenstate of H(0), it remains in an 
eigenstate of H(t) during the evolution with a change of phase only.

|n(t)⟩
E(t)

|ψ (0)⟩ = ∑
n

cn(0) |n(0)⟩ |ψ (t)⟩ = ∑
n

cn(t) |n(t)⟩

cn(t) = cn(0) eiθn(t) eiγn(t) θn(t) = − 1
ℏ ∫

t

0
En(t′ ) dt′ 

γ(t) = i∫
t

0
⟨n(t′ ) | ·n(t′ )⟩ dt′ 

·H(t)
Em(t) − En(t) ≠ 0 between energies for m ≠ n →

⟨n(t′ ) | ·n(t′ )⟩ = − ⟨m(t) | ·H(t) |n(t)⟩
Em(t) − En(t)

→ 0

|cn(t) |2 = |cn(0) |2



Adiabatic Theorem
H(t) |n(t)⟩ = En(t) |n(t)⟩

|ψ (t)⟩ = ∑
n

cn(t) |n(t)⟩ iℏ ∂
∂t

|ψ (t)⟩ = H(t) |ψ (t)⟩

|n(t)⟩ : is eigenstates of Hamiltonian, basis

satisfies time-dependent 
Schrödinger equation

d
dt

: ·H(t) |n(t)⟩ + H(t) | ·n(t)⟩ = ·En(t) |n(t)⟩ + En(t) | ·n(t)⟩

Assume  and perform inner product with :m ≠ n |m(t)⟩

⟨m(t) | ·H(t) |n(t)⟩ + ⟨m(t) |H(t) | ·n(t)⟩ = ·En(t) ⟨m(t) |n(t)⟩ + En(t) ⟨m(t) | ·n(t)⟩

H(t) |m(t)⟩ = Em(t) |m(t)⟩

⟨m(t) | ·H(t) |n(t)⟩ + Em(t) ⟨m(t) | ·n(t)⟩ = En(t) ⟨m(t) | ·n(t)⟩ → ⟨m(t) | ·n(t)⟩ = − ⟨m(t) | ·H(t) |n(t)⟩
Em(t) − En(t)

,⟨m(t) |n(t)⟩ = δmn

Adiabatic approximation: the rate of change in Hamiltonian  is small and there is  
                                finite gap  between energies    .

·H(t)
Em(t) − En(t) ≠ 0 → ⟨m(t) | ·n(t)⟩ ≈ 0



Adiabatic Theorem
→ iℏ∑

n

·cn(t) |n(t)⟩ + cn(t) | ·n(t)⟩ = ∑
n

En(t) cn(t) |n(t)⟩

Inner product with :|m(t)⟩ ⟨m(t) |[ iℏ∑
n

·cn(t) |n(t)⟩ + cn(t) | ·n(t)⟩ = ∑
n

En(t) cn(t) |n(t)⟩ ]
Using , we obtain⟨m(t) |n(t)⟩ = δmn

iℏ ·cm(t) + iℏ∑
n

cn(t) ⟨m(t) | ·n(t)⟩ = cm(t) Em(t)

iℏ ∂
∂t

|ψ (t)⟩ = H(t) |ψ (t)⟩

|ψ (t)⟩ = ∑
n

cn(t) |n(t)⟩

⟨m(t) | ·n(t)⟩ ≈ 0 for m ≠ n
In the adiabatic limit, iℏ ·cm(t) + iℏcm(t) ⟨m(t) | ·m(t)⟩ = cm(t) Em(t)

i ·cm(t) = ( Em(t)
ℏ − i ⟨m(t) | ·m(t)⟩) cm(t) → ·cm(t) = i (− Em(t)

ℏ + i ⟨m(t) | ·m(t)⟩) cm(t)

d
dt

ln cm(t) = 1
cm(t)

dcm(t)
dt

=
·cm(t)
cm(t) = − i

ℏ Em(t) + i i⟨m(t) | ·m(t)⟩

cm(t) = cm(0)eiθm(t)eiγm(t) θm(t) = − 1
ℏ ∫

t

0
Em(t′ ) dt′ γ(t) = i ∫

t

0
⟨m(t′ ) | ·m(t′ )⟩ dt′ 

dynamical phase,  
real, function of E

geometrical phase,  
pure real



Adiabatic Theorem
cm(t) = cm(0)eiθm(t)eiγm(t) θm(t) = − 1

ℏ ∫
t

0
Em(t′ ) dt′ γ(t) = i ∫

t

0
⟨m(t′ ) | ·m(t′ )⟩ dt′ 

dynamical phase,  
real, function of E

geometrical phase,  
pure real, 

Has something to do with 
direction in the Hilbert space

0 = d
dt

⟨m(t) |m(t)⟩ = ⟨ ·m(t) |m(t)⟩ + ⟨m(t) | ·m(t)⟩

= ⟨m(t) | ·m(t)⟩* + ⟨m(t) | ·m(t)⟩
= 2 Re ⟨m(t) | ·m(t)⟩ → γm(t) : pure real

⟨ϕ |ψ⟩* = ⟨ψ |ϕ⟩



Adiabatic Theorem

• Schrodinger equation:             

• Instantaneous eigenstate:       

• Initial condition:                          

• If evolution is slow enough,     

iℏ dψ(t)
dt

= H(t) ψ(t)

H(t) ψn(t) = En(t) ψn(t)
ψ(t = 0) = ψ0
ψ(t) ≈ eiθ(t) ψ0

Born and Folk 1928

3

operator in the interaction picture is given by UI(t) = T exp[�i
R
t

0 HI(t)dt] — a shorthand for the Dyson
series

UI(t) = 1 +
1X

q=1

(�i)q

q!
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t

0
dt1 · · ·

Z
t

0
dtqT [HI(tq) · · ·H(t1)] , (7)

where T denotes time-ordering [15] and HI(t) = e
iH0tV (t)e�iH0t. The Dyson series can also be re-written

as

UI(t) = 1 +
1X

q=1

(�i)q
Z

t

0
dt1HI(t1) · · ·

Z
tq�1

0
dtqHI(tq) (8)

and by relabeling the integration variables, the above equation takes the form:

UI(t) =
1X

q=0

(�i)q
Z

t

0
dtq · · ·

Z
t2

0
dt1HI(tq) · · ·HI(t1) , (9)

where hereafter we will use the q = 0 term to symbolize the identity operator.
The operator UI(t) evolves the interaction-picture wave-function | I(t)i which is related to the Schrödinger-

picture wave-function via | I(t)i = e
iH0t| (t)i (in our units, ~ = 1). Similarly, the Schrödinger-picture

time-evolution operator U(t) is related to the interaction-picture operator via U(t) = e
�iH0tUI(t). In the

next section we present an equivalent form for the Dyson series, Eq. (9), by systematically evaluating the
integrals in the sum, writing V (t) as a sum of exponentials in t.

A. Generalized permutation operator representation of the perturbation Hamiltonian

We begin by denoting the eigenstates and eigenenergies of the free Hamiltonian H0 by B = {|zi} and E =
{Ez}, respectively, such that H0|zi = Ez|zi. (For simplicity we assume a discrete countable set of eigenstates
and eigenenergies). We will refer to B as the ‘computational basis’. Next, we write the perturbation
Hamiltonian V (t) as a sum of generalized permutation operators ⇧i [16]:

V (t) =
MX

i=0

⇧i(t) =
MX

i=0

Di(t)Pi , (10)

where every generalized permutation operator is further expressed as a product of a (time dependent)
diagonal (in the computational basis) operator Di and a bona-fide permutation operator Pi. Specifically, the
action of Di and Pi on a computational basis states is given by Di|zi = di(z)|zi, where di(z) is in general a
complex number, and Pi|zi = |z0i for some |z0i 2 B depending on i and z. The i = 0 permutation operator
will be reserved to the identity operator, that is, P0 = 1. Armed with these notations, the action of a
generalized permutation operator ⇧i on a basis state |zi is given by DiPi|zi = di(z0)|z0i, where z

0 depends
on both the state z and the operator index i. We note that any Hamiltonian can be readily cast in the above
form [11]. This representation, in terms of generalized permutation operators, was recently introduced in
the context of quantum Monte Carlo simulations [9–11].

At this point, we write each diagonal operator, Di(t), in Eq. (10) as an exponential sum in t, that is,

Di(t) =
KiX

k=1

e
i⇤(k)

i t
D

(k)
i

, (11)

where both ⇤(k)
i

and D
(k)
i

are (generally complex-valued) diagonal matrices and Ki denotes the number of
terms in the decomposition of Di. (For more details as to how to carry out this decomposition e�ciently,
see Refs. [17–19].) Thus, V (t) can be written as

V (t) =
MX

i=1

KX

k=1

e
i⇤(k)

i t
D

(k)
i

Pi (12)

(for simplicity, hereafter we fix Ki = K 8i, though this assumption can be easily removed).

ψ(t) = U(t) ψ(0)



Quantum Annealing
•  is the problem Hamiltonian whose ground state encodes the solution to 

the optimization problem 

•  is the initial Hamiltonian whose ground state is easy to prepare. 

• Prepare a quantum system to be in the ground state of  and evolve the 
system using the following time-dependent Hamiltonian,  

• The system will remain to its ground state at all times, which means for t=T, 
the system will be in the ground state of , our problem Hamiltonian. 

• D-wave has built Quantum Annealing that solves optimization problem by 
transferring the original optimization to a hardware, that allows nearest 
neighbor interaction of qubits. 

• If the energy gap b/w the ground state and 1st excited state is small, T must 
be very large  computationally difficult. 

Hp

H0
H0

Hp

→

H(t) = (1 − t
T ) H0 + t

T
Hp

Apolloni, Bianchi, De Falco 1988
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ABSTRACT

Quantum annealing is a generic solver for optimization problems that uses fictitious quantum fluctuation. The most ground-
breaking progress in the research field of quantum annealing is its hardware implementation, i.e., the so-called quantum
annealer, using artificial spins. However, the connectivity between the artificial spins is sparse and limited on a special net-
work known as the chimera graph. Several embedding techniques have been proposed, but the number of logical spins, which
represents the optimization problems to be solved, is drastically reduced. In particular, an optimization problem including fully
or even partly connected spins suffers from low embeddable size on the chimera graph. In the present study, we propose an
alternative approach to solve a large-scale optimization problem on the chimera graph via a well-known method in statistical
mechanics called the Hubbard-Stratonovich transformation or its variants. The proposed method can be used to deal with
a fully connected Ising model without embedding on the chimera graph and leads to nontrivial results of the optimization
problem. We tested the proposed method with a number of partition problems involving solving linear equations and the traffic
flow optimization problem in Sendai and Kyoto cities in Japan.

Introduction

Quantum annealing (QA) is a generic algorithm aimed at solving optimization problems by exploiting the quantum tunneling
effect. The scheme was originally proposed as an algorithm for numerical computation1 inspired by simulated annealing
(SA)2 and exchange Monte-Carlo simulation3. Moreover, its experimental realization has been accomplished recently and
attracted significant attention. Quantum annealing has the advantage of solving an optimization problem formulated with
discrete variables. A well-known example is searching for the ground state of the spin-glass model, which corresponds to
various types of optimization problems, such as the traveling salesman problem and satisfiability problem4–6. In QA, we
formulate a platform to solve the optimization problem, the Ising model, and implement it in the time-dependent Hamiltonian.
The Hamiltonian takes the form of the formulated Ising model at the final time. The initial Hamiltonian is governed by the
“driver” Hamiltonian only with quantum fluctuation. The frequently used driver Hamiltonian consists of the transverse field,
which generates the superposition of the up and down spins. The first stage of QA is initialized in the trivial ground state of the
driver Hamiltonian. The quantum effect will be gradually turned off, and will end so that only the classical Hamiltonian with a
nontrivial ground state remains. When the transverse field changes sufficiently slowly, the quantum adiabatic theorem ensures
that we can find the nontrivial ground state at the end of QA7–9. Numerous reports have stated that QA outperforms SA10–12.
The performance possibly stems from the quantum tunneling effect penetrating the valley of the potential energy. The protocol
of QA is realized in an actual quantum device using contemporary technology, namely, the quantum annealer13–16. The output
from the current version of the quantum annealer is not always the spin configuration in the ground state, due to the limitation
of the device and environmental effects17. Therefore, several protocols based on QA do not keep the system in the ground
state following the condition on the adiabatic quantum computation. Rather, they employ a nonadiabatic counterpart18–21

and the thermal effect22. The quantum annealer has been tested for numerous applications, such as portfolio optimization23,
protein folding24, the molecular similarity problem25, computational biology26, job-shop scheduling27, traffic optimization28,
election forecasting29, machine learning30–35, and automated guided vehicles in plants36.

In addition, studies on implementing the quantum annealer to solve various problems have been performed31–33,37–39. The
potential of QA might be boosted by the nontrivial quantum fluctuation, referred to as the nonstoquastic Hamiltonian, for
which efficient classical simulation is intractable40–44.

The current version of the quantum annealer, the D-Wave 2000Q, employs the chimera graph, on which physical qubits are
set. The connection between the physical qubits is sparse and limited on the chimera graph. Several embedding techniques
are thus proposed, but the number of logical qubits, which represent the optimization problems to be solved, is drastically
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work known as the chimera graph. Several embedding techniques have been proposed, but the number of logical spins, which
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or even partly connected spins suffers from low embeddable size on the chimera graph. In the present study, we propose an
alternative approach to solve a large-scale optimization problem on the chimera graph via a well-known method in statistical
mechanics called the Hubbard-Stratonovich transformation or its variants. The proposed method can be used to deal with
a fully connected Ising model without embedding on the chimera graph and leads to nontrivial results of the optimization
problem. We tested the proposed method with a number of partition problems involving solving linear equations and the traffic
flow optimization problem in Sendai and Kyoto cities in Japan.

Introduction

Quantum annealing (QA) is a generic algorithm aimed at solving optimization problems by exploiting the quantum tunneling
effect. The scheme was originally proposed as an algorithm for numerical computation1 inspired by simulated annealing
(SA)2 and exchange Monte-Carlo simulation3. Moreover, its experimental realization has been accomplished recently and
attracted significant attention. Quantum annealing has the advantage of solving an optimization problem formulated with
discrete variables. A well-known example is searching for the ground state of the spin-glass model, which corresponds to
various types of optimization problems, such as the traveling salesman problem and satisfiability problem4–6. In QA, we
formulate a platform to solve the optimization problem, the Ising model, and implement it in the time-dependent Hamiltonian.
The Hamiltonian takes the form of the formulated Ising model at the final time. The initial Hamiltonian is governed by the
“driver” Hamiltonian only with quantum fluctuation. The frequently used driver Hamiltonian consists of the transverse field,
which generates the superposition of the up and down spins. The first stage of QA is initialized in the trivial ground state of the
driver Hamiltonian. The quantum effect will be gradually turned off, and will end so that only the classical Hamiltonian with a
nontrivial ground state remains. When the transverse field changes sufficiently slowly, the quantum adiabatic theorem ensures
that we can find the nontrivial ground state at the end of QA7–9. Numerous reports have stated that QA outperforms SA10–12.
The performance possibly stems from the quantum tunneling effect penetrating the valley of the potential energy. The protocol
of QA is realized in an actual quantum device using contemporary technology, namely, the quantum annealer13–16. The output
from the current version of the quantum annealer is not always the spin configuration in the ground state, due to the limitation
of the device and environmental effects17. Therefore, several protocols based on QA do not keep the system in the ground
state following the condition on the adiabatic quantum computation. Rather, they employ a nonadiabatic counterpart18–21

and the thermal effect22. The quantum annealer has been tested for numerous applications, such as portfolio optimization23,
protein folding24, the molecular similarity problem25, computational biology26, job-shop scheduling27, traffic optimization28,
election forecasting29, machine learning30–35, and automated guided vehicles in plants36.

In addition, studies on implementing the quantum annealer to solve various problems have been performed31–33,37–39. The
potential of QA might be boosted by the nontrivial quantum fluctuation, referred to as the nonstoquastic Hamiltonian, for
which efficient classical simulation is intractable40–44.

The current version of the quantum annealer, the D-Wave 2000Q, employs the chimera graph, on which physical qubits are
set. The connection between the physical qubits is sparse and limited on the chimera graph. Several embedding techniques
are thus proposed, but the number of logical qubits, which represent the optimization problems to be solved, is drastically
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Limitation of Quantum Annealing
• Performance of quantum annealing are governed by the 

size of the gap. 

• Performance is poor, when eigenvalues are degenerate.   

Limitation of quantum annealing:
quantum-phase transitions

https://arxiv.org/pdf/1903.06559.pdf

Adiabatic condition for a quantum Annealer:

Instantaneous ‘gap’

→ Performance of quantum annealing are governed by the size of the gap’

H(0) = H0 H(t = T ) = Hp

Δt ≫ max
0≤≤1

⟨1(s) | dH(s)
ds |0(s)⟩

Δ(s)2

T = Δs , 0 ≤ s ≤ 1



Variational Quantum Algorithms
• Hybrid quantum-classical model is suggested to circumvent the issue of 

going slow with quantum annealer as well as implementing Hamiltonian 
in the available hardware.  

• Quantum:  parameterize wave function 
• Classical:  minimize/maximize the expectation value of H in the problem.

E( ⃗θ) = ⟨ ψ( ⃗θ) | H |ψ( ⃗θ) ⟩



Variational Quantum Algorithms



Variational Quantum Algorithms
• 2016: first cloud-based quantum computer became available. 
• Current state-of-the-art device size ranges from 50 to 100 qubits which allows one 

to achieve ‘quantum supremacy’: outperforming the best classical supercomputer, 
for certain contrived mathematical tasks. 

– Sycamore (53 qubits, corresponding to a computational state-space of 
dimension ): 200 seconds vs 10,000 years for sampling the output of 
a pseudo-random quantum circuit. 

• Variational Quantum Algorithms (VQAs) have emerged as the leading strategy to 
obtain quantum advantage on NISQ (Noisy Intermediate-Scale Quantum) devices. 
Accounting for all of the constraints imposed by NISQ computers with a single 
strategy requires an optimization-based or learning- based approach, precisely 
what VQAs use.  

• VQAs are arguably the quantum analog of highly successful machine-learning 
methods, such as neural networks.  

• VQAs leverage the toolbox of classical optimization, since VQAs use parametrized 
quantum circuits to be run on the quantum computer, and then outsource the 
parameter optimization to a classical optimizer. This approach has the added 
advantage of keeping the quantum circuit depth shallow and hence mitigating 
noise, in contrast to quantum algorithms developed for the fault-tolerant era.

253 ≈ 1016





Quantum Approximate Optimization 
Algorithm (QAOA)

1411.4028  

E. Farhi,  
J. Goldstone,  
S. Gutmann

• Abstract: We introduce a quantum algorithm that 
produces approximate solutions for combinatorial 
optimization problems. The algorithm depends on a 
positive integer p and the quality of the 
approximation improves as p is increased. The 
quantum circuit that implements the algorithm 
consists of unitary gates whose locality is at most the 
locality of the objective function whose optimum is 
sought. The depth of the circuit grows linearly with p 
times (at worst) the number of constraints. If p is 
fixed, that is, independent of the input size, the 
algorithm makes use of efficient classical 
preprocessing. If p grows with the input size a 
different strategy is proposed. We study the 
algorithm as applied to MaxCut on regular graphs 
and analyze its performance on 2-regular and 3-
regular graphs for fixed p. For p = 1, on 3-regular 
graphs the quantum algorithm always finds a cut that 
is at least 0.6924 times the size of the optimal cut.



Why should we care about QAOA?
• Solve optimization problems 

– Solves quadratic unconstrained problems with binary variables  
• Near-term algorithm 

– Algorithm runs on small quantum computers 
– Low depth, robust to errors 
– Requires relatively few physical qubits to get to interesting practical 

problem sizes 
• Adaptable algorithm  

– In principle, we can easily model the objective function that we are 
trying to solve 

• Expected to be faster than classical  
– Classical approaches move through the search space one solution 

at a time 
– In quantum, we can create a superposition of states and operate in 

all states in parallel.



Quantum Approximate Optimization 
Algorithm (QAOA)

• Hybrid quantum algorithm: contains a parameterized quantum circuit which 
depends on variational parameters. 

• Use classical computer to optimize the output of the quantum circuit. 
• Consider the Ising model for illustration.

Farhi et al 2014



Quantum Approximation Optimization Algorithm (QAOA)

According to the adiabatic theorem, if a Hamiltonian is slowly varying and starts in an eigenstate
of the initial Hamiltonian, then it will end in the corresponding eigenstate of the final Hamiltonian.
If our Hamiltonian is

H(t) =

✓
1� t

T

◆
HM +

t

T
HP

and starts in an eigenstate of H(0) = HM (which we call the mixer Hamiltonian), then at t = T

it will be in the corresponding eigenstate of H(T ) = HP (called the problem Hamiltonian) granted
T is large. So, if we know the ground state eigenvalue of HM , then we can find the ground state
eigenvalue of HP with this Hamiltonian H.

If our initial state is | 0i, then it evolves as

| i = exp


�i

Z
t

0
H(t0) dt0

�
| 0i

Discretizing the integral:

= exp

2

4�i

pX

j=1

H(j�t)�t

3

5 | 0i

We can’t exactly split up this exponential into a product of p exponents. But we can approximate
it by ignoring second-order and higher terms in p�t.

⇡
pY

j=1

exp


�i�t

✓
1� j�t

T

◆
HM +

j�t

T
HP

��
| 0i

Once again, if �t is small and T is large, then

⇡
pY

j=1

exp


�i�t

✓
1� j�t

T

◆
HM

�
exp


�i�t

j�t

T
HP

�
| 0i

Reparameterize:

=
pY

j=1

exp


� i�jHM

�

| {z }
U(HM ,�j)

exp


� i�jHP

�

| {z }
U(HP ,�j)

| 0i

So we can approximate the evolution of a state under this Hamiltonian as a product of 2p param-
eterized unitaries where it is more accurate for larger p. So if we start in the lowest (or highest)
state of HM , we will end up in the lowest (or highest) state of HP .

The eigenvalues of the Pauli matrix �x are ±1 with eigenvectors |±i = (|0i± |1i) /
p
2. So if

our initial state is |+i then we will begin in the highest energy state for �x. Then for n qubits, our
known Hamiltonian can be

HM =
nX

i=1

�
z

i .

1

And this state is simple to prepare: it is just |+i = H |0i. Thus we have everything we need to
evolve the state:

|�,�i =
pY

j=1

U(HM ,�j)U(HP , �j) |+i⌦n

where |�,�i ⌘ | i. This prepared state will be an approximation of the highest energy state of
HP . Thus if we can write a cost function as a Hamiltonian, then we can classically optimize the 2p
parameters (�,�) such that

Fp(�,�) = h�,�|HP |�,�i

is maximized.

Max Cut

In the max cut problem, we have a graph G = (V,E) with vertices V = {Vi} and edges E = {Ejk}.
We want to cut the graph wherein we split the graph into two subgraphs such that these two
subgraphs share a maximal number of edges. So our cost function will be

C =
1

2

X

j,k2E
1� (�1)j(�1)k| {z }

Cjk

.

where vertices of one subgraph have a value of 1 and vertices of the other have a value of 0. Thus
if vertices j and k are not of the same subgraph, then j + k = 1 and so Cjk = 1 otherwse Cjk = 0.
So this cost function returns the number of cuts. Thus we want to maximize C. So to write this as
a Hamiltonian, note that the eigenvalues of the Pauli matrix �z are ±1 with eigenvectors |0i and
|1i. Thus, for a single edge,

1

2

�
1� �

z

j�
z

k

�
|jki = Cjk |jki

and, more generally,

1

2

X

j,k2E

�
1� �

z

j�
z

k

�
| i = C | i .

and thus we have our problem Hamiltonian and therefore our unitary:

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

where the first term (the 1) is the identity and so will not a↵ect the expectation value and the
�1/2 is absorbed into the constant �i.

So how is this realized as a circuit? For the mixer Hamiltonian,

U(HM ,�j) = exp

"
�i�j

nX

i=1

�
z

i

#

=
nY

i=1

e
�i�j�

z
i

2

And this state is simple to prepare: it is just |+i = H |0i. Thus we have everything we need to
evolve the state:

|�,�i =
pY

j=1

U(HM ,�j)U(HP , �j) |+i⌦n

where |�,�i ⌘ | i. This prepared state will be an approximation of the highest energy state of
HP . Thus if we can write a cost function as a Hamiltonian, then we can classically optimize the 2p
parameters (�,�) such that
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Max Cut
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Cjk
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parameters (�,�) such that
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where the first term (the 1) is the identity and so will not a↵ect the expectation value and the
�1/2 is absorbed into the constant �i.

So how is this realized as a circuit? For the mixer Hamiltonian,

U(HM ,�j) = exp

"
�i�j

nX

i=1

�
z

i

#

=
nY

i=1

e
�i�j�

z
i

2

because the �
z

i
’s commute since they act on di↵erent qubits. Note that Pauli matrices are just the

generators of rotations. So this unitary is just an Rz(2�j) rotation on every qubit:

=
nY

i=1

R
i

z(2�j)

And for the problem Hamiltonian,

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

=
Y

j,k2E
e
�i�i�

z
j �

z
k

This is the Rzz(2�i) gate. For the qubits |ji |ki, this is realized by the following setup:

|ji • •

|ki Rz(2�i)

9=
; exp


� i(�1)j+k

�i

�
|jki

After the first CNOT gate, we have the state |ji |j � ki. The Rz gate applies the rotation to the
second qubit, but the second CNOT gate returns our state to |ji |ki but with the rotation. Thus,
the gate setup is

=
Y

j,k2E
CNOTj,kR

k

z(2�i)CNOTj,k

So with our choice of graph and of p, we can build a quantum circuit for the max cut problem.
After choosing initial values for (�,�) and building |�,�i, we take measurements and choose our
favorite optimizer to maximize the expectation value of HP , i.e. if xi 2 {0, 1}⌦n, then

hHM i = 1

stot

2n�1X

i=0

siC(xi)

where si are the total number of times bit string xi was measured and stot is the total number of
measurements. In other words, it’s just a weight average.
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where si are the total number of times bit string xi was measured and stot is the total number of
measurements. In other words, it’s just a weight average.

3

HM = HB : mixer Hamiltonian

HP = HC : problem Hamiltonian

Quantum Approximate Optimization Algorithm (QAOA)

U(HM, βj) = exp [−iβj

n

∑
i=1

σX
i ]

=
n

∏
i=1

e−iβjσ X
i

=
n

∏
i=1

Ri
x(2βj)



Quantum Approximate Optimization 
Algorithm (QAOA)

HP = C(s) = HC = 1
2 ∑

(i, j)∈E
(1 − σz

i σz
j ) : Problem Hamiltonian (i, j) : the edge index

i : vertex index

Farhi et al 2014

Quantum Approximation Optimization Algorithm (QAOA)

According to the adiabatic theorem, if a Hamiltonian is slowly varying and starts in an eigenstate
of the initial Hamiltonian, then it will end in the corresponding eigenstate of the final Hamiltonian.
If our Hamiltonian is

H(t) =

✓
1� t

T

◆
HM +

t

T
HP

and starts in an eigenstate of H(0) = HM (which we call the mixer Hamiltonian), then at t = T
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And this state is simple to prepare: it is just |+i = H |0i. Thus we have everything we need to
evolve the state:

|�,�i =
pY

j=1

U(HM ,�j)U(HP , �j) |+i⌦n

where |�,�i ⌘ | i. This prepared state will be an approximation of the highest energy state of
HP . Thus if we can write a cost function as a Hamiltonian, then we can classically optimize the 2p
parameters (�,�) such that

Fp(�,�) = h�,�|HP |�,�i

is maximized.

Max Cut

In the max cut problem, we have a graph G = (V,E) with vertices V = {Vi} and edges E = {Ejk}.
We want to cut the graph wherein we split the graph into two subgraphs such that these two
subgraphs share a maximal number of edges. So our cost function will be

C =
1

2

X

j,k2E
1� (�1)j(�1)k| {z }

Cjk

.

where vertices of one subgraph have a value of 1 and vertices of the other have a value of 0. Thus
if vertices j and k are not of the same subgraph, then j + k = 1 and so Cjk = 1 otherwse Cjk = 0.
So this cost function returns the number of cuts. Thus we want to maximize C. So to write this as
a Hamiltonian, note that the eigenvalues of the Pauli matrix �z are ±1 with eigenvectors |0i and
|1i. Thus, for a single edge,

1

2

�
1� �

z

j�
z

k

�
|jki = Cjk |jki

and, more generally,

1

2

X

j,k2E

�
1� �

z

j�
z

k

�
| i = C | i .

and thus we have our problem Hamiltonian and therefore our unitary:

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

where the first term (the 1) is the identity and so will not a↵ect the expectation value and the
�1/2 is absorbed into the constant �i.

So how is this realized as a circuit? For the mixer Hamiltonian,

U(HM ,�j) = exp

"
�i�j

nX

i=1

�
z

i

#

=
nY

i=1

e
�i�j�

z
i

2

Works in the adiabatic limit or p → ∞



Trotter formulas or  
Trotter–Suzuki decompositions

• Product formulas simulate the sum of terms of a Hamiltonian 
by simulating each one separately for a small time slice. 

For H = A + B + C , U = e−i(A+B+C)t = (e−iA t
r e−iB t

r e−iC t
r )

r
, for a large r

r = the number of time steps to simulate for.

General theory of fractal path integrals with applications to many-body 
theories and statistical physics 

Masuo Suzuki 
Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-Ku, Hongo, Tokyo 113, Japan 

(Received 26 March 1990; accepted for publication 12 September 1990) 

A general scheme of fractal decomposition of exponential operators is presented in any order 
m. Namely, exp[x(A + B)] = S,n (x) + 0(x’” + i ) for any positive integer m, where 
s,, (x) = ,#A (peQ $5.. .$rrA with finite M depending on m. A general recursive scheme of 
construction of {t,) is given explicitly. It is proven that some of {t,} should be negative for 
m>3 and for any finite M (nonexistence theorem of positive decomposition), General 
systematic decomposition criterions based on a new type of time-ordering are also formulated. 
The decomposition exp [x(A + B) ] = [S,, (x/n) ] ’ + 0(x” + l/n”) yields a new efficient 
approach to quantum Monte Carlo simulations. 

I. INTRODUCTION 
The concept of fractal path integrals is introduced in 

this paper, namely, a general new scheme of fractal decom- 
position of exponential operators is presented together with 
some explicit real and complex representations. A brief re- 
port of the present idea has already been given in a previous 
letter.’ 

The main purpose of the present paper is to find a sys- 
tematic series of approximants of the form 

f,,, (A,JJ) = e’~Ae”@e’,Ae@. . .efwA, (1.1) 
for the exponential operator exp[x(d + B)] with real or 
complex numbers {tj> with finite M. Namely, the product 
operator ( 1.1) for integer m plays a role of the mth approxi- 
mant of exp[x(d + B) ] in the sense that 

exp[x(A + B) 1 =A, MB) + 0(x” + ‘) (1.2) 
for small x. 

The above new scheme ( 1.2) with ( 1.1) is very useful in 
studying theoretically quantum many-body systems using 
the following generalized Trotter formula:2-5 

ew[xGf+B)l= [.L($-,$]“+O(G) (1.3) 

for the approximantf, (A$) in ( 1.2). Thus we find that the 
convergence of our new scheme is extremely rapid for 
x/n 4 1. This choice of decomposition is practically impor- 
tant in quantum Monte Carlo simulationsk7 

In Sec. II, a general recursion method’ is presented to 
explicitly obtain the decomposition formula ( 1.2) and some 
symmetry relations of decomposition are derived, particu- 
larly concerning the relation between the (2m - 1)th and 
2mth approximants. In Sec. III, some typical schemes of real 
decomposition are presented explicitly. Complex decompo- 
sition is given in Sec. IV. The proof of nonexistence of “posi- 
tive decomposition” [i.e., ( 1.1) with all positive {f,}] is giv- 
en in Sec. V. In Sec. VII, a general method to expand the 
product ( 1.1) in a power series of the operators A and B is 
proposed. This is a time-ordering method analogous to 
Feynman’s time-ordering technique. Sum rules concerning 

the coefficients of the power-series expansion of the expo- 
nential operator exp [ x (A + B) ] are also derived. These sum 
rules are conveniently used in reducing the number,of equa- 
tions to determine the parameters it,) in ( 1. 1 ), as will be 
seen later. In Sec. VII, general decomposition conditions are 
derived explicitly. In Sec. VIII, a fractal-temperature quan- 
tum Monte Carlo method is formulated with an emphasis on 
the rapid convergence of it. In Sec. IX, a fractal-time’Monte 
Carlo method is discussed with some possible applications to 
nuclear physics and to chemical reactions. A combination of 
the present fractal decomposition and Sorella’s method is 
proposed in Sec. X. Summary and discussion are given in 
Sec. XI. 

II. RECURSION METHOD AND SYMMETRY 
PROPERTIES OF DECOMPOSITION 

It is extremely complicated to determine the parameters 
it,) in such a primitive way as we expand ( 1.1) and equate 
each term thus obtained to the corresponding term of the 
original exponential operator exp [x&4 + B) 1, as will be 
seen in Sec. VII. 

In the present section, we devise a recursion method to 
find a systematic series of approximants ( 1.1)) namely, we 
have the following fractal decomposition theorem.’ 

Theorem 1 (construction theorem): For the exponen- 
tial operator exp [x( A, + A, + * + * + A, ) 1, we consider the 
following (m - 1 )th approximant: 

exp (2.1) 

Then, the mth approximant Q, (x) is constructed as fol- 
lows: 

Q, (xl = fj em-1 (P,.,x)> (2.2) 
j= I 

for r>2, where the parameters {p,,,) are the solutions of the 
following decomposition condition that 

0, with i pm,, = 1. (2.3) 
j=l 
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Quantum Approximate Optimization 
Algorithm (QAOA)

C(s) = 1
2 ∑

(i, j)∈E
(1 − σz

i σz
j ) , B = ∑

j
σX

j
(i, j) : the edge index

i : vertex index

σ z = (1 0
0 −1)

σ z
i : Pauli′ s Z matrix actingon the ith vertex

σ z
j : Pauli′ s Z matrix actingon the jth vertex

σ z |0⟩ = + 1 |0⟩ σ z |1⟩ = − 1 |1⟩ |0⟩ = (1
0) |1⟩ = (0

1)
U(C, γ) = e−i γ C = ∏

(i, j)∈E
e−i γ Cij , U(B, β) = e−i β B =

n

∏
j=1

e−i β Bj

|ψ ( ⃗γ , ⃗β)⟩ = [
p

∏
i=1

U(B , βi)U(C , γi)]H⊗n |0⟩

Farhi et al 2014

e−iβσ X
j = cos β − iσX

j sin β

= U(B, βp) U(C, γp) ⋯ U(B, β1) U(C, γ1)
1
2

n

2n−1

∑
i=1

| i⟩

⃗γ = (γ1, γ2, ⋯, γp), and ⃗β = (β1, β2, ⋯, βp)2p angles (parameters):

Goal is to find minimum/maximum over angles: Mp = max
⃗γ , ⃗β

⟨ψ ( ⃗γ , ⃗β) | C | ψ ( ⃗γ , ⃗β)⟩



Quantum Approximate Optimization Algorithm (QAOA)
• How do  and  operate on ?U(C, γ) U(B, β) |ψ⟩

U(C, γ) H⊗n |0 ⋯ 0⟩ = e−iγC H⊗n |0 ⋯ 0⟩ = exp[ − iγ
1
2 ∑

(i, j)∈E
(1 − σZ

i σZ
j )]H⊗n |0 ⋯ 0⟩

= ∏
(i, j)∈E

exp[ − iγ
1
2 (1 − σZ

i σZ
j )]H⊗n |0 ⋯ 0⟩

exp[ − iγ
1
2 (1 − σZ

i σZ
j )]H⊗n |0 ⋯ 0⟩ = exp( − i

γ
2 )exp( + i

γ
2 σZ

i σZ
j )H⊗n |0 ⋯ 0⟩

exp( + i
γ
2 σZ

i σZ
j ) |⋯0⋯0⋯⟩ = exp( + i

γ
2 1 ⋅ 1) |⋯0⋯0⋯⟩

exp( + i
γ
2 σZ

i σZ
j ) |⋯0⋯1⋯⟩ = exp( − i

γ
2 1 ⋅ 1) |⋯0⋯1⋯⟩

exp( + i
γ
2 σZ

i σZ
j ) |⋯1⋯0⋯⟩ = exp( − i

γ
2 1 ⋅ 1) |⋯1⋯0⋯⟩

exp( + i
γ
2 σZ

i σZ
j ) |⋯1⋯1⋯⟩ = exp( + i

γ
2 1 ⋅ 1) |⋯1⋯1⋯⟩

Four different 
possibilities: 

i j
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• If bits  and  are the same, i j exp[ − iγ
1
2 (1 − σZ

i σZ
j )] | ⋯ ⟩ = + 1 | ⋯ ⟩

exp[ − iγ
1
2 (1 − σZ

i σZ
j )] | ⋯ ⟩ = e−iγ | ⋯ ⟩• If bits  and  are different, i j

• If bits  and  are different, rotate the output state around  axis by an angle .i j z γ

σZ |a⟩ = (−1)a |a⟩ RZ(θ) = exp( − i
θ
2 σZ) = (e−iθ/2 0

0 e+iθ/2)
In circuit: CNOT |x y⟩ | = |x x ⊕ y⟩

I ⊗ Rz(2γ) |x x ⊕ y⟩ = exp( − iγ(−1)x⊕y) |x x ⊕ y⟩

because the �
z

i
’s commute since they act on di↵erent qubits. Note that Pauli matrices are just the

generators of rotations. So this unitary is just an Rz(2�j) rotation on every qubit:

=
nY

i=1

R
i

z(2�j)

And for the problem Hamiltonian,

U(HP , �i) = exp

2

4�i�i

X

j,k2E
�
z

j�
z

k

3

5

=
Y

j,k2E
e
�i�i�

z
j �

z
k

This is the Rzz(2�i) gate. For the qubits |ji |ki, this is realized by the following setup:

|ji • •

|ki Rz(2�i)

9=
; exp


� i(�1)j+k

�i

�
|jki

After the first CNOT gate, we have the state |ji |j � ki. The Rz gate applies the rotation to the
second qubit, but the second CNOT gate returns our state to |ji |ki but with the rotation. Thus,
the gate setup is

=
Y

j,k2E
CNOTj,kR

k

z(2�i)CNOTj,k

So with our choice of graph and of p, we can build a quantum circuit for the max cut problem.
After choosing initial values for (�,�) and building |�,�i, we take measurements and choose our
favorite optimizer to maximize the expectation value of HP , i.e. if xi 2 {0, 1}⌦n, then

hHM i = 1

stot

2n�1X

i=0

siC(xi)

where si are the total number of times bit string xi was measured and stot is the total number of
measurements. In other words, it’s just a weight average.

3

|x⟩

|y⟩For U(B, β) = e−i β B =
n

∏
j=1

e−i β σ X
j =

n

∏
j=1

Rj
x(2β)

• Rotation of all n-qubits about x-axis with angle 2β
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ei�pX
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FIG. 5. Quantum circuit schematic of the operations in the original QAOA. The state is initialized by apply-
ing Hadamard gates on each qubit, represented as H¢n. This results in the equal superposition state of all
possible solutions. QAOA consists of alternating time evolution under the two Hamiltonians HC and HM for p
rounds, where the duration in round j is specified by the parameters “j and —j , respectively. In the original
QAOA, the mixing Hamiltonian HM is chosen as to be HM =

qn

j=1
Xj , After all p rounds, the state becomes

|�,�Í = e≠i—pHM e≠i“pHC . . . e≠i—2HM e≠i“2HC e≠i—1HM e≠i“1HC |sÍ .

address the issues with the standard QAOA ansatz. However, identifying such an alternative is a highly
non-trivial problem given the vast space of possible ansatzes. Farhi et al. [47] allowed the mixer to rotate
each qubit by a di�erent angle about the x-axis and modified the cost Hamiltonian based on hardware
connectivity. This modification was made primarily out of hardware capability concerns with the hope that
superior-than-classical performance can be experimentally verified.

LH-QAOA. In Ref. [48] Hadfield et al. considered alternative mixers including entangling ones on two
qubits. The selection of mixers is based on the criteria of preserving the relevant subspace for the given
combinatorial problem, for which they entitled it Local Hamiltonian-QAOA (LH-QAOA). Here we depict
the quantum circuit schematic of LH-QAOA in Fig. 6.

ei�1HC

�1

ei�2HC

�2

ei�1HM,1

�1

�p

ei�pHC�ei�1HM,2

�1ei�1HM,k

�1

ei�1HM,k+1

�1ei�1HM,k+2

|0�
|0�
|0�

|0�
|0�

|z1� :
|z2� :

|zi� :

ei�2HM,1

�1ei�2HM,2

�1ei�2HM,k

�2

ei�2HM,k+1

�1ei�2HM,k+2

ei�pHM,1

�1ei�pHM,2

�1ei�pHM,k

�p

ei�pHM,k+1

�1ei�pHM,k+2

H�n�

�

FIG. 6. Quantum circuit schematic of the operations in LH-QAOA. The overall process of LH-QAOA is similar to
that of the original QAOA in Fig. 5, where the di�erence is that the mixer of LH-QAOA contains entangling an mixer
Hamiltonian on two qubits. These are represented by the HM,i blocks with various colors in the figure. Note that in
order to avoid an excessive amount of hyper-parameters, Hadfield et al. [48] choose the —j for each HM,i to be the
same in every layer.

QDD. In Refs. [25, 49] Verdon et al. adjusted the mixers for continuous optimization problem in which
the parameters to be optimized are continuous variables. In the original QAOA ansatz, the mixer is chosen
to be single-qubit X rotations applied on all qubits. These constitute an uncoupled sum of generators of
shifts in the computational basis. Similarly, the appropriate mixers in the continuous case should shift the
value for each digitized continuous variables stored in independent registers. They entitled it Quantum
Dynamical Descent (QDD). Here we depict the quantum circuit schematic of QDD in Fig. 7.

ADAPT-QAOA. LH-QAOA and QDD showcase the potential of problem-tailored mixers, but do not
provide a general strategy for choosing mixers for di�erent optimization problems. In Ref. [27] Zhu et al.

|ψ( ⃗γ , ⃗β)⟩ = [
p

∏
i=1

U(B , βi)U(C , γi)]H⊗n |0⟩

C(s) = 1
2 ∑

(i, j)∈E
(1 − σz

i σz
j ) , B = ∑

j
σX

j

⊕ ⊕Rz(2γ)
| i⟩
| j⟩

e−i β σ X
j = cos β − i sin β σ x

j = Rj
x(2β)

Rotate qubit j around x-axis by 2β

Quantum Approximate Optimization Algorithm (QAOA)

|ψ( ⃗γ, ⃗β)⟩ = U(B, βp) U(C, γp) ⋯ U(B, β1) U(C, γ1)
1
2

n

2n−1

∑
i=1

| i⟩



Quantum Approximate Optimization Algorithm (QAOA)

|ψ( ⃗γ, ⃗β)⟩ = U(B, βp) U(C, γp) ⋯ U(B, β1) U(C, γ1)
1
2

n

2n−1

∑
i=1

| i⟩

For  and n = 2 p = 1, |ψ ( ⃗γ, ⃗β)⟩ = δ0(γ, β) |00⟩ + δ1(γ, β) |01⟩ + δ2(γ, β) |10⟩ + δ3(γ, β) |11⟩

|⟨x |ψ(γ, β)⟩ |2

|x⟩
|00⟩ |10⟩|01⟩ |11⟩

0.3

0.1

Fp(γ, β) = max
γ,β

⟨ψ (γ , β) | C | ψ (γ , β)⟩ = ∑
x∈{0,1}⊗n

C(x) ⟨x |ψ (γ, β)⟩
2

C = 1
2 ∑

(i, j)∈E
(1 − σz

i σz
j )

C = ∑
x∈{0,1}⊗n

C(x) |x⟩⟨x |

|x⟩ = 1
2

n

2n−1

∑
i=1

| i⟩

• Measure of how good the approximation 
is to actual best value of the cost function α =

Fp( ⃗γ, ⃗β)
Cmax
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C(�)
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QAOA  

FIG. 4. Interference process of QAOA. QAOA is an interference-based algorithm such that non-target states interfere
destructively while the target states interfere constructively. Here we illustrate this interference process by presenting
the evolution of the quantum state of the parameters (black bar graphs on the yellow plane) alongside with the
QAOA operations (blue and pink boxes on circuit lines, representing the Phase encoding and Mixers respectively).
The starting state

q
◊

|◊Í (omitting the normalization factor) is the even superposition state of all possible parameter
configurations. After the first Phase encoding operation, the state becomes

q
◊

e≠i“1C(◊)|◊Í for which we use opacity
of the bars indicate the value of the phase, the magnitudes of the amplitudes in the state remains unchanged. After
the first Mixer, the state becomes

q
◊

�C(◊)|◊Í in which the magnitudes of the amplitudes in the state has changed.
Similar process happens to the following operations, until the amplitudes of the optimal parameter configurations
are amplified significantly (the furthest bar graph). The grey bar graph in the right corner is the cost function being
optimized by QAOA.

The alternating operations can be illustrated as in Fig. 5. Finally a measurement in the computational basis
is performed on the state. Repeating the above state preparation and measurement, the expected value of
the cost function,

ÈCÍ = È�,�| HC |�,�Í ,

can be estimated from the samples produced from the measurements.

The above steps are then repeated altogether, with updated sets of time parameters “1, . . . , “p, —1, . . . , —p.
Typically a classical optimization loop (such as gradient descent) is used to find the optimal parameters
that maximize(or minimize) the the expected value of the cost function ÈCÍ. Then measuring the resulting
state of the optimal parameters provide an approximate solution to the optimization problem.

There has been a lot of progress on QAOA recently on both the experimental and theoretical fronts. There
is evidence suggesting that QAOA may provide a significant quantum advantage over classical algorithms
[42, 43], and that it is computationally universal [44, 45]. Despite these advances, there are limitations
of QAOA. The performance improves with circuit depth, but circuit depth is still limited in near-term
quantum processors. Moreover, deeper circuits translate into more variational parameters, which introduces
challenges for the classical optimizer in minimizing the objective function. Ref. [46] show that the locality
and symmetry of QAOA can limit its performance. These issues can be attributed to the form of the QAOA
ansatz. A short-depth ansatz that is further tailored to a given combinatorial problem could therefore

QAOA

Example: Max Cut

Maximum Likelihood detection 
Traveling salesman problem 

Scheduling management 
Unstructured search 

Graph coloring 
Max-cut

https://colab.research.google.com/drive/1pkUutpqZa16GmDZdZtD__tIopdpfxoov


Ansatz Main Idea Enhancement & Applications

ma-QAOA [77] Multi-angle ansatz with a unique parameter for
each element of cost and mixer Hamiltonians

Improves approximation ratio for MaxCut
while reducing circuit depth

QAOA+ [78] Augments traditional QAOA with an additional
multi-parameter problem-independent layer

Higher approximation ratios for MaxCut
on random regular graphs

DC-
QAOA [79, 80]

Adds a problem-dependent counterdiabatic driv-
ing term to the QAOA ansatz

Improves the convergence rate of the ap-
proximation ratio while reducing circuit
depth

ab-QAOA [81] Incorporates local fields into the operators to re-
duce computation time

Computation time reduction for combina-
torial optimization

ADAPT-
QAOA [82]

Iterative version of QAOA with systematic selec-
tion of mixers based on gradient criterion

Can be problem-specific and addresses
hardware constraints

Recursive
QAOA [83]

Non-local variant of QAOA that iteratively re-
duces problem size by eliminating qubits

Overcomes locality constraints and
achieves better performance

QAOAnsatz [84] Extends the original formulation with broader
families of operators and allows for encoding of
constraints

Adaptable to a wider range of optimization
problems with hard and soft constraints

GM-QAOA [85] Uses Grover-like selective phase shift mixing op-
erators

Solves k-Vertex Cover, Traveling Salesper-
son Problem, Discrete Portfolio Rebalanc-
ing

Th-QAOA [86] Replaces standard phase separator with a thresh-
old function

Solves MaxCut, Max k-Vertex Cover, Max
Bisection

Constraint
Preserving
Mixers [87]

Constructs mixers that enforce hard constraints Solves optimization problems with hard
constraints

WS-QAOA [88] Modifies the initial state and mixer Hamiltonian
based on the optimal solution to the relaxed
QUBO problem

Solutions guaranteed to retain the GW
bound for the MaxCut problem

FALQON [66] Uses qubit measurements for feedback-based
quantum optimization, avoiding classical opti-
mizers

Produces monotonically improving approx-
imate solutions as circuit depth grows while
bypassing classical optimization loops

FALQON+ [89] Combines FALQON’s initialization with QAOA
for better parameter initialization

Improves initialization of standard QAOA
for non-isomorphic graphs with 8 to 14 ver-
tices

FQAOA [90] Utilizes fermion particle number preservation to
intrinsically impose constraints in QAOA process

Improves performance in portfolio opti-
mization, applicable to Grover adaptive
search and quantum phase estimation

Quantum
Dropout [91]

Selectively drops out clauses defining the quan-
tum circuit while keeping the cost function intact

Improves QAOA performance on hard
cases of combinatorial optimization prob-
lems

ST-QAOA [92] Uses an approximate classical solution to con-
struct a problem instance-specific circuit

Achieves same performance guarantee as
the classical algorithm, outperforms QAOA
at low depths for MaxCut problem

Modified
QAOA [31]

Modifies cost Hamiltonian with conditional rota-
tions

Improves approximation ratio for MaxCut
at p = 1

Table 1: Summary of ansatz strategies for improving QAOA.
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QAOA summary
• One can solve the optimization problems on a quantum 

computer by initializing the quantum device in the 
ground state of a hamiltonian that is easy to prepare and 
adiabatically tuning H into the problem Hamiltonian. 

• In a digital quantum computer, this translates into a 
Trotterized version of the adiabatic evolution operator. In 
the limit of an infinite product, this Trotterized form 
becomes exact. 

• QAOA is a hybrid quantum-classical variational algorithm 
with a finite order version of the evolution operator.  

• Many experimental and theoretical studies, suggesting 
QAOA may provide a significant quantum advantage 
over classical algorithms, and that it is computationally 
universal. 



Limitations and potential 
issues with QAOA

• The performance improves with the number of alternating layers 
in the Ansatz, which is limited by coherences times in exiting and 
near-term quantum processors.  

• More layers implies more variational parameters (challenging for 
classical optimizers). 

• Short-depth ansatz is not really the digitized version of the 
adiabatic problem but rather an adhoc ansatz, which does not 
guarantee to perform optimally. 

• Fixed form of standard QAOA is not optimal but no systematic 
approach for finding a better ansatz. 

• ADAPT-QAOA converges faster, reducing the required number 
of CNOT gates and optimization parameters. 

• Connection to concept of shortcuts to adiabaticity.  
• Inspired by ADAPT-VQE (Refs in 2005.10258).



Adaptive Derivative Assembled 
Problem Tailored - Quantum 
Approximate Optimization 
Algorithm (ADAPT-QAOA)

• https://arxiv.org/pdf/2005.10258.pdf



ADAPT-QAOA

2

II. ADAPT-QAOA

A. Framework

In QAOA [4, 5], the variational ansatz consists of p
layers, each containing the cost Hamiltonian HC and a
mixer, HM :

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iHM�ke�iHC�k

⇤
!
| refi , (1)

where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)

���HC

��� p(~�, ~�)
E

is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iAk�ke�iHC�k

⇤
!
| refi . (2)

We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
↵
on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
�i
⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
�� (k)

↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
,

where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that

⌦
 (k)

��HC

�� (k)
↵
is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type
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max, associated with the largest component

of the gradient:
�� (k)

↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
,

where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that

⌦
 (k)

��HC

�� (k)
↵
is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type
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II. ADAPT-QAOA

A. Framework

In QAOA [4, 5], the variational ansatz consists of p
layers, each containing the cost Hamiltonian HC and a
mixer, HM :
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E
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pY
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⇥
e�iHM�ke�iHC�k

⇤
!
| refi , (1)

where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)

���HC

��� p(~�, ~�)
E

is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:
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⇥
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!
| refi . (2)

We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
↵
on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
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↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
�� (k)
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= e�iA

(k)
max�ke�iHC�k
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where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that

⌦
 (k)

��HC

�� (k)
↵
is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type
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is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
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dard QAOA ansatz for specific problems and hardware
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rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†
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, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
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and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool
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fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA
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one consisting entirely of single-qubit mixers, and one
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vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP
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wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian
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where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
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C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type
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and a mixer, HM :

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iHM�ke�iHC�k

⇤
!
| refi , (1)

where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)

���HC

��� p(~�, ~�)
E

is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the original QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the original
QAOA ansatz [21–23]. Farhi et al. [21] allowed the mixer
to rotate each qubit by a di↵erent angle about the x axis
and modified the cost Hamiltonian layer so that it is more
compatible with the hardware architecture they consid-
ered. Hadfield et al. [22] considered more general mixers
defined such that they preserve the relevant subspace for
the given combinatorial problem. Ref. [23] focused on
graph coloring optimization problems using more than
one qubit per node and demonstrated that intra-node en-
tangling mixers that preserve symmetries outperform the
standard X mixer. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iAk�ke�iHC�k

⇤
!
| refi . (2)

We build up this ansatz iteratively, one layer at a time, in
a way that is determined by HC . This iterative process
is inspired by the variational quantum eigensolver algo-
rithm, ADAPT-VQE, which was developed for molecular
Hamiltonians [24, 25]. It can be summarized by three ba-
sic steps: First, define the operator set {Aj} (called the

“pool”, and where Aj = A†
j
) and select a suitable refer-

ence state to be the initial state:
�� (0)

↵
= | refi. Here,

we choose | refi = |+i⌦n as in the original QAOA. We
will return shortly to the question of how to choose the
pool. Second, prepare the current ansatz

�� (k�1)
↵
on

the quantum processor and measure the energy gradient
with respect to the pool, the jth component of which
is given by �i

⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
,

where the new variational parameter �k is set to a pre-
defined value �0. If the norm of the gradient is be-
low a predefined threshold, then the algorithm stops,
and the current state and energy estimate approximate
the desired solution. If the gradient threshold is not

met, modify the ansatz by adding the operator, A(k)

max,
associated with the largest component of the gradient:

�� (k)
↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
, where �k is a new

variational parameter. Third, optimize all parameters
currently in the ansatz, �m, �m, m = 1, ..., k, such that⌦
 (k)

��HC

�� (k)
↵
is minimized, and return to the second

step. This algorithm, which we call ADAPT-QAOA, lies
somewhere between standard QAOA and ADAPT-VQE
in the sense that it possesses the alternating-operator
structure of QAOA but enjoys additional flexibility by
allowing the mixers to vary over the course of an itera-
tive construction. Given that a similar iterative approach
was shown to provide accurate ground state energies and
fast convergence for various molecules [24, 25], it is natu-
ral to consider its suitability for determining the mixers
in QAOA. The recipe for ADAPT-QAOA is summarized
below in pseudo-code format.

Algorithm 1 ADAPT-QAOA

Initial state: | (0)i = | refi = |+i⌦n

Predefined: Number of layers p; Cost Hamiltonian HC ;
Initial parameter for optimization: �0; Operator pool with
m operators Aj , j 2 [1,m]
for k = 1...p do

//From operator pool select operator
for j = 1...m do

//Get max measured gradient operator A(k)
max:

Set �k = �0

Define | (k)it = e
�iHC�k | (k�1)i

A
(k)
max = argmax

⇣
�i th (k)|[HC , Aj ]| (k)it

⌘

end for

//Add A
(k)
max to current ansatz:

| (k)i = e
�iA

(k)
max�ke

�iHC�k | (k�1)i
// Optimization

minh (k)|HC | (k)i ! ~�,~�

output.add(~�,~�, A(k)
max,minh (k)|HC | (k)i)

end for

return output

The first step in running this algorithm is to define
the operator pool from which we select the mixers. De-
fine Q to be the set of qubits. The pool correspond-
ing to the original QAOA contains only one operator,

PQAOA =
nP

i2Q
Xi

o
. There is a lot of flexibility in

choosing an operator pool. Here, for our numerical sim-
ulations of ADAPT-QAOA, we select two qualitatively
di↵erent pools to compare to each other and to the origi-
nal QAOA: one consisting entirely of single-qubit mixers,
and one with both single-qubit and multi-qubit entan-
gling gates. The single-qubit pool is defined as Psingle =

[i2Q {Xi, Yi}[
nP

i2Q
Yi

o
[PQAOA, and the multi-qubit

pool as Pmulti = [i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [
Psingle. Because PQAOA ⇢ Psingle ⇢ Pmulti, we ex-
pect that Pmulti will provide the best performance. The
QAOA, single-qubit, and multi-qubit pools have O(1),
O(n), and O(n2) elements, respectively. More general
pools can have combinatorially many elements [22].
If HC has symmetries, then additional constraints

should be imposed on the pool. In this work, we focus
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A. Framework

In QAOA [4, 5], the variational ansatz consists of p
layers, each containing the cost Hamiltonian HC and a
mixer, HM :
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where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
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��� p(~�, ~�)
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is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:
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We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
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on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
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⌦
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�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
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where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that
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is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type
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is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:

��� p(~�, ~�)
E
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pY
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⇥
e�iAk�ke�iHC�k

⇤
!
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We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
state:

�� (0)
↵
= | refi. Here, we choose | refi = |+i⌦n

as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
pare the current ansatz

�� (k�1)
↵
on the quantum pro-

cessor and measure the energy gradient with respect
to the pool, the jth component of which is given by
�i
⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the

operator, A(k)

max, associated with the largest component

of the gradient:
�� (k)

↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
,

where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that

⌦
 (k)

��HC

�� (k)
↵
is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
nP

i2Q
Xi

o
.

Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
with both single-qubit and multi-qubit entangling gates:

Psingle = [i2Q {Xi, Yi} [
nP

i2Q
Yi

o
[ PQAOA, Pmulti =

[i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [ Psingle. Because
PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP

i✏S,j✏S̄,i,j✏E
wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian

HC = �1

2

X

i,j

wi,j(I � ZiZj), (3)

where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
pool.

C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type
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where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
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is minimized, then the resulting energy and state provide
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coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.
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We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†
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and select a suitable reference state to be the initial
state:
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as in the standard QAOA. We will return shortly to
the question of how to choose the pool. Second, pre-
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to the pool, the jth component of which is given by
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, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
variational quantum algorithm methods [30]. If the norm
of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
threshold is not met, modify the ansatz by adding the
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where �k is a new variational parameter. Third, op-
timize all parameters currently in the ansatz, �m, �m,
m = 1, ..., k, such that
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is minimized,

and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
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one consisting entirely of single-qubit mixers, and one
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Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
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lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP
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wi,j is maximized. This problem can be

encoded in the Ising Hamiltonian
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where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
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C. Performance and Resource Comparison

We use the Max-Cut problem on regular graphs with
n=6 vertices and degrees D=3 and D=5 to bench-
mark the performance of ADAPT-QAOA. For each type
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an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.
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We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†
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and select a suitable reference state to be the initial
state:
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as in the standard QAOA. We will return shortly to
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, where the

new variational parameter �k is set to a predefined value
�0. For the measurement, we can decompose the commu-
tator into linear combinations of Pauli strings and mea-
sure the expectation values of the strings using general
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of the gradient is below a predefined threshold, then the
algorithm stops, and the current state and energy esti-
mate approximate the desired solution. If the gradient
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call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
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qubits. The pool corresponding to the standard QAOA
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PQAOA ⇢ Psingle ⇢ Pmulti, we expect that Pmulti will pro-
vide the best performance. The QAOA, single-qubit, and
multi-qubit pools have O(1), O(n), and O(n2) elements,
respectively.

Max-Cut is a classic (NP-hard) quadratic uncon-
strained binary optimization problem, and it can be used
to solve other optimization problems. Thus, it is a use-
ful benchmarking problem for QAOA and has been used
as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
edge (i, j), find a cut S ✓ V such that S [ S̄ = V , andP
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where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
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and a mixer, HM :

��� p(~�, ~�)
E
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pY

k=1
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e�iHM�ke�iHC�k

⇤
!
| refi , (1)

where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
 p(~�, ~�)

���HC

��� p(~�, ~�)
E

is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the original QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the original
QAOA ansatz [21–23]. Farhi et al. [21] allowed the mixer
to rotate each qubit by a di↵erent angle about the x axis
and modified the cost Hamiltonian layer so that it is more
compatible with the hardware architecture they consid-
ered. Hadfield et al. [22] considered more general mixers
defined such that they preserve the relevant subspace for
the given combinatorial problem. Ref. [23] focused on
graph coloring optimization problems using more than
one qubit per node and demonstrated that intra-node en-
tangling mixers that preserve symmetries outperform the
standard X mixer. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
next:

��� p(~�, ~�)
E
=

 
pY

k=1

⇥
e�iAk�ke�iHC�k

⇤
!
| refi . (2)

We build up this ansatz iteratively, one layer at a time, in
a way that is determined by HC . This iterative process
is inspired by the variational quantum eigensolver algo-
rithm, ADAPT-VQE, which was developed for molecular
Hamiltonians [24, 25]. It can be summarized by three ba-
sic steps: First, define the operator set {Aj} (called the

“pool”, and where Aj = A†
j
) and select a suitable refer-

ence state to be the initial state:
�� (0)

↵
= | refi. Here,

we choose | refi = |+i⌦n as in the original QAOA. We
will return shortly to the question of how to choose the
pool. Second, prepare the current ansatz

�� (k�1)
↵
on

the quantum processor and measure the energy gradient
with respect to the pool, the jth component of which
is given by �i

⌦
 (k�1)

�� eiHC�k [HC , Aj ]e�iHC�k
�� (k�1)

↵
,

where the new variational parameter �k is set to a pre-
defined value �0. If the norm of the gradient is be-
low a predefined threshold, then the algorithm stops,
and the current state and energy estimate approximate
the desired solution. If the gradient threshold is not

met, modify the ansatz by adding the operator, A(k)

max,
associated with the largest component of the gradient:

�� (k)
↵
= e�iA

(k)
max�ke�iHC�k

�� (k�1)
↵
, where �k is a new

variational parameter. Third, optimize all parameters
currently in the ansatz, �m, �m, m = 1, ..., k, such that⌦
 (k)

��HC

�� (k)
↵
is minimized, and return to the second

step. This algorithm, which we call ADAPT-QAOA, lies
somewhere between standard QAOA and ADAPT-VQE
in the sense that it possesses the alternating-operator
structure of QAOA but enjoys additional flexibility by
allowing the mixers to vary over the course of an itera-
tive construction. Given that a similar iterative approach
was shown to provide accurate ground state energies and
fast convergence for various molecules [24, 25], it is natu-
ral to consider its suitability for determining the mixers
in QAOA. The recipe for ADAPT-QAOA is summarized
below in pseudo-code format.

Algorithm 1 ADAPT-QAOA

Initial state: | (0)i = | refi = |+i⌦n

Predefined: Number of layers p; Cost Hamiltonian HC ;
Initial parameter for optimization: �0; Operator pool with
m operators Aj , j 2 [1,m]
for k = 1...p do

//From operator pool select operator
for j = 1...m do

//Get max measured gradient operator A(k)
max:

Set �k = �0

Define | (k)it = e
�iHC�k | (k�1)i

A
(k)
max = argmax

⇣
�i th (k)|[HC , Aj ]| (k)it

⌘

end for

//Add A
(k)
max to current ansatz:

| (k)i = e
�iA

(k)
max�ke

�iHC�k | (k�1)i
// Optimization

minh (k)|HC | (k)i ! ~�,~�

output.add(~�,~�, A(k)
max,minh (k)|HC | (k)i)

end for

return output

The first step in running this algorithm is to define
the operator pool from which we select the mixers. De-
fine Q to be the set of qubits. The pool correspond-
ing to the original QAOA contains only one operator,

PQAOA =
nP

i2Q
Xi

o
. There is a lot of flexibility in

choosing an operator pool. Here, for our numerical sim-
ulations of ADAPT-QAOA, we select two qualitatively
di↵erent pools to compare to each other and to the origi-
nal QAOA: one consisting entirely of single-qubit mixers,
and one with both single-qubit and multi-qubit entan-
gling gates. The single-qubit pool is defined as Psingle =

[i2Q {Xi, Yi}[
nP

i2Q
Yi

o
[PQAOA, and the multi-qubit

pool as Pmulti = [i,j2Q⇥Q {BiCj |Bi, Cj 2 {X,Y, Z}} [
Psingle. Because PQAOA ⇢ Psingle ⇢ Pmulti, we ex-
pect that Pmulti will provide the best performance. The
QAOA, single-qubit, and multi-qubit pools have O(1),
O(n), and O(n2) elements, respectively. More general
pools can have combinatorially many elements [22].
If HC has symmetries, then additional constraints

should be imposed on the pool. In this work, we focus
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Appendix E: ADAPT-QAOA

In Adaptive Derivative Assembled Problem Tailored
QAOA[49] (ADAPT-QAOA), the choice of the mixer
Hamitlonian is not fixed but instead is drawn from a
pool of potential Hamiltonians layer by layer. The kth
layer will have HM = Ak where Ak one of

Single-qubit mixers

Y
___]

___[

Xi – An X gate on the ith qubit
Yi – A Y gate on the ith qubitq

n

i=1
Xi – An X gate on every qubit, i.e. QAOAq

n

i=1
Yi – A Y gate on every qubit

(E1)

Multi-qubit mixers

Y
_______]

_______[

XiXj – X gates on the ith and jth qubits, respectively
XiYj – X and Y gates on the ith and jth qubits, respectively
XiZj – X and Z gates on the ith and jth qubits, respectively
YiZj – Y and Z gates on the ith and jth qubits, respectively
YiYj – Y gates on the ith and jth qubits, respectively
ZiZj – Z gates on the ith and jth qubits, respectively

(E2)

Namely, the two QAOA-like mixers (the third and
fourth above) and all length one and two Pauli
strings. As such, ADAPT-QAOA shares similarities with
FALQON as the circuit is iteratively built. For layer k,

we aim to find the mixer that maximizes the energy gra-
dient. That is, if A is the mixer pool, then ’Aj œ A, we
calculate

�E
j

k
©

ˆ

ˆ—k

ÈÂk|HP |ÂkÍ

----
—k=0

= ˆ

ˆ—k

ÈÂk≠1|e
i“kHP e

i—kAj HP e
≠i—kAj e

≠i“kHP |Âk≠1Í

----
—k=0

(E3)

= ÈÂk≠1|e
i“kHP e

i—kAj (iAjHP ≠ iHP Aj) e
≠i—kAj e

≠i“kHP |Âk≠1Í

----
—k=0

(E4)

= ≠i ÈÂk≠1|e
i“kHP [HP , Aj ]e≠i“kHP |Âk≠1Í (E5)

and choose Ak = argmax
AjœA

�E
j

k
. Since we don’t know “k

a priori, we set it to some predefined value “0. Once the
mixer for the kth layer, Ak, has been chosen, the circuit
is optimized as with normal QAOA. With optimized pa-

rameters, another layer can be added following the above
procedure. The algorithm can be stopped when a spe-
cific circuit depth has been reached or �E

j

k
is below some

threshold.P
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II. ADAPT-QAOA

A. Framework

In QAOA [4, 5], the variational ansatz consists of p
layers, each containing the cost Hamiltonian HC and a
mixer, HM :
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where | refi = |+i⌦n, n is the number of qubits, and

~� and ~� are sets of variational parameters. If these pa-

rameters are chosen such that
D
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is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM

by a set of mixers Ak that change from one layer to the
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algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
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and select a suitable reference state to be the initial
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and return to the second step. This algorithm, which we
call ADAPT-QAOA, lies somewhere between standard
QAOA and ADAPT-VQE in the sense that it possesses
the alternating-operator structure of QAOA but enjoys
additional flexibility by allowing the mixers to vary over
the course of the iterative construction.

B. Operator Pool

The first step in running this algorithm is to de-
fine the mixer pool. Define Q to be the set of
qubits. The pool corresponding to the standard QAOA

contains only one operator, PQAOA =
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Here, we introduce two qualitatively di↵erent pools:
one consisting entirely of single-qubit mixers, and one
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as such in prior works [5, 7, 11]. It is defined as fol-
lows: Given a graph G = (V,E), with weight wi,j for
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wi,j is maximized. This problem can be
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where the couplings are given by the edge weights. Each
classical state (i.e., tensor product of Z eigenstates) rep-
resents a possible cut. HC counts the sum of the weights
of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC

has a Z2 symmetry generated by F = ⌦iXi. Only the Aj

that commute with F have a nonzero gradient (see Ap-
pendix A), so we retain only these Pauli strings (which
have an even number of Y or Z operators) in our mixer
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We use the Max-Cut problem on regular graphs with
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is minimized, then the resulting energy and state provide
an approximate solution to the optimization problem en-
coded in HC . The accuracy of the result and the e�-
ciency with which it can be obtained depend sensitively
on HM . In the standard QAOA ansatz, the mixer is cho-
sen to be a single-qubit X rotation applied to all qubits.
A few papers have suggested modifications to the stan-
dard QAOA ansatz for specific problems and hardware
architectures [25–27]. These interesting results reveal the
potential advantages of the QAOA ansatz but do not pro-
vide a universal strategy for choosing mixers that works
across a broad range of optimization problems.

In this work, we replace the single, fixed mixer HM
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We build up this ansatz iteratively, one layer at a time,
in a way that is determined by HC . This iterative pro-
cess is inspired by the variational quantum eigensolver
algorithm, ADAPT-VQE [28, 29]. It can be summa-
rized by three basic steps: First, define the operator set
{Aj} (called the “mixer pool”, and where Aj = A†

j
)

and select a suitable reference state to be the initial
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�� (0)
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as in the standard QAOA. We will return shortly to
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of the edges connecting one subgraph to the other, and
its ground state corresponds to the maximum cut. HC
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would be of both fundamental and practical interest.
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Appendix A: Ising symmetry and mixer pool
operators

In this work, we focus on Ising Hamiltonians of the
form

HC = �1

2

X

i,j

wi,j(I � ZiZj), (A.1)

which have a Z2 symmetry associated with the operator
F = ⌦iXi. Since [F,HC ] = 0 and F | refi = | refi, we
can rewrite the gradient in the first iteration as

h ref |eiHC�1 [HC , Aj ]e
�iHC�1 | refi

= h ref |eiHC�1F [HC , Aj ]Fe�iHC�1 | refi, (A.2)

where Aj is an operator from the mixer pool. However,
we also know that FAj = ±AjF because F and Aj are
Pauli strings (except when Aj is the standard QAOA
mixer

P
i2Q

Xi or
P

i2Q
Yi, but the former commutes

and the latter anticommutes with F ), so F [HC , Aj ]F =
±[HC , Aj ]. Comparing this to Eq. (A.2), we see that to
have a non-zero gradient, we need [F,Aj ] = 0. This holds
for all steps of the algorithm, because only operators that
commute with F appear in the ansätze, so a formula like
Eq. (A.2) holds at every iteration. The Aj that commute
with F are Pauli strings that have an even number of Y
or Z operators, so we retain only these Pauli strings in
our mixer pool.

Appendix B: First Layer of ADAPT-QAOA ansatz

Here we analyze the ADAPT-QAOA cost function in
the first layer, and the results show that the minimum
of the energy in the first layer of ADAPT-QAOA never
occurs at � = 0 for any operator included in the pool.
We also show that � = 0 is a critical point of the cost
function.

At level p of ADAPT-QAOA, the cost function is

Ep(�, �) = h (p�1)|e�i�He�i�MHei�Mei�H | (p�1)i.
(B.1)

Where H is a linear combination of Pauli strings that
are tensor products of the identity and Z. All the terms

in H commute with each other. M is the mixer. If the
mixers M are single-Pauli strings, we have

e�i�MHei�M = Hc+cos(2�)Ha� i sin(2�)MHa, (B.2)

where Hc is the part of H that commutes with M , and
Ha is the part of H that anticommutes with M . We then
have

e�i�He�i�MHei�Mei�H

= Hc + cos(2�)Ha � i sin(2�)e�i�HMei�HHa

= Hc + cos(2�)Ha � i sin(2�)MHae
2i�Ha . (B.3)

We know that Ep(�, �) is periodic in � with period ⇡.
Therefore, we can restrict � to the range � 2 [�⇡/2,⇡/2]
without loss of generality. Let’s define

G(�) ⌘ �iMHae
2i�Ha . (B.4)

The cost function is then

Ep(�, �) = hHci+ cos(2�)hHai+ sin(2�)hG(�)i, (B.5)

where the expectation values are taken with respect to
| (p�1)i. Therefore,

@Ep

@�
= �2 sin(2�)hHai+ 2 cos(2�)hG(�)i = 0

) tan(2�) =
hG(�)i
hHai

, (B.6)

and

@Ep

@�
= sin(2�)hG0(�)i = 0

) � = 0,±⇡/2 or hG0(�)i = 0. (B.7)

For the first layer, p = 1, the state is | (0)i = |+i⌦n,
and so hHai = 0. From Eq. (B.6), we see that � =
±⇡/4 assuming h0|G(�)|0i 6= 0. Eq. (B.7) then requires
hG0(�)i = 0. Using Eq. (B.4), for p = 1 this is:

h0|G0(�)|0i= 2 h0|MH2

a
e2i�Ha |0i

= 2 h0|H2

a
e2i�Ha |0i = 0. (B.8)

Notice that � = 0 is not a solution of this equation
because h0|H2

a
|0i > 0, which follows from the fact that

this is the norm of a nonzero state, Ha|+i⌦n. Numerics
are needed to determine if there is a nonzero value of �
that satisfies h0|G0(�)|0i = 0.
On the other hand, if h0|G(�)|0i = 0, then there is

no constraint on � from @Ep

@�
= 0. Notice that this hap-

pens when � = 0 since h0|G(0)|0i = �i h0|MHa|0i = 0,
which is true for regular graphs where Ha is a sum of
terms like ZjZk, and M is a Pauli string that commutes
with F = ⌦`X`. In this case, we must have � = 0
or ±⇡/2. There could be other values of � that sat-
isfy h0|G(�)|0i = 0, but it seems unlikely that both this

•  has a  symmetry associated with the operator . Since 
, one can show that the gradient is only nonzero for . The 

 that commutes with  are Pauli strings that have an even number of  or  
operators.

HC = HP Z2 F = ⊗i Xi
[F , HC] = 0 [F , Aj] = 0
Aj F Y Z
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FIG. 7. Quantum circuit schematic of QDD. QDD solves optimization problems of continuous variable. In this figure,
◊i are the continuous variables to be optimized in the training, where each ◊i is digitized into binary form and stored
in an independent register. The overall process of QDD is similar to that of the original QAOA, where the di�erence
is that the mixer of QDD with Hamiltonian S is acting on the registers of ◊i (rather than single qubits as in the
original QAOA). The e�ect of the mixer in QDD is to shift the value for each ◊i.

replaced the fixed mixer HM by a set of di�erent mixers Ak that change from layer to layer. They entitled
this variation of QAOA as ADAPT-QAOA. This adaptive approach would dramatically shorten the depth of
QAOA layers while significantly improving the quality of the solution. Here we depict the quantum circuit
schematic of ADAPT-QAOA in Fig. 8.
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FIG. 8. Quantum circuit schematic of ADAPT-QAOA. The overall process of LH-QAOA is similar to that of
the original QAOA in Fig. 5, where the di�erence is that the mixer of LH-QAOA contains variable mixers taken
from a mixers pool. Define Q to be the set of qubits. The mixer pool of ADAPT-QAOA is PADAPT-QAOA =
fiiœQ

Ó
Xi, Yi,

q
iœQ

Xi,
q

iœQ
Yi

Ô
fii,jœQ◊Q {BiCj |Bi, Cj œ {X, Y, Z}}.

Compared to the original QAOA, allowing Y mixers and entangling mixers enables ADAPT-QAOA to
dramatically improve algorithmic performance while achieving rapid convergence for problems with complex
structures. This e�ect of the adaptive mechanism can be illustrated in Fig. 9.

Zhu et al 2020

Figure taken from 2103.17047
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FIG. 1. Comparison of the performance of standard QAOA (blue) with ADAPT-QAOA for the single-qubit (orange) and
multi-qubit (green) pools. The algorithms are run on the Max-Cut problem for the regular graphs shown in the figure, which
have n=6 vertices and are of degree D=3 (a) and D=5 (b). The energy error (the di↵erence between the energy estimate
obtained by the algorithm and the exact ground state energy of HC) is shown as a function of the number of layers in the
ansatz. Results are shown for 20 di↵erent instances of edge weights, which are randomly sampled from the uniform distribution
U(0, 1). The shaded regions indicate 95% confidence intervals.

of graph, we analyze 20 instances of random edge
weights, which are drawn from the uniform distribution
U(0, 1) [31]. We use Nelder-Mead for the optimization of

the variational parameters ~� and ~�. The gradients used
to select new operators are sensitive to the initial val-
ues for ~�. It is natural to initialize these parameters at
�0 = 0 to avoid biasing the optimization. However, as we
show in Appendix B, �0 = 0 is a critical point of the cost
function [32]. Moreover, the minimum of the energy in
the first layer of ADAPT-QAOA never occurs at �0 = 0.
Therefore, we shift the initial value �0 slightly away from
zero (�0 = 0.01) to avoid these issues.

In Fig. 1 we show the error as a function of the number
of ansatz layers for the standard QAOA and for ADAPT-
QAOA using single-qubit and multi-qubit mixer pools.
For both 3- and 5-regular graphs, we find that using the
single-qubit mixer pool provides a modest improvement
over standard QAOA. On the other hand, the multi-qubit
pool performs dramatically better, leading to a rapid con-
vergence to the exact solution after only ⇠3 layers. We
also find that for the degree-5 graphs, standard QAOA
and ADAPT-QAOA with single-qubit mixers converge
slower than the degree-3 case, whereas the performance
of ADAPT-QAOA with the multi-qubit operator pool re-
mains approximately the same. Note that the particular
form of the two-qubit operators in the pool was chosen
for its simplicity. In general, one can choose a hardware-
tailored operator pool, in the spirit of Ref. [33]. In Ap-
pendix C, we show similar results for n = 8 and n = 10
graphs of degree D = 2, where ADAPT-QAOA with the
multi-qubit pool substantially outperforms the standard
QAOA again. Going to larger values of D or n is made
challenging by a sharp increase in the number of layers

needed to reach convergence, as reported for standard
QAOA in Ref. [34].
It is interesting to ask how much the ADAPT-QAOA

ansätze di↵er from the standard QAOA ansatz. We find
that when the single-qubit mixer pool is used, the single-
qubit operators Xi are chosen instead of the standard
mixer approximately 36.6% of the time for n=6, D=3
graphs and 25% of the time for n=6, D=5 graphs. For
the multi-qubit mixer pool, the algorithm chooses oper-
ators other than the standard mixer approximately 75%
of the time for n=6, D=3 graphs and 80% of the time for
n=6, D=5 graphs (see Appendix D). This trend supports
the intuitive idea that a more connected graph requires
more entanglement for a rapid convergence to the solu-
tion.
A crucial question, especially for near-term platforms,

is how the di↵erent mixer pools compare with respect to
resource overhead. Fig. 2 shows the number of CNOTs
and number of parameters for the three algorithms. The
CNOT counts are determined by decomposing each two-
qubit operator into two CNOT gates and one or two
single-qubit gates. Surprisingly, we find that both the
standard QAOA and the single-qubit mixer ansätze in
fact have more CNOTs compared to that constructed
from the entangling multi-qubit mixer pool. Moreover,
on average, the standard QAOA algorithm uses more
parameters and CNOTs to reach the same convergence
threshold than either version of ADAPT-QAOA. About
half as many CNOTs are required for the ADAPT-QAOA
multi-qubit pool case, despite the fact that the mixers
in the multi-qubit pool themselves introduce additional
CNOT gates on top of those coming from HC . Ref. [25]
proposed using a restricted form of entangling gates in

γ0 = 0.01

Nelder-Mead for optimization 
= downhill simplex method 
= amoeba method 
= polytope method
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FIG. 6. Probability of operators picked by the original QAOA, ADAPT-QAOA with the single-qubit mixer and ADAPT-QAOA
with multi-qubit pool for the Max-Cut problem on regular graphs with n=6 vertices with degree D=3 (a)(b) and D=5 (c)(d)
with random edge weights sampled from a uniform distribution U(0, 1). The blue bars show the probability of each particular
operator used for ansatz, and green bars show the probability of the original mixer, sum over all single-qubit gates and sum
over all entangling gates used in ansatz. The results from 20 instances of random edge weights.

Appendix D: Role of entangling mixers versus
entangling gates

In Fig. 2, we compared the resources used by three
di↵erent algorithms for the Max-Cut problem on regular
graphs. These resources include the number of CNOT
gates and the number of optimization parameters. From
the comparison we can see that including entangling mix-
ers in the ansatz produces a dramatically faster con-
vergence to the exact solution compared to the original
QAOA. Surprisingly, despite the inclusion of these en-
tangling mixers, the improvement in convergence comes
with a simultaneous reduction in both the number of en-
tangling gates in the compiled ansatz.

To further investigate the role of entangling mixers,
we consider the n = 6, D = 3 (in Fig. 6 (a), (b)) and
n = 6, D = 5 graphs (in Fig. 6 (c), (d)) and show the

probability for an operator to be picked by the original
QAOA and by ADAPT-QAOA with a single-qubit mixer
pool in Fig. S1. Similar results for ADAPT-QAOA with
a multi-qubit mixer pool are also shown in Fig. 6(b),(d).
We find that when only the single-qubit mixer pool is
used, the single-qubit operators Xi are chosen instead
of the original mixer approximately 25% of the time.
For the multi-qubit mixer pool, the algorithm chooses
two-qubit entangling operators approximately 70% of the
time. Clearly, entangling mixers play a central role in the
improved performance of ADAPT-QAOA.

Additionally, to understand the importance of CNOT
gates in the compiled ansatz, in Fig. 7 we show the er-
ror for the solution determined by each algorithm as a
function of the number of CNOTs used in the ansatz for
both n = 6, D = 3 and n = 6, D = 5 graphs. Based
on the figure, we can see that ADAPT-QAOA with the

• How much does the 
ADAPT-QAOA ansatz 
differ from the standard 
QAOA ansatz? 

• When the single-qubit 
mixer pool is used, the 
single- qubit operators Xi 
are chosen instead of the 
standard mixer 
approximately 36.6% of 
the time for n=6,D=3 
graphs and 25% of the 
time for n=6,D=5 graphs. 

• For the multi-qubit mixer 
pool, the algorithm 
chooses operators other 
than the standard mixer 
approximately 75% of the 
time for n=6, D=3 graphs 
and 80% of the time for 
n=6, D=5 graphs.

• This trend supports the 
intuitive idea that a more 
connected graph requires 
more entanglement for a 
rapid convergence to the 
solution. 
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FIG. 2. Resource comparison of the standard QAOA,
ADAPT-QAOA with the single-qubit mixer pool, and
ADAPT-QAOA with the multi-qubit mixer pool for the Max-
Cut problem on regular graphs with n=6 vertices and random
edge weights. Panels (a) and (b) show the comparison for
graphs of degree D=3 and D=5, respectively. For all cases
except the standard QAOA applied to D = 5 graphs, we
count the number of parameters and CNOTs needed to reach
an energy error of �E = 10�3. As standard QAOA for D = 5
graphs never reaches this error threshold, we instead count the
CNOT gates and parameters at the end of the simulation (15
layers). The dark (light) red bars show variational parameter
(CNOT gate) counts. The error bars show variances obtained
by sampling over 20 di↵erent instances of edge weights.

the ansatz to obtain better performance in combinato-
rial problems at the cost of introducing more variational
parameters. In contrast, ADAPT-QAOA provides a sys-
tematic way to both improve performance and reduce the
number of parameters and CNOTs.

III. SHORTCUTS TO ADIABATICITY

One may wonder whether there is a physically intuitive
way to understand the strikingly better performance of
ADAPT-QAOA. Considering that the standard QAOA
ansatz has a structure dictated by the adiabatic theo-
rem, a possible explanation is that the ADAPT algo-

rithm is related to shortcuts to adiabaticity (STA). STA,
also known as counterdiabatic or transitionless driving,
was introduced for quantum systems by Demirplak and
Rice [21] and later, independently, by Berry [22, 23]. STA
has also been explored in the classical context [35, 36],
including a recent application in biology [37]. The idea
is that if we want to drive a system such that it re-
mains in the instantaneous ground state at all times,
then by adding a certain term HCD to the Hamilto-
nian, we can achieve this without paying the price of a
slow evolution. Although the instantaneous eigenstates
of the original Hamiltonian only solve the time-dependent
Schrödinger equation in the adiabatic limit, they become
exact solutions when the Hamiltonian is updated to in-
clude HCD. The advantage of STA is that the evolution
can be achieved nonadiabatically. Below, we provide ev-
idence that ADAPT-QAOA is indeed related to STA, a
likely explanation for why it converges to the solution
much faster than its adiabatic counterpart, the standard
QAOA. Before we present this evidence, we must first
explain how HCD can be constructed using the concept
of adiabatic gauge potentials.

A. Approximate adiabatic gauge potentials

Here we briefly review the mathematical machinery
of STA and adiabatic gauge potentials [38–40]. Let | i
be a state evolving under H(✓(t)), i@t | i = H(✓(t)) | i,
where ✓ is a continuous variable that parameterizes the
Hamiltonian. A unitary transformation U(✓(t)) can be
applied to move the Hamiltonian H(✓(t)) from the ini-
tial basis to its instantaneous eigenbasis, where H̃(✓) =
U†(✓)H(✓)U(✓) is diagonal at all times. The Schrödinger
equation in the instantaneous eigenbasis is i@t | ̃i =
[H̃ � ✓̇Ã✓] | ̃i, where | ̃i = U † | i, ✓̇ = d✓/dt, and
Ã✓ = iU †@✓U is the adiabatic gauge potential in the ro-
tated frame. It is evident that the term�✓̇Ã✓ drives tran-
sitions between the energy levels of the original Hamilto-
nian H. Therefore, one can add the counterdiabatic term
HCD = ✓̇A✓ to H(✓), with A✓ = UÃ✓U†, to eliminate
such transitions in the rotated frame. This is the core of
transitionless driving protocols.

Now, the matrix elements of the adiabatic gauge po-
tential in the instantaneous eigenbasis are

hm(✓)| A✓ |n(✓)i = hm(✓)|UÃ✓U
† |n(✓)i

= i hm(✓)| @✓UU† |n(✓)i
= i hm(✓)|@✓n(✓)i ,

(4)

where we used Ã✓ = iU †@✓U and |n(✓)i = U(✓) |n0i with
|n0i being independent of ✓. Moreover, the adiabatic
gauge potential A✓ satisfies [22, 38]

hm| A✓ |ni = i hm|@✓ni = i
hm| @✓H |ni
En � Em

, (5)

which is obtained by di↵erentiating the eigenfunction
H(✓) |n(✓)i = En(✓) |n(✓)i with respect to ✓. Note that
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is that if we want to drive a system such that it re-
mains in the instantaneous ground state at all times,
then by adding a certain term HCD to the Hamilto-
nian, we can achieve this without paying the price of a
slow evolution. Although the instantaneous eigenstates
of the original Hamiltonian only solve the time-dependent
Schrödinger equation in the adiabatic limit, they become
exact solutions when the Hamiltonian is updated to in-
clude HCD. The advantage of STA is that the evolution
can be achieved nonadiabatically. Below, we provide ev-
idence that ADAPT-QAOA is indeed related to STA, a
likely explanation for why it converges to the solution
much faster than its adiabatic counterpart, the standard
QAOA. Before we present this evidence, we must first
explain how HCD can be constructed using the concept
of adiabatic gauge potentials.

A. Approximate adiabatic gauge potentials
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of STA and adiabatic gauge potentials [38–40]. Let | i
be a state evolving under H(✓(t)), i@t | i = H(✓(t)) | i,
where ✓ is a continuous variable that parameterizes the
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Ã✓ = iU †@✓U is the adiabatic gauge potential in the ro-
tated frame. It is evident that the term�✓̇Ã✓ drives tran-
sitions between the energy levels of the original Hamilto-
nian H. Therefore, one can add the counterdiabatic term
HCD = ✓̇A✓ to H(✓), with A✓ = UÃ✓U†, to eliminate
such transitions in the rotated frame. This is the core of
transitionless driving protocols.

Now, the matrix elements of the adiabatic gauge po-
tential in the instantaneous eigenbasis are

hm(✓)| A✓ |n(✓)i = hm(✓)|UÃ✓U
† |n(✓)i

= i hm(✓)| @✓UU† |n(✓)i
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(4)

where we used Ã✓ = iU †@✓U and |n(✓)i = U(✓) |n0i with
|n0i being independent of ✓. Moreover, the adiabatic
gauge potential A✓ satisfies [22, 38]
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• ADAPT-QAOA provides a 
systematic way to both improve 
performance and reduce the 
number of parameters and 
CNOTs.
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Why ADAPT-QAOA performs better?

• Considering that the standard QAOA ansatz has a structure 
dictated by the adiabatic theorem, a possible explanation is related 
to Shortcuts to adiabaticity (STA). 

• STA (counter-diabatic or transitionless driving) was introduced by 
Demirplak and Rice and later, independently, by Berry.  

• If we want to drive a system such that it remains in the 
instantaneous ground state at all times, then by adding a certain 
term  to the Hamiltonian, we can achieve this without paying the 
price of a slow evolution. 

• Although the instantaneous eigenstates of the original Hamiltonian 
only solve the time-dependent Schrodinger equation in the 
adiabatic limit, they become exact solutions when the Hamiltonian 
is updated to include .  

• The advantage of STA is that the evolution can be achieved non-
adiabatically. 

HCD

HCD







Shortcuts to Adiabaticity  
(transitionless driving protocols)

i ∂t |ψ⟩ = H(θ(t)) |ψ⟩

• Suppose that we consider a unitary transformation  to move the 
Hamiltonian  from the initial basis to its instantaneous eigenbasis, where 

 is diagonal at all times. 
• The Schrodinger equation in the instantaneous eigenbasis is

, where  is the adiabatic gauge potential in the 
rotated frame. It is evident that the term  drives transitions between the 
energy levels of the original Hamiltonian . Therefore, one can add the 
counterdiabatic term  to , with , to eliminate such 
transitions in the rotated frame. This is the core of transitionless driving protocols. 

• Ref. [40] proposes an approximate gauge potential:

U(θ(t))
H(θ(t))

H̃(θ) = U†(θ) H(θ) U(θ)

i ∂t | ψ̃⟩ = (H̃ − ·θÃθ) | ψ̃⟩ Ãθ = iU† Aθ U
− ·θÃθ
H

HCD = ·θAθ H(θ) Aθ = U Ãθ U†

|ψ⟩ ⟶ | ψ̃⟩ = U† |ψ⟩
H ⟶ H̃ = U† H U

i∂t ⟶ i∂t − ·θÃθ

Ãθ = iU†∂θ U

i ∂t | ψ̃⟩ = (H̃ − ·θÃθ) | ψ̃⟩

HCD = ·θAθ

Aθ = U Ãθ U†

5

increasing the size of the system can lead to divergent
matrix elements due to exponentially small denomina-
tors (En � Em). In this regard, Ref. [40] proposes an
approximate gauge potential

A(p)

✓
= i

pX

k=1

ak[H, @✓H]2k�1, (6)

where [X,Y ]k+1 = [X, [X,Y ]]k and {a1, a2, . . . , ap} is
a set of coe�cients with p being the order of the ex-
pansion. This set of coe�cients is found by minimizing

Tr
h
G2(A(p)

✓
)
i
, where G(A(p)

✓
) = @✓H � i[H,A(p)

✓
] [40].

In fact, Tr
⇥
G2(X )

⇤
is minimized when X is equal to the

exact adiabatic gauge potential A✓ [38, 39]. Using ma-
trix calculus identities and properties of the trace, it is
straightforward to show that

@ Tr
⇥
G2(X )

⇤

@X = 2[H, i@✓H� [X ,H]]. (7)

Only adiabatic gauge potentials satisfy [H, i@✓H �
[A✓,H]] = 0. This is easily proven by di↵erentiating
H̃(✓) = U†(✓)H(✓)U(✓) with respect to ✓,

@✓H̃ = @✓U
†UU†HU + U†@✓HU + U†HUU†@✓U, (8)

and noting that Ã✓ = �i@✓U†U = iU †@✓U and H =P
n
En(✓) |n(✓)i hn(✓)|, then

[A✓,H] = i(@✓H�
X

n

@✓En(✓) |n(✓)i hn(✓)|). (9)

Given that [H,
P

n
@✓En(✓) |n(✓)i hn(✓)|] = 0, adiabatic

gauge potentials clearly satisfy

[H, i@✓H� [A✓,H]] = 0. (10)

B. Connection between ADAPT-QAOA and STA

To investigate the connection between ADAPT-QAOA
and STA, we apply the above formalism using the Hamil-
tonian H = f(t)HC + [1 � f(t)]

P
n

i
Xi with f(t) = t/T

and, since there is no other continuous variable that pa-
rameterizes the Hamiltonian, we simply set ✓ = t in the
equations above. T is the duration of the evolution from
the initial state | ref i = |+i⌦n to the ground state of
the cost Hamiltonian HC , which is given by Eq. (3). The
counterdiabatic Hamiltonian HCD is approximated using
Eq. (6), where p is the order of the approximation.

As a concrete example, we study the Max-Cut problem
on 32 instances of regular graphs (n=6, D=3) with ran-
dom edge weights. Fig. 3 shows the probability that an
operator in the ADAPT-QAOA ansatz is also one of the
dominant operators in HCD. For each of the 32 cases, we

define a set O(i)

CD
(with i = 1, . . . , 32) comprised of the 5

operators with the largest coe�cient in the time-averaged
HCD [41]. The probability P in Fig. 3 is constructed by

FIG. 3. Probability P of the operator at layer p of the
ADAPT-QAOA ansatz to be among the Pauli strings with
the largest coe�cient in HCD averaged over 32 graphs with
n = 6, D = 3. The di↵erent curves correspond to di↵erent
orders of the approximation.

taking the total number of times the mixer operator at

layer p is also an element of the corresponding set O(i)

CD

and dividing it by the total number of cases. In all cases,
the mixer operator at the first layer is also an element

of the set O(i)

CD
. For higher layers, the probability of

the mixer operator to be in O(i)

CD
is inversely propor-

tional to the layer number. We attribute this to the fact
that HCD is computed for a specific mixer Hamiltonian
(
P

n

i
Xi), while information about this choice does not

enter into ADAPT-QAOA, which only relies on the ini-
tial state |+i⌦n [42]. Interestingly, from Fig. 3 we see
that going to higher order in the HCD approximation
increases the probability of finding the mixers in the set

O(i)

CD
. It therefore appears that ADAPT-QAOA finds the

appropriate rotation axes in Hilbert space for faster con-
vergence to the solution, and that these axes may in some
sense be universal across all possible choices of H(t) that
interpolate between the initial and target states. This
suggests that STA can be used as a tool to construct
operator pools for ADAPT-QAOA.

IV. CONCLUSION

In conclusion, we introduced ADAPT-QAOA, a new
optimization algorithm that grows the ansatz iteratively
in a way that is naturally tailored to a given problem.
We tested several instances of random diagonal Hamil-
tonians and found that ADAPT-QAOA always outper-
forms the standard QAOA. Given its flexibility with the
choice of mixer pool, the algorithm can be tailored to
the native gates, connectivities, and experimental con-
straints of hardware. It would also be fruitful to em-
ploy ADAPT-QAOA for optimization problems that use
higher-dimensional Hilbert spaces, such as graph coloring
[26, 27]. Finally, more work into the connection to STA
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operator in the ADAPT-QAOA ansatz is also one of the
dominant operators in HCD. For each of the 32 cases, we

define a set O(i)

CD
(with i = 1, . . . , 32) comprised of the 5

operators with the largest coe�cient in the time-averaged
HCD [41]. The probability P in Fig. 3 is constructed by

FIG. 3. Probability P of the operator at layer p of the
ADAPT-QAOA ansatz to be among the Pauli strings with
the largest coe�cient in HCD averaged over 32 graphs with
n = 6, D = 3. The di↵erent curves correspond to di↵erent
orders of the approximation.

taking the total number of times the mixer operator at

layer p is also an element of the corresponding set O(i)

CD

and dividing it by the total number of cases. In all cases,
the mixer operator at the first layer is also an element

of the set O(i)

CD
. For higher layers, the probability of

the mixer operator to be in O(i)

CD
is inversely propor-

tional to the layer number. We attribute this to the fact
that HCD is computed for a specific mixer Hamiltonian
(
P

n

i
Xi), while information about this choice does not

enter into ADAPT-QAOA, which only relies on the ini-
tial state |+i⌦n [42]. Interestingly, from Fig. 3 we see
that going to higher order in the HCD approximation
increases the probability of finding the mixers in the set

O(i)

CD
. It therefore appears that ADAPT-QAOA finds the

appropriate rotation axes in Hilbert space for faster con-
vergence to the solution, and that these axes may in some
sense be universal across all possible choices of H(t) that
interpolate between the initial and target states. This
suggests that STA can be used as a tool to construct
operator pools for ADAPT-QAOA.

IV. CONCLUSION

In conclusion, we introduced ADAPT-QAOA, a new
optimization algorithm that grows the ansatz iteratively
in a way that is naturally tailored to a given problem.
We tested several instances of random diagonal Hamil-
tonians and found that ADAPT-QAOA always outper-
forms the standard QAOA. Given its flexibility with the
choice of mixer pool, the algorithm can be tailored to
the native gates, connectivities, and experimental con-
straints of hardware. It would also be fruitful to em-
ploy ADAPT-QAOA for optimization problems that use
higher-dimensional Hilbert spaces, such as graph coloring
[26, 27]. Finally, more work into the connection to STA
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FIG. 9. Comparison of original QAOA and ADAPT-QAOA. In the left and right panels of this figure, we depict
the state change in the Hilbert space of the parameters to be optimized, for the original QAOA and ADAPT-
QAOA respectively. The starting state

q
◊

|◊Í (omitting the normalization factor), represented by the rounded dot
at the bottom of each space, is the even superposition state of all possible solutions. The arrows represent the
state evolution generated by the cost Hamiltonian and mixer Hamiltonian, and the color and direction of the arrows
indicate the nature of the evolution. Blue arrows represent the evolution by the cost Hamiltonian. Arrows of other
colors represent the evolution by di�erent mixer Hamiltonians. In the original QAOA, there is only one mixer (shown
in pink) available. Whereas, in ADAPT-QAOA there are more alternative mixers to chose from the mixers pool.
The two algorithm try to reach the target state |◊úÍ (represented by the blue star) by stacking these arrows, which
represent the alternating operations of two QAOAs. For reference we sketched the relevant paths — adiabatic path
for the original QAOA and counter-diabatic path for ADAPT-QAOA — along the state evolution of the two QAOAs.
As can be seen, the ADAPT-QAOA takes much fewer iterations to reach a closer point to the target state. This
illustrates that compared to the original QAOA, allowing alternative mixers enables ADAPT-QAOA to dramatically
improve algorithmic performance while achieving rapid convergence.

The advantage of this adaptive ansatz may come from the counter-diabatic (CD) driving mechanism.
Numerical evidence shows that the adaptive mixer sequence chosen by the algorithm coincides with that
of “shortcut to adiabaticity” by CD driving [27]. Inspired by the CD driving procedure, another variant of
QAOA, CD-QAOA [29], also uses an adaptive ansatz to achieve similar advantages. CD-QAOA is designed
for preparing the ground state of quantum-chaotic many-body spin chains. By using terms occurring in the
adiabatic gauge potential as additional control unitaries, CD-QAOA can achieve fast high-fidelity many-body
control.

Inspired by above variants of QAOA, we design a new variant of QAOA tailored for our QNN training
problem. In our case, for QNN training, the parameters we are optimizing (the angles of rotation gates) are
continuous (real) values. Therefore, the choice of mixer Hamiltonian has to be adapted (as in QDD). We
also want take advantage of including alternative mixers and allowing adaptive mixers for di�erent layers (as
in ADAPT-QAOA). Thus, the proper QAOA ansatz for our QNN training problem should be an adaptive
continuous version of QAOA, which we call we call AC-QAOA. Here we depict the the quantum circuit
schematic of AC-QAOA in Fig. 10.

3. Grover Adaptive Search

Grover’s algorithm is generally used as a search method to find a set of desired solutions from a set of
possible solutions. Dürr and Høyer presented an algorithm based on Grover’s method that finds an element

Adaptive Derivative Assembled Problem 
Tailored QAOA (ADAPT-QAOA)

Figure taken from 2103.17047
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that act across di�erent parameters). This potentially leads to a dramatic shortening of the depth of
QAOA layers while significantly improving the quality of the solution (the optimal QNN parameters
found by the QAOA routine).

�

ei�1HC

�1

Phase Oracle

ei�2HC

�2

ei�1A1

�1

Mixer

ei�2A2

�2 �pei�pHC

�p

ei�pAk

�

Phase Oracle Mixers 

ei�iA1 ei�i A2 e i�i Akei�iA3 �

Parameter Register

QNN Register 
&  

Other Registers 

Mixers Pool

FIG. 3. Schematic of our framework for quantum training of QNN. Our quantum training for QNN taking advantage
of the well-established parts in Refs. [25] and [26], while eliminating their shortcomings. We replace the phase
encoding operations in QAOA-like protocol of Ref. [25](as depicted in Fig 2) by the phase oracle in Ref. [26]. For
the mixers in the QAOA-like routine, we allow di�erent mixers for each layer, similar to Ref. [27]. In this figure, the
color of each block represents the nature of the corresponding Hamiltonian: di�erent color corresponds to di�erent
Hamiltonian (One can see that the Cost Hamiltonian is the same throughout the training whereas the mixer varies
from layer to layer). The mixers pool contains the proper mixers tailored to our QNN training problem. These rules
also apply to the other circuit schematic in this paper.

By making the mixers flexible and adaptive to specific optimisation problems, it is demanding to find an
e�cient way of determining the best sequence of mixers and the optimized hyperparameters. To address
these we adopt machine learning approaches (in particular, Recurrent Neural Networks and Reinforcement
Learning) as proposed in Refs. [17, 28–30]. The quantum mechanism of this framework is the best candidate
to exploit hidden structure in the QNN optimisation problem, which would provide beyond-Grover speed up
and mitigate the barren plateau issues for training QNNs.

C. Paper Outline

The remainder of this paper is organized as follows: in Section II we review some essential preliminaries
— particularly on the details of QAOA and its variants, from which we designed a new variant of QAOA
tailored for our QNN training problem. Section II C introduces a way of quantising parameters of a QNN —
that is, we show how to create superposition of a QNN with multiple parameter configurations. In Section
III we present quantum training by Grover adaptive search as a baseline prior to our quantum training
framework using QAOA. In Section IV we present the details of our framework including how to implement
the phase oracle, that can achieve coherent phase encoding of the cost function of a QNN, and which mixers
to use for the QAOA routine, as well as the strategy to determine the mixers sequence and the optimize
their hyper-parameters. Section V presents the deployment potential of our quantum training to a variety
of application including training VQE, learning a pure state, and training a quantum classifier. The final
section summarise our work and provides outlook for future work.

Quantum Neural Networks

Figure taken from 2103.17047
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Training variational quantum algorithms is NP-hard

Lennart Bittel⇤ and Martin Kliesch†

Heinrich Heine University Düsseldorf, Germany

Variational quantum algorithms are proposed to solve relevant computational problems on near
term quantum devices. Popular versions are variational quantum eigensolvers and quantum ap-
proximate optimization algorithms that solve ground state problems from quantum chemistry and
binary optimization problems, respectively. They are based on the idea of using a classical computer
to train a parameterized quantum circuit.

We show that the corresponding classical optimization problems are NP-hard. Moreover, the
hardness is robust in the sense that, for every polynomial time algorithm, there are instances for
which the relative error resulting from the classical optimization problem can be arbitrarily large
assuming P 6= NP. Even for classically tractable systems composed of only logarithmically many
qubits or free fermions, we show the optimization to be NP-hard. This elucidates that the classical
optimization is intrinsically hard and does not merely inherit the hardness from the ground state
problem.

Our analysis shows that the training landscape can have many far from optimal persistent local
minima. This means that gradient and higher order descent algorithms will generally converge to
far from optimal solutions.

I. INTRODUCTION

Recent years have seen enormous progress toward
large-scale quantum computation. A central goal of this
effort is the implementation of a type of quantum com-
putation that solves computational problems of practical
relevance faster than any classical computer. However,
the noisy nature of quantum gates and the high over-
head cost of noise reduction and error correction limit
near term devices to shallow circuits [1].

Variational quantum algorithms (VQAs) have been
proposed to bring us a step closer to this goal. Here,
an optimization problem is captured by a loss function
given by expectation values of observables w.r.t. states
generated from a parametrized quantum circuit. Then a
classical computer trains the quantum circuit by optimiz-
ing the expectation value over the circuit’s parameters.
Figure 1 illustrates a possible VQA routine. Popular can-
didates to be used on near term devices are quantum
approximate optimization algorithms (QAOAs) [2] and
variational quantum eigensolvers (VQEs) [3]; see Ref. [4]
for a review.

VQEs are proposed, for instance, to solve electronic
structure problems, which are central to quantum chem-
istry and material science. Proposals of QAOAs include
improved algorithms for quadratic optimization problems
over binary variables such as the problem of finding the
maximum cut of a graph (MaxCut). For hybrid classical-
quantum computation to be successful, two challenges
need to be overcome. First, one needs to find parameter-
ized quantum circuits that have the expressive power to
yield a sufficiently good approximation to the optimal so-
lution of relevant optimization problems (i.e., the model

⇤ lennart.bittel@uni-duesseldorf.de
† mail@mkliesch.eu
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Figure 1. Sketch of a VQA optimization routine. This work
addresses the complexity of the classical optimization part
(red).

mismatch is small). Second, the classical optimization
over the parameters of the quantum circuit needs to be
solved quickly enough and with sufficient accuracy. We
will focus on this second challenge.

For the classical optimization several heuristic ap-
proaches are known, most of which are based on gradient
descent ideas and higher order methods. This is conve-
nient, as with the parameter shift rule [5]- the gradient
can be calculated efficiently. Methods include standard
BFGS optimization and extensions [6] and natural gra-
dient descent [7], which has a favorable performance for
at least certain easy instances [8]. Second order methods
require significant overhead in the number of measure-
ments but can yield better accuracy [9]. Quantum an-
alytic descent [10] uses certain classical approximations
of the objective function in order to reduce the number
of quantum circuit evaluations at the cost of a higher
classical computation effort.

However, it has also been shown recently that there are
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It is hoped that quantum computers will o↵er advantages over classical computers for combina-
torial optimization. Here, we introduce a feedback-based strategy for quantum optimization, where
the results of qubit measurements are used to constructively assign values to quantum circuit pa-
rameters. We show that this procedure results in an estimate of the combinatorial optimization
problem solution that improves monotonically with the depth of the quantum circuit. Importantly,
the measurement-based feedback enables approximate solutions to the combinatorial optimization
problem without the need for any classical optimization e↵ort, as would be required for the quantum
approximate optimization algorithm (QAOA). We experimentally demonstrate this feedback-based
protocol on a superconducting quantum processor for the graph-partitioning problem MaxCut, and
present a series of numerical analyses that further investigate the protocol’s performance.

Introduction.— Combinatorial optimization has
broad and high-value applications in many sectors of
industry and science, including for optimization of logis-
tics and supply chain, and drug discovery [1]. Solving
general combinatorial optimization problems is NP hard
and most practical strategies involve developing good
quality approximate solutions. Recently, there has been
much interest in approximate solution of combinatorial
optimziation problems through mapping to quantum
systems, whereby the problem is encoded into an Ising
Hamiltonian Hp [2], such that the solution of problem
is encoded in the ground state of Hp. Then methods
such as quantum annealing [3], or within the quantum
circuit model, the quantum approximate optimization
algorithm (QAOA) [4], are used to approximately
prepare the ground state of Hp. Although there is no
rigorous proof of an advantage to using such quantum
techniques over classical approximation algorithms, it is
widely believed that at some scale of problem such an
advantage should exist.

We introduce a new approach to solving combinatorial
optimization problems using quantum computers that
operates through the use of parameterized quantum cir-
cuits and feedback, that is conditioned on qubit measure-
ments at every quantum circuit layer, in order to deter-
mine the circuit parameter values at subsequent layers.
This Feedback-based ALgorithm for Quantum Optimiza-
tioN (FALQON) makes a direct connection to quantum
Lyapunov control (QLC), a control strategy that uses
feedback to identify the controls to drive the dynamics
of a quantum system in a desired manner [5–13]. Our
approach works within the framework of circuit-model
quantum computing, but avoids a critical challenge fac-
ing the scaling of QAOA, which is the di�culty of opti-
mizing a large number of variational parameters. In fact,

it was recently shown that under certain assumptions,
this classical optimization problem is itself NP-hard for
QAOA [14]. Our feedback-based approach circumvents
the need for optimization of variational parameters by
using information from iterative measurements.
In the following, we show that FALQON produces

a monotonically improving estimate of the combinato-
rial optimization problem solution, with respect to the
depth of the circuit. We then consider the application
of FALQON towards solving the MaxCut problem, and
present the results of an experimental demonstration on
quantum hardware. This is followed by a series of numer-
ical analyses that explore the performance of FALQON
for MaxCut on 3-regular graphs. Finally, we examine the
required number of repeated circuit evaluations and com-
pare this to the requirements of QAOA in this context.
We conclude with a discussion of the tradeo↵s between
FALQON and QAOA, outline the additional content in
our companion paper [15], and look to the future.
Feedback-based algorithm for quantum optimization.—

We begin by considering a quantum system whose dy-
namics are governed by i

d
dt | (t)i = (Hp+Hd�(t))| (t)i ,

where | (t)i is the system state vector, we have set ~ = 1,
and Hp and Hd denote the (unitless) “drift” and “con-
trol” Hamiltonians, where the latter couples a scalar,
time-dependent control function �(t) to the system. We
seek to minimize hHpi = h (t)|Hp| (t)i [16], and accom-
plish this by designing �(t) such that

d

dt
h (t)|Hp| (t)i(t)  0, 8t � 0 . (1)

Evaluating the left-hand-side of Eq. (1), we see
that d

dt h (t)|Hp| (t)i = A(t)�(t), where A(t) ⌘

h (t)|i[Hd, Hp]| (t)i. There is significant flexibility in
choosing �(t) in order to satisfy Eq. (1), i.e., we may take
�(t) = �w f(t, A(t)), for w > 0, where f(t, A(t)) is any
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plish this by designing �(t) such that

d

dt
h (t)|Hp| (t)i(t)  0, 8t � 0 . (1)

Evaluating the left-hand-side of Eq. (1), we see
that d

dt h (t)|Hp| (t)i = A(t)�(t), where A(t) ⌘

h (t)|i[Hd, Hp]| (t)i. There is significant flexibility in
choosing �(t) in order to satisfy Eq. (1), i.e., we may take
�(t) = �w f(t, A(t)), for w > 0, where f(t, A(t)) is any

ar
X

iv
:2

10
3.

08
61

9v
3 

 [q
ua

nt
-p

h]
  4

 Ja
n 

20
23

β(t) : time − dependent control function

• One can minimize  by designing  such that ⟨Hp⟩ β(t)
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It is hoped that quantum computers will o↵er advantages over classical computers for combina-
torial optimization. Here, we introduce a feedback-based strategy for quantum optimization, where
the results of qubit measurements are used to constructively assign values to quantum circuit pa-
rameters. We show that this procedure results in an estimate of the combinatorial optimization
problem solution that improves monotonically with the depth of the quantum circuit. Importantly,
the measurement-based feedback enables approximate solutions to the combinatorial optimization
problem without the need for any classical optimization e↵ort, as would be required for the quantum
approximate optimization algorithm (QAOA). We experimentally demonstrate this feedback-based
protocol on a superconducting quantum processor for the graph-partitioning problem MaxCut, and
present a series of numerical analyses that further investigate the protocol’s performance.

Introduction.— Combinatorial optimization has
broad and high-value applications in many sectors of
industry and science, including for optimization of logis-
tics and supply chain, and drug discovery [1]. Solving
general combinatorial optimization problems is NP hard
and most practical strategies involve developing good
quality approximate solutions. Recently, there has been
much interest in approximate solution of combinatorial
optimziation problems through mapping to quantum
systems, whereby the problem is encoded into an Ising
Hamiltonian Hp [2], such that the solution of problem
is encoded in the ground state of Hp. Then methods
such as quantum annealing [3], or within the quantum
circuit model, the quantum approximate optimization
algorithm (QAOA) [4], are used to approximately
prepare the ground state of Hp. Although there is no
rigorous proof of an advantage to using such quantum
techniques over classical approximation algorithms, it is
widely believed that at some scale of problem such an
advantage should exist.

We introduce a new approach to solving combinatorial
optimization problems using quantum computers that
operates through the use of parameterized quantum cir-
cuits and feedback, that is conditioned on qubit measure-
ments at every quantum circuit layer, in order to deter-
mine the circuit parameter values at subsequent layers.
This Feedback-based ALgorithm for Quantum Optimiza-
tioN (FALQON) makes a direct connection to quantum
Lyapunov control (QLC), a control strategy that uses
feedback to identify the controls to drive the dynamics
of a quantum system in a desired manner [5–13]. Our
approach works within the framework of circuit-model
quantum computing, but avoids a critical challenge fac-
ing the scaling of QAOA, which is the di�culty of opti-
mizing a large number of variational parameters. In fact,

it was recently shown that under certain assumptions,
this classical optimization problem is itself NP-hard for
QAOA [14]. Our feedback-based approach circumvents
the need for optimization of variational parameters by
using information from iterative measurements.
In the following, we show that FALQON produces

a monotonically improving estimate of the combinato-
rial optimization problem solution, with respect to the
depth of the circuit. We then consider the application
of FALQON towards solving the MaxCut problem, and
present the results of an experimental demonstration on
quantum hardware. This is followed by a series of numer-
ical analyses that explore the performance of FALQON
for MaxCut on 3-regular graphs. Finally, we examine the
required number of repeated circuit evaluations and com-
pare this to the requirements of QAOA in this context.
We conclude with a discussion of the tradeo↵s between
FALQON and QAOA, outline the additional content in
our companion paper [15], and look to the future.
Feedback-based algorithm for quantum optimization.—

We begin by considering a quantum system whose dy-
namics are governed by i

d
dt | (t)i = (Hp+Hd�(t))| (t)i ,

where | (t)i is the system state vector, we have set ~ = 1,
and Hp and Hd denote the (unitless) “drift” and “con-
trol” Hamiltonians, where the latter couples a scalar,
time-dependent control function �(t) to the system. We
seek to minimize hHpi = h (t)|Hp| (t)i [16], and accom-
plish this by designing �(t) such that

d

dt
h (t)|Hp| (t)i(t)  0, 8t � 0 . (1)

Evaluating the left-hand-side of Eq. (1), we see
that d

dt h (t)|Hp| (t)i = A(t)�(t), where A(t) ⌘

h (t)|i[Hd, Hp]| (t)i. There is significant flexibility in
choosing �(t) in order to satisfy Eq. (1), i.e., we may take
�(t) = �w f(t, A(t)), for w > 0, where f(t, A(t)) is any
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d
dt

⟨ψ(t) |Hp |ψ(t)⟩ = i⟨ψ(t) | (Hp + Hdβ(t))Hp |ψ(t)⟩ − i⟨ψ(t) |Hp(Hp + Hdβ(t)) |ψ(t)⟩

= ⟨ψ(t) | i [Hd, Hp] |ψ(t)⟩ β(t) ≡ A(t) β(t)

(Problem H)

https://pennylane.ai/qml/demos/tutorial_falqon.html
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d
dt

⟨ψ(t) |Hp |ψ(t)⟩ = ⟨ψ(t) | i [Hd, Hp] |ψ(t)⟩ β(t) ≡ A(t) β(t)

• We can choose any .  

• Consider   for , where  is any 
continuous function with   and  for all . 

• Take  and  such that  for simplicity. 

• Consider alternating (rather than concurrent) applications of  and , 
leading to a time evolution:

β(t)
β(t) = − w f(t, A(t)) w > 0 f(t, A(t))

f(t,0) = 0 A(t)f(t, A(t)) > 0 A(t) ≠ 0
w = 1 f(t, A(t)) = A(t) β(t) = − A(t)

Hp Hd

U = Ud (βℓ) Up ⋯ Ud (β1) Up

Up = e−iHpΔt

Ud (βk) = e−iβkHdΔt

βk = β(kτ − Δt)k = 1, 2, ⋯, ℓ
τ = 2Δt

• For small , this unitary evolution yields Trotterized approximation to 
the continuous time evolution of the system.

Δt

= β((k − 1)Δt)
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• During the time evolution when  is applied, , but eigenstate of 

 accumulates phase changes. (  is time-independent.) 

• For the time evolution when  is applied, we recover  

• Set , where  

• In this setting, it is always possible to choose  small enough such that 

. If  is chosen to be too large, the inequality will be 

violated.   
• FALQON is a constructive, optimization free procedure for assigning values 

to each  according to a feedback law. 
• By design, the quality of the solution to the combinatorial optimization 

problem improves monotonically with respect to depth of the circuit, .

Hp
d
dt

⟨Hp⟩ = 0
Hp Hp

Hd
d
dt

⟨Hp⟩ = A(t)β(t)

βk+1 = − Ak Ak = ⟨ψk | i [Hd, Hp] |ψk⟩
Δt

d
dt

⟨ψ(t) |Hp |ψ(t)⟩ ≤ 0 Δt

βk

k
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Figure 1. (a) The procedure for implementing FALQON. The initial step is to seed the procedure by setting �1 = 0. The
qubits are then initialized in the state | 0i, and a single FALQON layer is implemented to prepare | 1i = Ud(�1)Up| 0i. The
qubits are then measured to estimate A1, whose result is fed back to set �2 = �A1, up to sampling error. For subsequent steps
k = 2, · · · , `, the same procedure is repeated, as shown in (b): the qubits are initialized as | 0i, after which k layers are applied
to obtain | ki = Ud(�k)Up · · ·Ud(�1)Up| 0i, and then the qubits are measured to estimate Ak, and the result is fed back to set
the value of �k+1. This procedure causes hHpi to decrease layer-by-layer as per h 1|Hp| 1i � h 2|Hp| 2i � · · · � h `|Hp| `i,
as shown in (c), such that the quality of the solution to the combinatorial optimization problem monotonically improves with
circuit depth. The protocol can be terminated when the value of hHpi converges or a threshold number of layers ` is reached.
Then, after the final step, Z basis measurements on | `i can be used to determine a best candidate solution to the combinatorial
optimization problem of interest, by repeatedly sampling from the probability distribution over bit strings induced by | `i and
selecting the outcome associated with the best solution.

continuous function with f(t, 0) = 0 and A(t)f(t, A(t)) >
0 for all A(t) 6= 0 [17]. Here, we present results for w = 1
and f(t, A(t)) = A(t), such that �(t) = �A(t). In prac-
tice, we assign values to �(t) as a feedback loop, where
�(t) = �A(t� ⌧), and ⌧ is a feedback loop time delay.

We now consider alternating, rather than concurrent,
applications of Hp and Hd, leading to a time evolu-
tion of the form U = Ud(�`)Up · · ·Ud(�1)Up, where
Up = e

�iHp�t, Ud(�k) = e
�i�kHd�t, and �k = �(k⌧��t)

for k = 1, 2, · · · , ` and ⌧ = 2�t, such that after each pe-
riod of �t the applied Hamiltonian alternates between
Hp and Hd. We note that for small �t, this yields a
Trotterized approximation to the continuous time evolu-
tion of the system. In this Trotterized framework, we
again aim to satisfy Eq. (1) by suitably choosing each
value of �k. We note that during the time intervals when
Hp is applied, d

dt hHpi(t) = 0; although its value doesn’t
change, the eigenstates of Hp do accumulate phases dur-
ing this time, which impact the ensuing dynamics. Mean-
while, during the time intervals when Hd is applied, we
recover the same result that d

dt hHpi = A(t)�(t). Conse-
quently, we can ensure that Eq. (1) is satisfied by utiliz-
ing the same feedback law, given by �k+1 = �Ak, where
Ak = h k|i[Hd, Hp]| ki [18]. In this setting, it is always
possible to select �t small enough such that Eq. (1) is
satisfied [15]. However, if �t is chosen to be too large,

Eq. (1) will be violated. Based on this framework, the
FALQON algorithm is presented in Fig. 1. The key fea-
ture of FALQON is that it is a constructive, optimization-
free procedure for assigning values to each �k accord-
ing to a feedback law. And by design, the enforcement
of Eq. (1) ensures that the quality of the solution to
the combinatorial optimization problem under consider-
ation (quantified by hHpi) improves monotonically with
respect to the depth of the circuit, k.
The circuits used in QAOA have the same alternat-

ing structure as those in FALQON, albeit with addi-
tional parameters �1, · · · , �` that enter into Up, such
that UQAOA = Ud(�`)Up(�`) · · ·Ud(�1)Up(�1). Then,
the solution to the original combinatorial optimization
problem is sought by minimizing h (~�, ~�)|Hp| (~�, ~�)i
over the set of 2` circuit parameters ~� = (�1, · · · , �`)

and ~� = (�1, · · · ,�`) using a classical processor, where

| (~�, ~�)i = UQAOA| 0i. However, we emphasize that
FALQON is conceptually distinct from QAOA. Namely,
QAOA seeks to minimize hHpi by classically optimizing

over all parameters ~�, ~� simultaneously, while FALQON
seeks to minimize hHpi over a sequence of quantum cir-
cuit layers, guided by qubit measurement-based feed-
back, without classical optimization.
Applications to MaxCut.— We now consider the ap-

plication of FALQON towards a quintessential combi-
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FALQON vs QAOA
• Circuits used in QAOA has the same alternative structure as those in 

FALQON with additional parameters  that enter into  such 
that . 

• Solution to the original combinatorial optimization is found by minimizing 
 over  parameters, using classical optimization. 

( ) 

• FALQON minimizes  over a sequence of quantum circuit layers, guided 
by qubit measurement-based feed back without classical optimization.

⃗γ = (γ1, ⋯, γℓ) Up
UQAOA = Ud(βℓ)Up(γℓ)⋯Ud(β1)Up(γ1)

⟨ψ( ⃗γ, ⃗β) |Hp |ψ( ⃗γ, ⃗β)⟩ 2ℓ
|ψ( ⃗γ, ⃗β)⟩ = UQAOA |ψ0⟩

⟨Hp⟩

• MaxCut:   and  

•
   where  are Pauli’s matrices.

Hp = − ∑
(i, j)∈E

1
2 (1 − ZiZj) Hd =

n

∑
j=1

Xj

i [Hd, Hp] = ∑
(i, j)∈E

YiZj + ZiYj Xj, Yj and Zj

FALQON for MaxCut problem
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natorial optimization problem: MaxCut, which aims to
identify a graph partition that maximizes the number of
edges in a graph that are cut. For an unweighted graph G,
with n nodes and edge set E , the MaxCut problem Hamil-
tonian is defined on n qubits as Hp = �

P
i,j2E

1
2

�
1 �

ZiZj

�
, while Hd has the standard form Hd =

Pn
j=1 Xj ,

such that i[Hd, Hp] =
P

i,j2E YiZj + ZiYj , where Xj ,
Yj , and Zj denote the Pauli operators acting on qubit
j. As such, evaluating the feedback law �k+1 = �Ak =
�h k|i[Hd, Hp]| ki in this setting involves measurements
of maximally n(n� 1) two-qubit Pauli strings.

As a proof-of-principle, in Fig. 2 we present the re-
sults of an experimental demonstration of FALQON on
a superconducting quantum processor for a simple in-
stance of the MaxCut problem. In particular, we con-
sidered an instance of MaxCut on an unweighted graph
composed of n = 3 nodes connected by two edges, such
that Hp = �

1
2 (2 � Z1Z2 � Z2Z3) and i[Hd, Hp] =

Y1Z2 + Z2Y1 + Y2Z3 + Z3Y2. The experiment was per-
formed on the publicly accessible ibmq manila processor
and utilized three qubits with nearest-neighbor connec-
tivity matching that of the graph under consideration.
In this setting, ` = 10 steps of FALQON were performed
according to the procedure outlined in Fig. 1, selecting
�t = 0.2. At each step, one circuit was implemented
in order to estimate hHpik natively in the computational
basis. Two additional circuits were implemented in order
to estimate the terms in Ak. For each circuit, the qubits
were initialized in the ground state of Hd, and m = 1024
shots were taken.

As shown in Fig. 2(a), FALQON was successful in
achieving a monotonic decrease of hHpi in this experi-
ment up to layer five (orange point markers). FALQON
also achieves a monotonic increase in the success prob-
ability of measuring the two degenerate ground states,
denoted by �, as shown in Fig. 2(b). The error bars
in Fig. 2(a) and (b) present the standard error of the
mean, which estimates how much the reported hHpik and
�k may deviate from their true values due to finite sam-
pling. Finally, the associated values of �, determined
according to the feedback law �k+1 = �Ak, are plotted
in Fig. 2(b).

Past layer 5, it is evident that FALQON is no longer
able to decrement hHpi using this hardware platform, de-
spite exhibiting a continued monotonic decrease in associ-
ated noise-free numerical simulations (blue point mark-
ers). This reveals the limitations that hardware noise
presents for this problem instance. Looking ahead, we
are optimistic that continuous improvements to quan-
tum hardware will pave the way towards applications
of FALQON to increasingly complex combinatorial op-
timization problems.

In the interim, we explore how FALQON performs on
larger instances of MaxCut through a series of noise-
free numerical illustrations. These illustrations con-
sider unweighted, connected 3-regular graphs with n 2

Figure 2. Results from experimental implementation of ` = 10
layers of FALQON on a superconducting quantum processor.
For this demonstration, FALQON is applied to an n = 3 qubit
instance of MaxCut on an unweighted graph. Panel (a) shows
that FALQON is successful in achieving a monotonic decrease
of hHpi over layers k = 1, · · · , 5 in this experiment (orange
point markers), noting that the global minimum value for this
problem instance is hHpimin = �2 (dashed black line). In ad-
dition, in panel (b) a monotonic increase of the probability,
�, of measuring the two degenerate ground states is also ob-
served up to layer k = 5 (orange point markers). The error
bars in (a) and (b) indicate the standard error. The values
of � are plotted in (c). In (a)-(c), the blue point markers
correspond to ideal results computed numerically.

{8, 10, · · · , 20} vertices. For n 2 {8, 10} we consider all
nonisomorphic graphs; for n 2 {12, 14, · · · , 20} we con-
sider 50 randomly-generated, nonisomorphic graphs. In
our simulations, the qubits are initialized in the ground
state of Hd, and the performance of FALQON is quan-
tified using the mean and standard deviations (over the
problem instances) of two figures of merit: the approxi-
mation ratio, rA = hHpi/hHpimin and the success prob-
ability of measuring the (potentially degenerate) ground
state(s) {|q0,ii}, � =

P
i |h |q0,ii|

2. We relate the perfor-
mance to two reference values: rA = 0.932, correspond-
ing to the highest approximation ratio that can currently
be guaranteed using a classical approximation algorithm
(i.e., the algorithm of Goemans andWilliamson [19]), and
� = 0.25, which implies that on average, four repetitions
will be needed in order to obtain a sample correspond-
ing to the ground state. Our only free parameter is the
time step �t, which is tuned to be as large as possible,
a value we call the critical �t and denote by �tc, as
long as the condition in Eq. (1) is met for all problem
instances considered. Our results are collected in Fig. 3.
In Fig. 3(b), the mean values of �1,�2, · · · are plotted
as a function of layer for di↵erent values of n, according

Approximation ration: 
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(a)

Figure 3. (a) Pictorial representation of MaxCut on a 3-regular graph with 8 vertices. (b) Mean � values are plotted as a
function of layer for di↵erent n values, with shading showing the standard deviations. (c) The performance of FALQON, as
quantified by the approximation ratio (dashed curves) and the success probability of measuring the degenerate ground state
(solid curves) is shown for di↵erent values of n. (d) The mean number of layers needed to achieve the reference values of
rA = 0.932 (dashed curve) and � = 0.25 (solid curve) is shown; error bars report the associated standard deviation. (e) The
critical �t values for di↵erent problem sizes are plotted.

to the legend in Fig. 3(c), with the shading representing
the standard deviation. We find that with increasing n,
the shape of the resultant � curves follows a clear trend,
and the standard deviation decreases. In Fig. 3(c), the
associated rA and � results are shown (dashed and solid
curves, respectively), and the associated reference values
are plotted in black. For the cases considered here, we
find that FALQON consistently leads to monotonic con-
vergence towards very high rA and � values as a function
of layer. To determine how the requisite circuit depths
scale with the problem size, in Fig. 3(d) we plot the av-
erage number of layers required to achieve the reference
values of rA and � as a function of n. Finally, in Fig. 3(e)
we plot �tc for each value of n under consideration. The
scaling of the required number of layers and �tc seems
nearly linear, even up to n = 20, indicating a favorable
runtime scaling of the FALQON algorithm, at least for
this class of MaxCut problems. We remark that in ad-
dition to the analyses presented here, we also tested the
performance of FALQON on weighted 3-regular graphs,
and identified instances where the rA and � convergence
is enhanced by introducing one of three possible heuristic
modifications to the FALQON algorithm. Details can be
found in Appendix A.

In our companion paper [15], we present a sampling
complexity comparison between FALQON and QAOA in
the context of MaxCut, as quantified by the total number
of samples (i.e., circuit repetitions) that are required, de-
noted Ns. When a gradient algorithm is used for QAOA,
N

QAOA
s = O(mq(`)`), where m denotes the number of

samples needed to estimate the expectation value of a
two-qubit Pauli string Pj , and for simplicity, m is as-

sumed to be independent of Pj and q denotes the num-
ber of classical optimization iterations. For gradient-free
methods, NQAOA

s = O(mq(`)). Meanwhile, in FALQON
we find N

FALQON
s = O(md`), where d denotes the de-

gree of the graph. This suggests that FALQON has
a more favorable sampling complexity than QAOA for
cases where the number of QAOA optimization iterations
q(`) exceeds d` in general, or d when a gradient algorithm
is utilized. Further details can be found in [15].

Discussion and outlook.– We have introduced
FALQON as a constructive, feedback-based algorithm
for solving combinatorial optimization problems using
quantum computers. Importantly, FALQON performs
optimization without the need for an expensive classical
optimization loop. We have demonstrated its perfor-
mance on current quantum hardware and provided
numerical analyses of its performance towards finding
the maximum cut of regular graphs. By studying the
performance with respect to layer and the problem
size n, our numerical analyses show that FALQON
converges to very high approximation ratios and success
probabilities with a favorable scaling of resources with
respect to n, suggesting that FALQON may be a useful
heuristic algorithm for this class of problems.

Our findings also suggest that FALQON can require
relatively deep circuits in order to achieve this conver-
gence, relative to the shallow circuits typically considered
in QAOA. In our companion article [15], we provide an in-
depth analysis of the tradeo↵s in the performance and re-
source requirements of FALQON and QAOA, and discuss
the resource regimes where each of these methods can be
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the standard deviation. We find that with increasing n,
the shape of the resultant � curves follows a clear trend,
and the standard deviation decreases. In Fig. 3(c), the
associated rA and � results are shown (dashed and solid
curves, respectively), and the associated reference values
are plotted in black. For the cases considered here, we
find that FALQON consistently leads to monotonic con-
vergence towards very high rA and � values as a function
of layer. To determine how the requisite circuit depths
scale with the problem size, in Fig. 3(d) we plot the av-
erage number of layers required to achieve the reference
values of rA and � as a function of n. Finally, in Fig. 3(e)
we plot �tc for each value of n under consideration. The
scaling of the required number of layers and �tc seems
nearly linear, even up to n = 20, indicating a favorable
runtime scaling of the FALQON algorithm, at least for
this class of MaxCut problems. We remark that in ad-
dition to the analyses presented here, we also tested the
performance of FALQON on weighted 3-regular graphs,
and identified instances where the rA and � convergence
is enhanced by introducing one of three possible heuristic
modifications to the FALQON algorithm. Details can be
found in Appendix A.
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gree of the graph. This suggests that FALQON has
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cases where the number of QAOA optimization iterations
q(`) exceeds d` in general, or d when a gradient algorithm
is utilized. Further details can be found in [15].

Discussion and outlook.– We have introduced
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quantum computers. Importantly, FALQON performs
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mance on current quantum hardware and provided
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size n, our numerical analyses show that FALQON
converges to very high approximation ratios and success
probabilities with a favorable scaling of resources with
respect to n, suggesting that FALQON may be a useful
heuristic algorithm for this class of problems.

Our findings also suggest that FALQON can require
relatively deep circuits in order to achieve this conver-
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in QAOA. In our companion article [15], we provide an in-
depth analysis of the tradeo↵s in the performance and re-
source requirements of FALQON and QAOA, and discuss
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curves, respectively), and the associated reference values
are plotted in black. For the cases considered here, we
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of layer. To determine how the requisite circuit depths
scale with the problem size, in Fig. 3(d) we plot the av-
erage number of layers required to achieve the reference
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gence, relative to the shallow circuits typically considered
in QAOA. In our companion article [15], we provide an in-
depth analysis of the tradeo↵s in the performance and re-
source requirements of FALQON and QAOA, and discuss
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Figure 3. (a) Pictorial representation of MaxCut on a 3-regular graph with 8 vertices. (b) Mean � values are plotted as a
function of layer for di↵erent n values, with shading showing the standard deviations. (c) The performance of FALQON, as
quantified by the approximation ratio (dashed curves) and the success probability of measuring the degenerate ground state
(solid curves) is shown for di↵erent values of n. (d) The mean number of layers needed to achieve the reference values of
rA = 0.932 (dashed curve) and � = 0.25 (solid curve) is shown; error bars report the associated standard deviation. (e) The
critical �t values for di↵erent problem sizes are plotted.
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nearly linear, even up to n = 20, indicating a favorable
runtime scaling of the FALQON algorithm, at least for
this class of MaxCut problems. We remark that in ad-
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performance of FALQON on weighted 3-regular graphs,
and identified instances where the rA and � convergence
is enhanced by introducing one of three possible heuristic
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Figure 3. (a) Pictorial representation of MaxCut on a 3-regular graph with 8 vertices. (b) Mean � values are plotted as a
function of layer for di↵erent n values, with shading showing the standard deviations. (c) The performance of FALQON, as
quantified by the approximation ratio (dashed curves) and the success probability of measuring the degenerate ground state
(solid curves) is shown for di↵erent values of n. (d) The mean number of layers needed to achieve the reference values of
rA = 0.932 (dashed curve) and � = 0.25 (solid curve) is shown; error bars report the associated standard deviation. (e) The
critical �t values for di↵erent problem sizes are plotted.

to the legend in Fig. 3(c), with the shading representing
the standard deviation. We find that with increasing n,
the shape of the resultant � curves follows a clear trend,
and the standard deviation decreases. In Fig. 3(c), the
associated rA and � results are shown (dashed and solid
curves, respectively), and the associated reference values
are plotted in black. For the cases considered here, we
find that FALQON consistently leads to monotonic con-
vergence towards very high rA and � values as a function
of layer. To determine how the requisite circuit depths
scale with the problem size, in Fig. 3(d) we plot the av-
erage number of layers required to achieve the reference
values of rA and � as a function of n. Finally, in Fig. 3(e)
we plot �tc for each value of n under consideration. The
scaling of the required number of layers and �tc seems
nearly linear, even up to n = 20, indicating a favorable
runtime scaling of the FALQON algorithm, at least for
this class of MaxCut problems. We remark that in ad-
dition to the analyses presented here, we also tested the
performance of FALQON on weighted 3-regular graphs,
and identified instances where the rA and � convergence
is enhanced by introducing one of three possible heuristic
modifications to the FALQON algorithm. Details can be
found in Appendix A.

In our companion paper [15], we present a sampling
complexity comparison between FALQON and QAOA in
the context of MaxCut, as quantified by the total number
of samples (i.e., circuit repetitions) that are required, de-
noted Ns. When a gradient algorithm is used for QAOA,
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q(`) exceeds d` in general, or d when a gradient algorithm
is utilized. Further details can be found in [15].

Discussion and outlook.– We have introduced
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for solving combinatorial optimization problems using
quantum computers. Importantly, FALQON performs
optimization without the need for an expensive classical
optimization loop. We have demonstrated its perfor-
mance on current quantum hardware and provided
numerical analyses of its performance towards finding
the maximum cut of regular graphs. By studying the
performance with respect to layer and the problem
size n, our numerical analyses show that FALQON
converges to very high approximation ratios and success
probabilities with a favorable scaling of resources with
respect to n, suggesting that FALQON may be a useful
heuristic algorithm for this class of problems.

Our findings also suggest that FALQON can require
relatively deep circuits in order to achieve this conver-
gence, relative to the shallow circuits typically considered
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natorial optimization problem: MaxCut, which aims to
identify a graph partition that maximizes the number of
edges in a graph that are cut. For an unweighted graph G,
with n nodes and edge set E , the MaxCut problem Hamil-
tonian is defined on n qubits as Hp = �

P
i,j2E

1
2

�
1 �

ZiZj

�
, while Hd has the standard form Hd =

Pn
j=1 Xj ,

such that i[Hd, Hp] =
P

i,j2E YiZj + ZiYj , where Xj ,
Yj , and Zj denote the Pauli operators acting on qubit
j. As such, evaluating the feedback law �k+1 = �Ak =
�h k|i[Hd, Hp]| ki in this setting involves measurements
of maximally n(n� 1) two-qubit Pauli strings.

As a proof-of-principle, in Fig. 2 we present the re-
sults of an experimental demonstration of FALQON on
a superconducting quantum processor for a simple in-
stance of the MaxCut problem. In particular, we con-
sidered an instance of MaxCut on an unweighted graph
composed of n = 3 nodes connected by two edges, such
that Hp = �

1
2 (2 � Z1Z2 � Z2Z3) and i[Hd, Hp] =

Y1Z2 + Z2Y1 + Y2Z3 + Z3Y2. The experiment was per-
formed on the publicly accessible ibmq manila processor
and utilized three qubits with nearest-neighbor connec-
tivity matching that of the graph under consideration.
In this setting, ` = 10 steps of FALQON were performed
according to the procedure outlined in Fig. 1, selecting
�t = 0.2. At each step, one circuit was implemented
in order to estimate hHpik natively in the computational
basis. Two additional circuits were implemented in order
to estimate the terms in Ak. For each circuit, the qubits
were initialized in the ground state of Hd, and m = 1024
shots were taken.

As shown in Fig. 2(a), FALQON was successful in
achieving a monotonic decrease of hHpi in this experi-
ment up to layer five (orange point markers). FALQON
also achieves a monotonic increase in the success prob-
ability of measuring the two degenerate ground states,
denoted by �, as shown in Fig. 2(b). The error bars
in Fig. 2(a) and (b) present the standard error of the
mean, which estimates how much the reported hHpik and
�k may deviate from their true values due to finite sam-
pling. Finally, the associated values of �, determined
according to the feedback law �k+1 = �Ak, are plotted
in Fig. 2(b).

Past layer 5, it is evident that FALQON is no longer
able to decrement hHpi using this hardware platform, de-
spite exhibiting a continued monotonic decrease in associ-
ated noise-free numerical simulations (blue point mark-
ers). This reveals the limitations that hardware noise
presents for this problem instance. Looking ahead, we
are optimistic that continuous improvements to quan-
tum hardware will pave the way towards applications
of FALQON to increasingly complex combinatorial op-
timization problems.

In the interim, we explore how FALQON performs on
larger instances of MaxCut through a series of noise-
free numerical illustrations. These illustrations con-
sider unweighted, connected 3-regular graphs with n 2

Figure 2. Results from experimental implementation of ` = 10
layers of FALQON on a superconducting quantum processor.
For this demonstration, FALQON is applied to an n = 3 qubit
instance of MaxCut on an unweighted graph. Panel (a) shows
that FALQON is successful in achieving a monotonic decrease
of hHpi over layers k = 1, · · · , 5 in this experiment (orange
point markers), noting that the global minimum value for this
problem instance is hHpimin = �2 (dashed black line). In ad-
dition, in panel (b) a monotonic increase of the probability,
�, of measuring the two degenerate ground states is also ob-
served up to layer k = 5 (orange point markers). The error
bars in (a) and (b) indicate the standard error. The values
of � are plotted in (c). In (a)-(c), the blue point markers
correspond to ideal results computed numerically.

{8, 10, · · · , 20} vertices. For n 2 {8, 10} we consider all
nonisomorphic graphs; for n 2 {12, 14, · · · , 20} we con-
sider 50 randomly-generated, nonisomorphic graphs. In
our simulations, the qubits are initialized in the ground
state of Hd, and the performance of FALQON is quan-
tified using the mean and standard deviations (over the
problem instances) of two figures of merit: the approxi-
mation ratio, rA = hHpi/hHpimin and the success prob-
ability of measuring the (potentially degenerate) ground
state(s) {|q0,ii}, � =

P
i |h |q0,ii|

2. We relate the perfor-
mance to two reference values: rA = 0.932, correspond-
ing to the highest approximation ratio that can currently
be guaranteed using a classical approximation algorithm
(i.e., the algorithm of Goemans andWilliamson [19]), and
� = 0.25, which implies that on average, four repetitions
will be needed in order to obtain a sample correspond-
ing to the ground state. Our only free parameter is the
time step �t, which is tuned to be as large as possible,
a value we call the critical �t and denote by �tc, as
long as the condition in Eq. (1) is met for all problem
instances considered. Our results are collected in Fig. 3.
In Fig. 3(b), the mean values of �1,�2, · · · are plotted
as a function of layer for di↵erent values of n, according

= approximation ratio 

The only free parameter is time step , 
which is tuned to be as large as possible.

Δt
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We provide Ising formulations for many NP-complete and NP-hard problems, including

all of Karp’s 21 NP-complete problems. This collects and extends mappings to the Ising

model from partitioning, covering and satisfiability. In each case, the required number of

spins is at most cubic in the size of the problem. This work may be useful in designing

adiabatic quantum optimization algorithms.
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1. Introduction

1.1. Quantum Adiabatic Optimization

Recently, there has been much interest in the possibility of using adiabatic quantum optimization (AQO)
to solve NP-complete and NP-hard problems [1, 2].1 This is due to the following trick: suppose we have a
quantum Hamiltonian HP whose ground state encodes the solution to a problem of interest, and another
Hamiltonian H0, whose ground state is “easy” (both to find and to prepare in an experimental setup).
Then, if we prepare a quantum system to be in the ground state of H0, and then adiabatically change
the Hamiltonian for a time T according to

H(t) =

(

1− t

T

)

H0 +
t

T
HP, (1)

then if T is large enough, and H0 and HP do not commute, the quantum system will remain in the ground
state for all times, by the adiabatic theorem of quantum mechanics. At time T , measuring the quantum
state will return a solution of our problem.

There has been debate about whether or not these algorithms would actually be useful: i.e., whether
an adiabatic quantum optimizer would run any faster than classical algorithms [3, 4, 5, 6, 7, 8, 9], due to
the fact that if the problem has size N , one typically finds

T = O
[

exp
(

αNβ
)]

, (2)

1In this paper, when a generic statement is true for both NP-complete and NP-hard problems, we will refer to these
problems as NP problems. Formally this can be misleading as P is contained in NP, but for ease of notation we will simply
write NP.
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H = − ∑
i, j

Jij σz
i σz
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introduction of a solver that utilizes GPU computing [19].
To represent a placement of queens on the chessboard, a

matrix X = (xi,j) of n × n bit variables are used so that
the bit value is 1 if and only if a queen is placed there. We
are focusing on designing a QUBO model that is capable
of generating all solutions to the N-Queens problem. The
objective is to ensure that a solution derived from the QUBO
model is considered optimal only if it is a valid solution
for the N-Queens problem. Specifically, the QUBO model
is designed to ensure that each row and column contains
exactly one queen, while each diagonal and anti-diagonal
contains at most one queen. In other words, the sum of each
row and column of matrix X is 1, while the sum of each
diagonal and anti-diagonal is either 0 or 1. It is important
to note that the resulting QUBO model can be quite large
in size. The model involves n2 variables, n2 linear terms,
and 5

3n
3 − 2n2 + 1

3n quadratic terms. Due to the simplicity
and straightforwardness of designing such a QUBO model,
there are numerous documents available in the Web that
explain this model as an easy example of QUBO models [20]–
[22]. However, to the best of our knowledge, there is no
fundamentally different approach to designing a QUBO model
for the N-Queens problem. It seems that most people in this
community consider this approach as the sole method for
designing a QUBO model for the N-Queens problem, and no
superior alternative has been discovered.

C. Our contribution

The main contribution of this paper is to present a smaller
QUBO model for solving the N-Queens problem. Surprisingly,
our new model involves only a square number of quadratic
terms, whereas the conventional QUBO model requires a
cubic number of quadratic terms. Our novel approach utilizes
auxiliary variables with the domain-wall encoding to find a
valid queen placement for the N-Queens problem. The new
QUBO model consists of 5n2−6n+2 variables, 5n2−13n+9
linear terms, and 12n2 − 24n+ 12 quadratic terms. Although
it requires approximately five times more variables and linear
terms compared to the conventional QUBO model obtained
through conventional one-hot encoding, the quadratic term
count is only 36

5n of the conventional model. Therefore, for the
N-Queens problem with a large value of n, our new QUBO
model offers a significant advantage in terms of scalability and
computational efficiency. It achieves a substantial reduction in

the number of quadratic terms, which can lead to improved
performance when solving larger instances of the N-Queens
problem using QUBO-based approaches.

This paper is organized as follows. In Section II, we
provide a review of a QUBO model used for generating one-
hot vectors. Additionally, we introduce a new fundamental
technique that employs auxiliary variables with domain-wall
encoding to design QUBO models. Section III presents a
discussion on the conventional QUBO model for the N-
Queens problem. This problem is often used as a simple yet
intriguing example of QUBO models. The conventional model
utilizes a cubic number of quadratic terms. In Section IV, we
introduce our novel QUBO model for the N-Queens problem,
which significantly reduces the number of quadratic terms
required to only quadratic in nature. Finally, Section V shows
implementation results on the QUBO models in a quantum
annealer. Section VI provides a conclusion to our work.

II. ONE-HOT VECTOR GENERATION WITH THE SUPPORT OF
AUXILIARY VARIABLES

This section begins by presenting a conventional QUBO
model for generating one-hot vectors. We then introduce
our new QUBO model with auxiliary variables, capable of
generating all one-hot vectors. The conventional QUBO model
requires a square number of quadratic terms, whereas our
new QUBO model utilizes only a linear number of them.
This QUBO model serves as a fundamental technique for
addressing the N-Queens problem in our approach.

Let X = (xi) (0 ≤ i ≤ n − 1) be a vector with n bit
variables. We call X a one-hot vector if X has exactly one
1. We can design a QUBO model of X such that it takes the
minimum value if and only if X is a one-hot vector as follows:

E1(X) = (1−
n−1∑

i=0

xi)
2

= −
n−1∑

i=0

xi + 2
n−2∑

i=0

n−1∑

j=i+1

xixj + 1

E1(X) takes the optimal value of 0 if and only if X is a one-

hot vector and
n−1∑
i=0

xi = 1. This QUBO model has n linear

terms and 1
2n

2 − 1
2n quadratic terms.

Our new idea is to reduce the quadratic term count using
auxiliary variables ai (0 ≤ i ≤ n − 2) such that A = (ai)
(0 ≤ i ≤ n − 2) be an (n − 1)-bit vector. We assume fixed
guard bits a−1 = 1 and an−1 = 0 and let ∆A = (∆ai)
(0 ≤ i ≤ n− 1) be an n-bit vector such that ∆ai = ai−1− ai
We design a QUBO model of X and A such that it takes the
minimum value only if X is a one-hot vector as follows:

Ea(X,A) =
n−1∑

i=0

∆a2i +
n−1∑

i=0

(xi −∆ai)
2

By the two guard bits, the first summation term takes the
minimum value of 1 if and only if it has consecutive 1’s
followed by consecutive 0’s, that is, exactly one of ∆ai is 1
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introduction of a solver that utilizes GPU computing [19].
To represent a placement of queens on the chessboard, a

matrix X = (xi,j) of n × n bit variables are used so that
the bit value is 1 if and only if a queen is placed there. We
are focusing on designing a QUBO model that is capable
of generating all solutions to the N-Queens problem. The
objective is to ensure that a solution derived from the QUBO
model is considered optimal only if it is a valid solution
for the N-Queens problem. Specifically, the QUBO model
is designed to ensure that each row and column contains
exactly one queen, while each diagonal and anti-diagonal
contains at most one queen. In other words, the sum of each
row and column of matrix X is 1, while the sum of each
diagonal and anti-diagonal is either 0 or 1. It is important
to note that the resulting QUBO model can be quite large
in size. The model involves n2 variables, n2 linear terms,
and 5
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3 − 2n2 + 1

3n quadratic terms. Due to the simplicity
and straightforwardness of designing such a QUBO model,
there are numerous documents available in the Web that
explain this model as an easy example of QUBO models [20]–
[22]. However, to the best of our knowledge, there is no
fundamentally different approach to designing a QUBO model
for the N-Queens problem. It seems that most people in this
community consider this approach as the sole method for
designing a QUBO model for the N-Queens problem, and no
superior alternative has been discovered.

C. Our contribution

The main contribution of this paper is to present a smaller
QUBO model for solving the N-Queens problem. Surprisingly,
our new model involves only a square number of quadratic
terms, whereas the conventional QUBO model requires a
cubic number of quadratic terms. Our novel approach utilizes
auxiliary variables with the domain-wall encoding to find a
valid queen placement for the N-Queens problem. The new
QUBO model consists of 5n2−6n+2 variables, 5n2−13n+9
linear terms, and 12n2 − 24n+ 12 quadratic terms. Although
it requires approximately five times more variables and linear
terms compared to the conventional QUBO model obtained
through conventional one-hot encoding, the quadratic term
count is only 36

5n of the conventional model. Therefore, for the
N-Queens problem with a large value of n, our new QUBO
model offers a significant advantage in terms of scalability and
computational efficiency. It achieves a substantial reduction in

the number of quadratic terms, which can lead to improved
performance when solving larger instances of the N-Queens
problem using QUBO-based approaches.

This paper is organized as follows. In Section II, we
provide a review of a QUBO model used for generating one-
hot vectors. Additionally, we introduce a new fundamental
technique that employs auxiliary variables with domain-wall
encoding to design QUBO models. Section III presents a
discussion on the conventional QUBO model for the N-
Queens problem. This problem is often used as a simple yet
intriguing example of QUBO models. The conventional model
utilizes a cubic number of quadratic terms. In Section IV, we
introduce our novel QUBO model for the N-Queens problem,
which significantly reduces the number of quadratic terms
required to only quadratic in nature. Finally, Section V shows
implementation results on the QUBO models in a quantum
annealer. Section VI provides a conclusion to our work.
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This section begins by presenting a conventional QUBO
model for generating one-hot vectors. We then introduce
our new QUBO model with auxiliary variables, capable of
generating all one-hot vectors. The conventional QUBO model
requires a square number of quadratic terms, whereas our
new QUBO model utilizes only a linear number of them.
This QUBO model serves as a fundamental technique for
addressing the N-Queens problem in our approach.

Let X = (xi) (0 ≤ i ≤ n − 1) be a vector with n bit
variables. We call X a one-hot vector if X has exactly one
1. We can design a QUBO model of X such that it takes the
minimum value if and only if X is a one-hot vector as follows:
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auxiliary variables ai (0 ≤ i ≤ n − 2) such that A = (ai)
(0 ≤ i ≤ n − 2) be an (n − 1)-bit vector. We assume fixed
guard bits a−1 = 1 and an−1 = 0 and let ∆A = (∆ai)
(0 ≤ i ≤ n− 1) be an n-bit vector such that ∆ai = ai−1− ai
We design a QUBO model of X and A such that it takes the
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introduction of a solver that utilizes GPU computing [19].
To represent a placement of queens on the chessboard, a

matrix X = (xi,j) of n × n bit variables are used so that
the bit value is 1 if and only if a queen is placed there. We
are focusing on designing a QUBO model that is capable
of generating all solutions to the N-Queens problem. The
objective is to ensure that a solution derived from the QUBO
model is considered optimal only if it is a valid solution
for the N-Queens problem. Specifically, the QUBO model
is designed to ensure that each row and column contains
exactly one queen, while each diagonal and anti-diagonal
contains at most one queen. In other words, the sum of each
row and column of matrix X is 1, while the sum of each
diagonal and anti-diagonal is either 0 or 1. It is important
to note that the resulting QUBO model can be quite large
in size. The model involves n2 variables, n2 linear terms,
and 5

3n
3 − 2n2 + 1

3n quadratic terms. Due to the simplicity
and straightforwardness of designing such a QUBO model,
there are numerous documents available in the Web that
explain this model as an easy example of QUBO models [20]–
[22]. However, to the best of our knowledge, there is no
fundamentally different approach to designing a QUBO model
for the N-Queens problem. It seems that most people in this
community consider this approach as the sole method for
designing a QUBO model for the N-Queens problem, and no
superior alternative has been discovered.

C. Our contribution

The main contribution of this paper is to present a smaller
QUBO model for solving the N-Queens problem. Surprisingly,
our new model involves only a square number of quadratic
terms, whereas the conventional QUBO model requires a
cubic number of quadratic terms. Our novel approach utilizes
auxiliary variables with the domain-wall encoding to find a
valid queen placement for the N-Queens problem. The new
QUBO model consists of 5n2−6n+2 variables, 5n2−13n+9
linear terms, and 12n2 − 24n+ 12 quadratic terms. Although
it requires approximately five times more variables and linear
terms compared to the conventional QUBO model obtained
through conventional one-hot encoding, the quadratic term
count is only 36

5n of the conventional model. Therefore, for the
N-Queens problem with a large value of n, our new QUBO
model offers a significant advantage in terms of scalability and
computational efficiency. It achieves a substantial reduction in

the number of quadratic terms, which can lead to improved
performance when solving larger instances of the N-Queens
problem using QUBO-based approaches.

This paper is organized as follows. In Section II, we
provide a review of a QUBO model used for generating one-
hot vectors. Additionally, we introduce a new fundamental
technique that employs auxiliary variables with domain-wall
encoding to design QUBO models. Section III presents a
discussion on the conventional QUBO model for the N-
Queens problem. This problem is often used as a simple yet
intriguing example of QUBO models. The conventional model
utilizes a cubic number of quadratic terms. In Section IV, we
introduce our novel QUBO model for the N-Queens problem,
which significantly reduces the number of quadratic terms
required to only quadratic in nature. Finally, Section V shows
implementation results on the QUBO models in a quantum
annealer. Section VI provides a conclusion to our work.

II. ONE-HOT VECTOR GENERATION WITH THE SUPPORT OF
AUXILIARY VARIABLES

This section begins by presenting a conventional QUBO
model for generating one-hot vectors. We then introduce
our new QUBO model with auxiliary variables, capable of
generating all one-hot vectors. The conventional QUBO model
requires a square number of quadratic terms, whereas our
new QUBO model utilizes only a linear number of them.
This QUBO model serves as a fundamental technique for
addressing the N-Queens problem in our approach.

Let X = (xi) (0 ≤ i ≤ n − 1) be a vector with n bit
variables. We call X a one-hot vector if X has exactly one
1. We can design a QUBO model of X such that it takes the
minimum value if and only if X is a one-hot vector as follows:

E1(X) = (1−
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E1(X) takes the optimal value of 0 if and only if X is a one-

hot vector and
n−1∑
i=0

xi = 1. This QUBO model has n linear

terms and 1
2n

2 − 1
2n quadratic terms.

Our new idea is to reduce the quadratic term count using
auxiliary variables ai (0 ≤ i ≤ n − 2) such that A = (ai)
(0 ≤ i ≤ n − 2) be an (n − 1)-bit vector. We assume fixed
guard bits a−1 = 1 and an−1 = 0 and let ∆A = (∆ai)
(0 ≤ i ≤ n− 1) be an n-bit vector such that ∆ai = ai−1− ai
We design a QUBO model of X and A such that it takes the
minimum value only if X is a one-hot vector as follows:

Ea(X,A) =
n−1∑
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∆a2i +
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(xi −∆ai)
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By the two guard bits, the first summation term takes the
minimum value of 1 if and only if it has consecutive 1’s
followed by consecutive 0’s, that is, exactly one of ∆ai is 1
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introduction of a solver that utilizes GPU computing [19].
To represent a placement of queens on the chessboard, a

matrix X = (xi,j) of n × n bit variables are used so that
the bit value is 1 if and only if a queen is placed there. We
are focusing on designing a QUBO model that is capable
of generating all solutions to the N-Queens problem. The
objective is to ensure that a solution derived from the QUBO
model is considered optimal only if it is a valid solution
for the N-Queens problem. Specifically, the QUBO model
is designed to ensure that each row and column contains
exactly one queen, while each diagonal and anti-diagonal
contains at most one queen. In other words, the sum of each
row and column of matrix X is 1, while the sum of each
diagonal and anti-diagonal is either 0 or 1. It is important
to note that the resulting QUBO model can be quite large
in size. The model involves n2 variables, n2 linear terms,
and 5

3n
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3n quadratic terms. Due to the simplicity
and straightforwardness of designing such a QUBO model,
there are numerous documents available in the Web that
explain this model as an easy example of QUBO models [20]–
[22]. However, to the best of our knowledge, there is no
fundamentally different approach to designing a QUBO model
for the N-Queens problem. It seems that most people in this
community consider this approach as the sole method for
designing a QUBO model for the N-Queens problem, and no
superior alternative has been discovered.
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The main contribution of this paper is to present a smaller
QUBO model for solving the N-Queens problem. Surprisingly,
our new model involves only a square number of quadratic
terms, whereas the conventional QUBO model requires a
cubic number of quadratic terms. Our novel approach utilizes
auxiliary variables with the domain-wall encoding to find a
valid queen placement for the N-Queens problem. The new
QUBO model consists of 5n2−6n+2 variables, 5n2−13n+9
linear terms, and 12n2 − 24n+ 12 quadratic terms. Although
it requires approximately five times more variables and linear
terms compared to the conventional QUBO model obtained
through conventional one-hot encoding, the quadratic term
count is only 36

5n of the conventional model. Therefore, for the
N-Queens problem with a large value of n, our new QUBO
model offers a significant advantage in terms of scalability and
computational efficiency. It achieves a substantial reduction in

the number of quadratic terms, which can lead to improved
performance when solving larger instances of the N-Queens
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This paper is organized as follows. In Section II, we
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discussion on the conventional QUBO model for the N-
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intriguing example of QUBO models. The conventional model
utilizes a cubic number of quadratic terms. In Section IV, we
introduce our novel QUBO model for the N-Queens problem,
which significantly reduces the number of quadratic terms
required to only quadratic in nature. Finally, Section V shows
implementation results on the QUBO models in a quantum
annealer. Section VI provides a conclusion to our work.
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generating all one-hot vectors. The conventional QUBO model
requires a square number of quadratic terms, whereas our
new QUBO model utilizes only a linear number of them.
This QUBO model serves as a fundamental technique for
addressing the N-Queens problem in our approach.

Let X = (xi) (0 ≤ i ≤ n − 1) be a vector with n bit
variables. We call X a one-hot vector if X has exactly one
1. We can design a QUBO model of X such that it takes the
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Quantum Machine Learning
• Artificial Intelligence:   Statistical prediction  
• Machine Learning:  Learn from data 
• Quantum Machine Learning:  Learn from data with quantum algorithms 

– Subdiscipline of quantum computing and quantum information 
science 6 1 Introduction

Fig. 1.1 Four approaches to
combine quantum computing
and machine learning
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C - classical, Q - quantum

and many others, and even slowly attracts the attention of selected machine learning
communities.

1.1.3 Four Intersections

As mentioned above, there are several definitions of the term quantum machine
learning, and we want to further specify its use in the context of this book. For this,
we slightly adapt a typology introduced by Aimeur, Brassard and Gambs [13]. It
distinguishes four approaches of how to combine quantum computing and machine
learning, depending on whether one assumes the data to be generated by a quantum
(Q) or classical (C) system, and if the information processing device is quantum (Q)
or classical (C) (see Fig. 1.1).

The CC flavour refers to classical data being processed classically. This is of
course the conventional approach to machine learning, but in this context it relates to
machine learning based on methods borrowed from quantum information research.
An example is the application of tensor networks, which have been developed for
quantum many-body systems, to neural network training [14, 15]. There are also
numerous “quantum-inspired” machine learning models. While for a long time,
this term described a body of literature with varying degrees of quantum mechan-
ical rigour, it is increasingly used to refer to so-called “dequantised” algorithms—
quantum algorithms for which a classical equivalent with similar speed guarantees
has been discovered [16, 17] (see also Sect. 7.1).

The QC intersection investigates how machine learning can help with quantum
computing. For example, one can use neural networks to describe quantum states
in a compact manner [18–20]. Another idea is to learn phase transitions in many-
body quantum systems, a fundamental physics problem with applications in the
development of quantum computers [21]. Machine learning has also been found

• CC:  classical data being processed 
classically  

• QC: how machine learning can help with 
quantum computing 

• CQ: classical data fed into quantum 
computer for analysis (quantum machine 
learning) 

• QQ: quantum data being processed by 
quantum computer (ex: Quantum 
simulation)



Distance-based classifier
• A distance-based classifier with a quantum interference 

circuit: arXiv:1703:10793 (supervised binary classification)
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training data set

D = {( ⃗x1, y1), ( ⃗x2, y2), ⋯, ( ⃗xM, yM)}
⃗xm ∈ ℝN ym ∈ {−1, + 1}

m = 1, 2, ⋯, M
M = the number of data
N = the number of features

⃗x̃m ∈ ℝN : unlabelled data

 Find the label → ỹ ∈ {−1,1}



Classical Kernel Method
• Kernel methods: kNN (k-nearest neighborhood), KDE (kernel density 

estimation), SVM (support vector machine), Gaussian processes 
– Nearest neighborhood method: a new input data is given the 

same label as the data point closest to it  k-nearest 
neighborhood (kNN) 

– Closeness = distance measure 

– (ex) Euclidean distance 

→

| ⃗x̃ − ⃗xm |2

ỹ = sign [
M

∑
m=1

ym(1 − 1
4M

| ⃗x̃ − ⃗xm |2 )]
ỹ = sign [

M

∑
m=1

wm ym κ( ⃗x̃, ⃗xm)]

• include all data but weigh 
influence of each data toward the 
decision by the weight κ( ⃗x̃, ⃗xm)

weight Label  for ±1 ⃗xm

Kernel





 Wasserstein distance 
(Kantorovich–Rubinstein metric)

• A distance function defined between probability 
distributions on a given metric space  M (named after 
“Vaseršteĭn" (Russian: Васерштейн) ) 

• If  P is an empirical measure with samples  
 and  Q is an empirical measure with 

samples   the p-Wasserstein distance is a 
simple function of the order statistics:

X1 , ⋯ , Xn
Y1 , ⋯ , Yn



Classical Kernel Method
• Kernel methods: kNN (k-nearest neighborhood), KDE (kernel density 

estimation), SVM (support vector machine), Gaussian processes 
– Nearest neighborhood method: a new input data is given the 

same label as the data point closest to it  k-nearest 
neighborhood (kNN) 

– Closeness = distance measure 

– (ex) Euclidean distance 

→

| ⃗x̃ − ⃗xm |2

ỹ = sign [
M

∑
m=1

ym(1 − 1
4M

| ⃗x̃ − ⃗xm |2 )]
ỹ = sign [

M

∑
m=1

wm ym κ( ⃗x̃, ⃗xm)]

• include all data but weigh 
influence of each data toward the 
decision by the weight κ( ⃗x̃, ⃗xm)

weight Label  for ±1 ⃗xm

Kernel



Distance-based classifier
• Choose  for all equally important datawm = 1

κ( ⃗x̃ , ⃗xm) = 1 − 1
4M

| ⃗x̃ − ⃗xm |2 Close data (small distance) are 
weighted more importantly.

(1) Encode input data (features) into the amplitude of a quantum system 
(amplitude encoding). For classical vector , ( )  Assume 

 (normalized to 1)
⃗x ∈ ℝN N = 2n

xT x = ⃗x ⋅ ⃗x = 1

|ψX⟩ =
N−1

∑
i=0

xi | i⟩
 : index in the computational basis i

Dimension of Hilbert space ≈ O(log N )

N = 2n : number of features

(2) initial state:  |D⟩ = 1
2M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃⟩ + |1⟩ |ψxm
⟩) |ym⟩

data index 
 = # of dataM

unlabelled  
data labeled  

data
label of  
class qubit

xm

ancilla qubit is entangled 
with third register



Distance-based classifier

(2) initial state:  |D⟩ = 1
2M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃⟩ + |1⟩ |ψxm
⟩) |ym⟩

data index 
 = # of dataM

unlabelled  
data

labeled  
data

label of  
class qubit

xm

ancilla qubit is entangled 
with third register

|ψxm
⟩ =

N−1

∑
i=0

xi
m | i⟩

|ψx̃⟩ =
N−1

∑
i=0

x̃i | i⟩

encoding of m-th training data (labeled)

encoding of new data (unlabeled)

|ym⟩ = { |0⟩ , if ym = − 1
|1⟩ , if ym = + 1

 contains all training data as well as  copies of new inputs.|D⟩ M



Distance-based classifier
(3) Apply Hadamard gate on the ancilla (second) qubit. |0⟩ → 1

2 ( |0⟩ + |1⟩)
|1⟩ → 1

2 ( |0⟩ − |1⟩)|D⟩ = 1
2M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃⟩ + |1⟩ |ψxm
⟩) |ym⟩

|D′ ⟩ = 1
2 M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃+xm
⟩ + |1⟩ |ψx̃−xm

⟩) |ym⟩

|ψx̃±xm
⟩ = |ψx̃⟩ ± |ψxm

⟩ =
M−1

∑
i=0

( x̃i ± xi
m ) | i⟩

(4) Conditional measurement selecting the branch with ancilla state . 
      Likely to succeed if the collective Euclidean distance b/w  and training data 
      set is small. For standard data, .

|0⟩
x̃

p ≥ 0.5

Probability is p = 1
4M ∑

m
| ⃗x̃ + ⃗xm |2

|D′ ′ ⟩ = 1
2 M p

M

∑
m=1

N−1

∑
i=0

|m⟩ (x̃i + xi
m) | i⟩ |ym⟩



Distance-based classifier

|D′ ′ ⟩ = 1
2 M p

M

∑
m=1

N−1

∑
i=0

|m⟩ (x̃i + xi
m) | i⟩ |ym⟩

(5) Probability of measuring the class qubit |ym⟩ = |0⟩

P(ỹ = 0) = 1
4M p

M

∑
ym=0, m=1

| ⃗x̃ + ⃗xm |2 = 1 − 1
4M p

M

∑
ym=0, m=1

| ⃗x̃ − ⃗xm |2

using normalization condition
 choosing the class with the higher probability gives result of kernel method. 

     The # of measurement needed to estimate  to error  with a reasonably 
      high confidence interval grows with .

→
P(ỹ = 0) ϵ

O(ϵ−1)

Class 1

3
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FIG. 2. Data processing illustrated with the example of the
first two classes (here called �1 and 1) of the first two fea-
tures of the Iris dataset. The raw data (left) gets standarised
to zero mean and unit variance (center), after which each fea-
ture vector is normalised to unit length (right). The training
points used in the experiment are marked in black, while the
arrows point to the new feature vectors to classify.

measurement is successful, the result is given by

1

2
p
Mpacc

MX

m=1

NX

i=1

|mi (x̃i + x
m
i ) |ii|ymi.

The amplitudes weigh the class qubit |y
m
i by the dis-

tance of the mth data point to the new input. In this
state, the probability of measuring the class qubit |y

m
i

in state 0,

p(ỹ = 0) =
1

4Mpacc

X

m|ym=0

|x̃+ xm
|
2
,

reflects the probability of predicting class �1 for the new
input. The choice of normalised feature vectors ensures
that 1

4Mpacc

P
m |x̃+xm

|
2 = 1� 1

4Mpacc

P
m |x̃�xm

|
2, and

choosing the class with the higher probability therefore
implements the classifier from eq. (1). The Supplemen-
tary Material shows that the number of measurements
needed to estimate p(ỹ = 0) to error ✏ with a reasonably
high confidence interval grows with O(✏�1).
As a demonstration we implement the interference circuit
with the IBM Quantum Experience (IBMQE) [17] using
the Iris dataset [24]. Data preprocessing consists of two
steps (see fig. 2): We first standardise the dataset to have
zero mean and unit variance. This is common practice
in machine learning to compensate scaling e↵ects, and in
our case ensures that the data does not only populate a
small subspace of the input space, which in higher dimen-
sions leads to indistinguishably small distances between
data points. Second, we need to normalise each feature
vector to unit length. This strategy is popular in machine
learning - for example with support vector machines - to
only consider the angle between data points. (As an in-
tuition, if we want to classify flowers, some items may
have grown bigger than others due to better local con-
ditions, but it is the proportion of the sepal and petal
length that is important for the class distinction). This
preprocessing strategy allows us to fulfill the conditions
of ‘super-e�cient’ preprocessing in refs. [22, 23] The
IBM Quantum Experience enables public use of a pro-

cessor of five non-error-corrected superconducting qubits
based on Josephson junctions located at the IBM Quan-
tum Lab at the Thomas J Watson Research Center in
Yorktown Heights, New York. The current processor has
limited connectivity between the five qubits and allows
the implementation of 80 gates from a set of 12 single-
qubit quantum logic gates as well as a CNOT gate (see
Supplementary Material for details). Due to these lim-
itations, we will only use the first two features of two
samples from the Iris dataset for the experimental imple-
mentation of the quantum algorithm. Consider the pre-
processed training dataset D1 = {(x0

, y
0), (x1

, y
1)} with

the two training vectors x0 = (0, 1), y0 = �1 (Iris sample
33) and x1 = (0.789, 0.615), y1 = 1 (Iris sample 85). In
two separate experiments we will consider the classifica-
tion of two new input vectors of class �1 but with vary-
ing distances to the training points, x̃0 = (�0.549, 0.836)
(Iris sample 28) and x̃00 = (0.053, 0.999) (Iris sample 36)
(see fig. 2).

Implementing this particular classification problem re-
quires four qubits; one qubit for the index register |mi

to represent two training vectors, one ancilla qubit, one
qubit storing the class of each training instance and one
qubit for the data register |ii to represent the two entries
of each training and input vector as

| x̃0i = �0.549 |0i+ 0.836 |1i, (3)

| x̃00i = 0.053 |0i+ 0.999 |1i,

| x0i = |1i,

| x1i = 0.789 |0i+ 0.615 |1i.

In this small-scale example e�cient state preparation
does not require sophisticated routines as discussed
above, but can be designed by hand (see fig. 6). The
main idea is to use controlled rotation gates such that
the input and training vectors become entangled with
the corresponding states of the ancilla and index qubits.
Two aspects have to be considered in the quantum circuit
design. Firstly, the single and double controlled rotation
gates (step B and D in fig. 6) as well as the To↵oli
gate (see step C in fig. 6) required for the entangle-
ment of the ancilla and index qubit with the training
vectors x0 and x1 are not part of IBM’s universal gate
set. Therefore, the state preparation routine needs to be
mapped to the available hardware by decomposing the
controlled rotation, To↵oli and SWAP gates (see Supple-
mentary Material). Secondly, state preparation for this
classification problem requires at least one CNOT opera-
tion between qubits that are not directly connected in the
hardware. This problem can be solved by exchanging ad-
jacent qubits with a SWAP gate such that the CNOT op-
eration between previously unconnected qubits becomes
feasible (see step E in fig. 6).
Using the IBMQE, the resulting quantum circuits were
first simulated in an error-free environment and then ex-
ecuted on the non error-corrected hardware for the max-
imum number of 8192 runs, and the results are sum-
marised in Table I. As expected the quantum circuits

• arXiv:1703:10793 
used Iris data

https://www.quantum-inspire.com/kbase/jupyter-classifier-part1/

https://arxiv.org/pdf/1703.10793.pdf
https://arxiv.org/pdf/1703.10793.pdf
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Grover’s search algorithm
• Grover’s algorithm involves “amplitude amplification” 

– G. Brassard, P. Hoyer 1997, Lov Grover 1998 
– QFT is used for Shor’s and Simon’s algorithms 

• Example: Find a name in a phone directory (ordered list) 
– Go to the midpoint of the list, see which half contains the name. Repeat 

the same  bisection method takes  operations until one of left. 

• If we are given an unordered list, we will have to check all entries one a 
time. On average, this would take  operations  

– For ,    and  .  

• Grover’s algorithm (unstructured search): determines the special value 
with  (close to 1) by calling subroutine only  times.  

quadratic speed up compared with a classical computer. 
– (cf) exponential speed up is expected in Shor’s algorithm.

→ log2 N

N/2
N = 106 log2 N ≈ 20 N/2 ≈ 5 × 105

p ≈ 1 π
4 N →



Grover’s algorithm: Black Box (Oracle)
• Consider n-bit integers. 

• “ ” is a special number, and the goal is to find “ ”. 

• Define a subroutine which output 1 if input value  is equal to , and 
output 0 otherwise. 

a a
x a

f(a) = 1, f(x) = 0 for x ≠ a

U |x⟩n ⊗ |y⟩1 = |x⟩n ⊗ |y ⊕ f(x)⟩1

one qubitn qubits
X X

X X

X X

X

1

0

0

0

1

a = x4x3x2x1x0 = 01001

|y⟩

?

?

?

?

?

Example:  a=01001

?



Grover’s algorithm: Black Box (Oracle)

X X

X X

X X

X

|x0⟩

|x1⟩
|x2⟩

|x3⟩
|x4⟩

|y⟩

|x0⟩

|x1⟩
|x2⟩

|x3⟩
|x4⟩

|y ⊕ f(x)⟩

a = x4x3x2x1x0 = 01001 f (a) = 1
f (x) = 0, if x ≠ a

(1) X-gates on the left flip qubits 
  target qubit is 

flipped only if 
x1, x2 and x4 →

x4x3x2x1x0 = 01001

(2) Five-fold-controlled NOT 
acts to flip the target qubit , 
only if all control bits are 1.

y

(3) X-gates on the right flip 
back to the original input.

1

0

0

0

1



Grover’s algorithm: Black Box (Oracle)

X X

X X

X X

X

|x0⟩

|x1⟩

|x2⟩

|x3⟩

|x4⟩

|y⟩

|x0⟩

|x1⟩

|x2⟩

|x3⟩

|x4⟩

|y ⊕ f(x)⟩

a = x4x3x2x1x0 = 01001 f (a) = 1
f (x) = 0, if x ≠ a

• Useful to initialize  and 
apply  before . 

• The output qubit is

|y⟩ = |1⟩
H U

H |1⟩ = 1
2 ( |0⟩ − |1⟩)

f (x) = 1, |0 ⊕ f (x)⟩ − |1 ⊕ f (x)⟩ = |1⟩ − |0⟩ = − (|0⟩ − |1⟩)
if f (x) = 0, |0 ⊕ f (x)⟩ − |1 ⊕ f (x)⟩ = |0⟩ − |1⟩

Target qubit changes the sign, depending on the function value.

U ( |x⟩ ⊗ H |1⟩ ) = (−1) f(x) |x⟩ ⊗ H |1⟩⏟Output remains the same.



Define such  as   with |x⟩ |a⊥⟩ ⟨a |a⊥⟩ = 0

Grover’s search algorithm

U ( |x⟩ ⊗ H |1⟩ ) = (−1) f(x) |x⟩ ⊗ H |1⟩

Define : Q |x⟩ = (−1) f(x) |x⟩ = { |x⟩ , for x ≠ a
− |a⟩ , for x = a

U and Q are linear operators.

For a general state, , |ψ⟩ = ∑
x

Cx |x⟩

|ψ′ ⟩ = Q |ψ⟩ = ∑
x≠a

Cx |x⟩ − Ca |a⟩ = ∑
x

Cx |x⟩ − 2Ca |a⟩ = |ψ⟩ − 2 |a⟩⟨a |ψ⟩

Ca ≡ ⟨a |ψ⟩

⟨a |ψ′ ⟩ = ⟨a |ψ⟩ − 2⟨a |ψ⟩ = − ⟨a |ψ⟩

⟨a⊥ |ψ′ ⟩ = ⟨a⊥ |ψ⟩
→ Suppose |x⟩ satisfies ⟨x |a⟩ = 0 for x ≠ a

⃗v ⋅ ̂a⊥ = ⃗v′ ⋅ ̂a⊥

⃗v ⋅ ̂a = − ⃗v′ ⋅ ̂a

⃗v

⃗v′ = ⃗v − 2 ̂a ( ⃗v ⋅ ̂a)

̂a⊥ −2 ̂a ( ⃗v ⋅ ̂a)
̂a⊥ ( ⃗v ⋅ ̂a⊥)

⃗v
− ̂a ( ⃗v ⋅ ̂a)

̂a ̂a ̂a ⋅ ̂a⊥ = 0

reflection around the direction perpendicular to ̂a



Grover’s search algorithm
• Consider uniform superposition of all possible basis states.

|ψ0⟩ = H⊗n |0⟩ = 1
N

N−1

∑
x=0

|x⟩ N = 2n

|ψ0⟩ = 1
N

|a⟩ + N − 1
N

|a⊥⟩ = sin θ0 |a⟩ + cos θ0 |a⊥⟩

⟨a |a⊥⟩ = 0

⟨a |a⟩ = 1

⟨a⊥ |a⊥⟩ = 1

|a⊥⟩ = 1
N − 1

N−1

∑
x≠a, x=0

|x⟩   is the normalized uniform superposition 
of all basis states perpendicular to 
|a⊥⟩

|a⟩

|a⊥⟩

|a⟩

|ψ0⟩
1
N

N − 1
N

θ0

⟨a |ψ0⟩ = 1
N

≡ sin θ0 ⟨a⊥ |ψ0⟩ = N − 1
N

≡ cos θ0

• Probability of  being in  = |ψ0⟩ |a⟩ |⟨a |ψ0⟩ |2 = sin2 θ0 = 1
N

• Grover’s algorithm: iteratively rotate  (very 
close to  initially) to the direction close to 

 axis so that measurement returns a high 
probability  amplitude amplification

|ψ0⟩
|a⊥⟩

|a⟩
→

very  small for a large N



Grover’s search algorithm

• Reflection about |a⊥⟩
|ψ′ ⟩ = O |ψ0⟩ = |ψ⟩ − 2 |a⟩⟨a |ψ⟩

•  reflects  about  axisO |ψ0⟩ |a⊥⟩

• ,  O |x⟩ = |x⟩ for x ≠ a O |a⊥⟩ = |a⊥⟩

O |a⟩ = − |a⟩ flips |a⟩ to − |a⟩

|ψ0⟩ = sin θ0 |a⟩ + cos θ0 |a⊥⟩

O |ψ0⟩ = O(sin θ0 |a⟩ + cos θ0 |a⊥⟩)
= − sin θ0 |a⟩ + cos θ0 |a⊥⟩

|a⊥⟩

|a⟩

|ψ0⟩
1
N

θ0

|ψ′ ⟩ = O |ψ0⟩

θ0



Grover’s search algorithm
• Reflection about  (initial state)|ψ0⟩

|a⊥⟩

|a⟩

|ψ0⟩

θ0

|ψ′ ⟩ = O |ψ0⟩

θ0

|ψ1⟩ = S O |ψ0⟩

2θ0
θ1

|ϕ⟩ ⟶ |ϕ′ ⟩ = S |ϕ⟩ = 2 |ψ0⟩⟨ψ0 |ϕ⟩ − |ϕ⟩

⟨ψ0 |ϕ′ ⟩ = 2⟨ψ0 |ψ0⟩⟨ψ0 |ϕ⟩ − ⟨ψ0 |ϕ⟩ = ⟨ψ0 |ϕ⟩

⟨ψ0⊥ |ϕ′ ⟩ = 2⟨ψ0⊥ |ψ0⟩⟨ψ0 |ϕ⟩ − ⟨ψ0⊥ |ϕ⟩ = − ⟨ψ0⊥ |ϕ⟩

 component along  does not change.→ |ψ0⟩

 component perpendicular to  changes the sign.→ |ψ0⟩

G = SO O: reflection of  about |ψ0⟩ |a⊥⟩
S: reflection of  about initial state |ψ′ ⟩ = O |ψ0⟩ |ψ0⟩
G: Grover operator rotates the initial state   by  counterclockwise  
     (toward the direction of  axis)

|ψ0⟩ 2θ0
|a⟩

• Effect of 1st Grover iteration:   rotate the initial state  by  counterclockwise. 

•  making angle  to  axis,   

|ψ0⟩ 2θ0
|ψ1⟩ θ1 |a⊥⟩ θ1 = θ0 + 2θ0



Grover’s search algorithm

|a⊥⟩

|a⟩

|ψ0⟩
θ0

O |ψm⟩

θm

|ψm+1⟩ = S O |ψm⟩

2θ0

θm+1

|ψm⟩

|ψm⟩ = cos θm |a⊥⟩ + sin θm |a⟩
 rotates about  by angle O |ψm⟩ |a⊥⟩ 2θm

 rotates by angle  counterclockwise.SO |ψm⟩ 2(θm + θ0)
θm+1 = θm + 2θ0 θm = (2m + 1) θ0

θm1
N

∙ ⟨a |ψm⟩ = sin θm = sin[(2m + 1)θ0]
• Optimal number of Grover iteration: θm = π /2

π
2 = θm = (2m + 1) θ0 = (2m + 1) sin−1( 1

N )
For a large N, m = π

4 N

|0⟩⊗n

G
H⊗n

|1⟩ H
G

O( N) times

• When , measurement gives  with high 
probability. 

• For any value of  such that  

 , Grover algorithm returns 

 with probability > 1/2.

θm ≈ π /2 a

θm
π
4 < θm ≈ 2m

N
< 3π

4

→ π
8 N < m < 3π

8 N
|a⟩
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Now that we are already familiar with the oracle, let us examine the stages of Grover’s
method. Let |wi represent the superposition of every state:

|si = 1p
N

N�1

Â
x=0

|xi, (22)

and the operator,
Us = 2|sihs|� I, (23)

is called the Grover diffusion operator. We can consider the winner |wi and an extra state
|s0i which is in the span of |wi and |si , which is orthogonal to |wi, and which is obtained
from |si by eliminating |wi and rescaling.

1. Let us just put the system in the state |si,

|si = 1p
N

N�1

Â
x=0

|xi. (24)

This superposition |si, which is easily produced from |si = H⌦n|0in, is the beginning
for the amplitude amplification technique, as shown in Figure 9.

Figure 9. Geometric visualization and the condition of the amplitude of the state |si.

The left chart corresponds to the two-dimensional plane spanned by orthogonal
vectors |wi and |s0i which allows for describing the beginning state as |si = sin q|wi+
cos q|s0i, where q = arcsinhs|wi = arcsin 1p

N
. The right picture is a bar chart of the

amplitudes of the state |si.
2. Execute r(N) times the following “Grover iteration”:

(a) Apply the Uw operator to |si.
Geometrically, this relates to a reflection of the state |si about |s0i. This trans-
formation indicates that the amplitude in front of the |wi state turns negative,
which in turn implies that the average amplitude (shown by a dashed line in
Figure 10) has been reduced.

(b) We now implement the operator Us to the state |si.
This transformation completes the transformation by matching the state to
UsUw|si, which relates a rotation around an angle q as shown in Figure 11.

The state will rotate by r ⇥ q after r implementation of step 2, where r = p
4
p

2n ⌘
O(

p
N) [38].

3. The final measurement will give the state |wi with probability P(w) � 1 � sin2( q
2 ) =

1 � 1
2n .
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Figure 10. Geometric visualization and the condition of the amplitude after the implementation of
the Uw operator.

Figure 11. Geometric visualization and the condition of the amplitude after the implementation of
the Us operator.

3.2.3. Quantum Phase Estimation
Quantum phase estimation is a quantum algorithm that employs the Quantum Fourier

Transform (QFT) to convert information encoded within the phase j with an amplitude
a = |a|eij of a state. The QFT accelerates exponentially the process of translating a quantum
state encoded vector into Fourier space. It is often utilized in QML algorithms to retrieve
the information contained in the eigenvalues of operators which includes details of data
points. Phase estimation consists essentially to identify the eigenvalues of such a matrix
U, which is represented as the operator U in the quantum circuit U, hence this operator
must be unitary. We designate their eigenvectors by |uji as well as eigenvalues eiq j, thus
U |uji = eiq j |uji. Assuming as inputs an eigenvector and an additional register |uji |0i,
the method should return |uji |qji. Because the eigenvectors form a basis, it is possible to
express every state |yi as |yi = Âj2[n] aj |uji. Phase estimation is therefore particularly
convincing due to its potential for use in superposition. The circuit diagram is shown
below. Given an eigenvector as well as an extra register |uji |0i as input, the algorithm will
return |uji |qji. Since eigenvectors constitute a basis, each state |yi could be represented as
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state encoded vector into Fourier space. It is often utilized in QML algorithms to retrieve
the information contained in the eigenvalues of operators which includes details of data
points. Phase estimation consists essentially to identify the eigenvalues of such a matrix
U, which is represented as the operator U in the quantum circuit U, hence this operator
must be unitary. We designate their eigenvectors by |uji as well as eigenvalues eiq j, thus
U |uji = eiq j |uji. Assuming as inputs an eigenvector and an additional register |uji |0i,
the method should return |uji |qji. Because the eigenvectors form a basis, it is possible to
express every state |yi as |yi = Âj2[n] aj |uji. Phase estimation is therefore particularly
convincing due to its potential for use in superposition. The circuit diagram is shown
below. Given an eigenvector as well as an extra register |uji |0i as input, the algorithm will
return |uji |qji. Since eigenvectors constitute a basis, each state |yi could be represented as

|a⊥⟩

|a⟩

|ψ0⟩
1
N

N − 1
N

θ0 |a⊥⟩

|a⟩

|ψ0⟩
1
N

θ0

|ψ′ ⟩ = O |ψ0⟩

θ0
|a⊥⟩

|a⟩

|ψ0⟩

θ0

|ψ′ ⟩ = O |ψ0⟩

θ0

|ψ1⟩ = S O |ψ0⟩

2θ0
θ1



Grover’s search algorithm
• Optimal number of Grover iteration: θm = π /2

π
2 = θm = (2m + 1) θ0 = (2m + 1) sin−1( 1

N )
For a large N, m = π

4 N

|0⟩⊗n

G
H⊗n

|1⟩ H
G

O( N) times

• When , measurement gives  with high probability. 

• For any value of  such that   , Grover algorithm returns  with 

probability > 1/2. 

• Probability decreases for . 

• Operational count of the Grover algorithm   quadratic speed up compared with  
count on a classical computer. 

• Quantum advantage:  superposition and  values of  evaluated in parallel 
• Operation count of ? 
• Measurement returns only one  value 

• Requires additional operations  

θm ≈ π /2 a
θm

π
4 < θ < 3π

4 → π
8 N < m < 3π

8 N |a⟩

m > π
4 N

≈ O( N ) → O(N )

N = 2n f (x)
O(1)

(x, f (x))
→ O( N )
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Searching large databases is an important problem with
broad applications. The Grover search algorithm1,2 provides
a powerful method for quantum computers to perform

searches with a quadratic speedup in the number of required
database queries over classical computers. It is an optimal search
algorithm for a quantum computer3, and has further applications
as a subroutine for other quantum algorithms4,5. Searches with
two qubits have been demonstrated on a variety of platforms6–12

and proposed for others13, but larger search spaces have only
been demonstrated on a non-scalable NMR system14.

The Grover search algorithm has four stages: initialization,
oracle, amplification, and measurement, as shown in Fig. 1a. The
initialization stage creates an equal superposition of all states. The
oracle stage marks the solution(s) by flipping the sign of that
state’s amplitude. The amplification stage performs a reflection
about the mean, thus increasing the amplitude of the marked state.
Finally, the algorithm output is measured. For a search database of
size N, the single-shot probability of measuring the correct answer
is maximized to near-unity by repeating the oracle and amplifi-
cation stages O((N)1/2) times1,2. By comparison, a classical search
algorithm will get the correct answer after an average of N/2
queries of the oracle. For large databases, this quadratic speedup
represents a significant advantage for quantum computers.

Here, we implement the Grover search algorithm using a
scalable trapped atomic ion system15 on n = 3 qubits, which
corresponds to a search database of size N = 2n = 8. The algorithm
is executed for all eight possible single-result oracles and all
28 possible two-result oracles. All searches are performed with
a single iteration. For a single-solution algorithm (t = 1), the
algorithmic probability of measuring the correct state after one

iteration is t ! N"2t
N þ 2ðN"tÞ

N

h i
1ffiffiffi
N

p
" #2

¼ 5
4
ffiffi
2

p
" #2

¼ 78:125%2, com-

pared to t
N þ N"t

N ! t
N"1 ¼

1
8 þ

7
8 !

1
7 ¼ 25% for the optimal classical

search strategy, which consists of a single query followed by a
random guess in the event the query failed. In the two-solution
case (t = 2), where two states are marked as correct answers
during the oracle stage and both states’ amplitudes are amplified
in the algorithm’s amplification stage, the probability of mea-
suring one of the two correct answers is 100% for the quantum
case, as compared to 13

28 ' 46:4% for the classical case. The
algorithm is performed with both a phase oracle, which has been
previously demonstrated on other experimental systems, and a
Boolean oracle, which requires more resources but is directly
comparable to a classical search. All quantum solutions are shown
to outperform their classical counterparts.

Results
Oracles. We examine two alternative methods of encoding the
marked state within the oracle. While both methods are mathe-
matically equivalent16, only one is directly comparable to a
classical search. The Boolean method requires the use of an
ancilla qubit initialized to |1〉, as shown in Fig. 1b. The oracle is
determined by constructing a circuit out of NOT and Ck(NOT)
(k ≤ n) gates such that, were the oracle circuit to be implemented
classically, the ancilla bit would flip if and only if the input to
the circuit is one of the marked states. By using classically
available gates, this oracle formulation is directly equivalent to
the classical search algorithm, and therefore can most convin-
cingly demonstrate the quantum algorithm’s superiority. On a
quantum computer, because the initialization sets up an equal
superposition of all possible input states, the Cn(NOT) gate
targeted on the ancilla provides a phase kickback that flips the
phase of the marked state(s) in the data qubits. An example oracle
is shown in Fig. 1c to illustrate this. The phase method of oracle
implementation does not require the ancilla qubit. Instead, the

Oracle

Repeat O (  N) times

Initialize

N – 1 N – 1 N – 1
–!m |m〉 + !b

x=0 b=0,b≠m b=0,b≠m
|x〉

Amplification
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H H X X H
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H H

Oracle Amplification
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4 √2
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4√2
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√2
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|0〉
|0〉
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a

b c

d e

Fig. 1 The Grover search algorithm. a Evolution of relative amplitudes for each state during a Grover search algorithm. The initialization stage creates an
equal superposition of all possible input states, so the amplitude αx= 1 for all basis states |x〉. The oracle stage marks the desired state, so the amplitude αm
of the marked state |m〉 becomes negative while the amplitudes αb of the unmarked states |b〉, b≠m remain unchanged. The amplification stage performs a
reflection about the mean vector

PN"1
x¼0 xj i, which has amplitude A ¼ 1

N

PN"1
x¼0 αx ¼ 1

N "αm þ N" 1ð Þαbð Þ, to amplify the marked state. An appropriate
number of repetitions of the oracle and amplification stages will maximize the amplitude of the correct answer. All qubit states are normalized by the factor
1ffiffiffi
N

p . The algorithm can also be generalized to mark and amplify the amplitude of t desired states. b General circuit diagram for a Grover search algorithm
using a Boolean oracle, depicted using standard quantum circuit diagram notation16. The last qubit qa is the ancilla qubit. c Example of single-solution
Boolean oracle marking the |011〉 state. d General circuit diagram for a Grover search algorithm using a phase oracle. e Example of two-solution phase
oracle marking the |011〉 and |101〉 states
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In this work, we show the characterization of quantum iterations that would generally construct quantum
amplitude-amplification algorithms with a quadratic speedup, namely, quantum amplitude-amplification opera-
tors (QAAOs). Exact quantum search algorithms that find a target with certainty and with a quadratic speedup
can be composed of sequential applications of QAAOs: existing quantum amplitude-amplification algorithms
thus turn out to be sequences of QAAOs. We show that an optimal and exact quantum amplitude-amplification
algorithm corresponds to the Grover algorithm together with a single iteration of QAAO. We then realize
three-qubit QAAOs with current quantum technologies via cloud-based quantum computing services, IBMQ and
IonQ. Finally, our results show that the fixed-point quantum search algorithms known so far are not a sequence
of QAAOs; for example, the amplitude of a target state may decrease during quantum iterations.

DOI: 10.1103/PhysRevA.104.062438

I. INTRODUCTION

Recent advances in noisy intermediate-scale quantum
(NISQ) technologies [1] signify the usefulness of iterations
of a quantum circuit that may contain advantages over its
classical counterpart [2]. The iterations may be used to de-
vise hybrid quantum-classical algorithms for more efficient
computation over the existing classical limitation [3,4]. For
instance, finding the capabilities of parametric quantum cir-
cuits exploited in variational quantum algorithms has great
importance (see, e.g., [5–7].

This structure is, in fact, that same as in Grover’s quantum
database search algorithm or quantum amplitude amplifica-
tion in general [8]. Namely, a Grover iteration is a building
block that is repeatedly applied and leads to a quadratic
speedup over a classical search [9,10]. We also recall that
the optimality proof of the algorithm is concerned with the
capability of single iterations whereby the speedup is achieved
by their concatenation [11,12].

There are two shortcomings in the Grover iterations. The
first is that an error exists in the measurement readout stage,
although it is sufficiently small up to 1/2n for n-qubit states.
This simply means that the Grover algorithm finds a target by
allowing a nonzero error. It has been shown that the errors can
be cleared out by improving the angle parameters in Grover
iterations: then, an exact quantum search that finds a target
with certainty is achieved [13–15]. The second is that when
there are multiple targets, the number should be provided in
advance. Otherwise, the algorithm shows oscillations between
the initial and target states [9,10]. Or quantum counting is
required as a prescription [16], which can also be simplified
[17,18].

A fixed-point quantum search was proposed in Ref. [19]
showing that a given initial state can arbitrarily converge to a
target state. A priori information about the number of target

states is not necessarily known in advance. A drawback is
that the quantum advantage with a quadratic speedup is not
attained. Then, it was shown that a fixed-point search algo-
rithm can be obtained with a quadratic speedup [20]. However,
as soon as an exact search is attempted, it is inevitable that
quadratic speedup is ruled out [20]. One can summarize that
a fixed-point quantum search also contains a nonzero error
probability in the measurement readout.

Therefore, the shortcomings have not yet been overcome
simultaneously so far. An exact and fixed-point quantum
search has not yet been achieved. It may be observed that
quantum amplitude amplification is generally composed of
quantum iterations. We here try to determine the character-
ization of quantum iterations whose sequences may lead to
a quadratic speedup in general. This identification may also
give a close-up view to see how exact and fixed-point quan-
tum searches are distinct. From a practical point of view,
the iterations would also be a useful building block in the
NISQ algorithms, as quantum amplitude amplification is a key
process in various quantum computing applications, e.g., op-
timization [21,22], state preparation [23], high-energy physics
[24], cryptanalysis [25–27], etc. Moreover, the process turns
out be a naturally occurring phenomenon [28].

Along these lines, we can see that the Grover iteration has
two subroutines, an oracle query and a specified diffusion
operation. There is a high chance that a diffusion step in the
Grover iteration may be served by any unitary transform [29].
This means that quantum amplitude amplification may be
readily characterized by a wide range of parameters, while the
oracle query operation is performed in a noise-free manner.

In this work, we show the characterization of quantum
iterations that can generally be used to construct quantum
amplitude amplification with a quadratic speedup. Namely,
quantum amplitude-amplification operators (QAAOs) are
identified. It is shown that QAAOs can be obtained for a wide

2469-9926/2021/104(6)/062438(10) 062438-1 ©2021 American Physical Society
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(a) (b)

(c)

FIG. 1. (a) The Grover iteration corresponds to consecutive rotations in the space spanned by a target state |t⟩ and its complement |t⊥⟩.
(b) The probability of finding a target state is plotted in the case of eight qubits. The probability is monotonically increasing. (c) The path of
an evolving state in the sphere is shown by Grover iterations from an initial to target states.

range of parameters: randomly generated parameters can build
a QAAO with a probability of almost 1/2. This means that
in practice, QAAOs can be straightforwardly generated and
also that QAAOs are generically resilient to errors appearing
in the preparation of the parameters. We realize QAAOs using
the cloud-based quantum computing services IBMQ and IonQ
and show that a single iteration of a QAAO can be realized
with NISQ technologies.

II. QUANTUM AMPLITUDE-AMPLIFICATION
OPERATORS

In this section, we present the characterization of QAAOs
for n-qubit states. For convenience, we consider amplification
of the amplitude of a single target state. Let |s0⟩ denote an
initial state, |t⟩ denote the target one, and |t⊥⟩ denote the
orthogonal complement to the target state. The initial state is
often given as a uniform superposition of N = 2n states,

|s0⟩ = 1√
N

N−1∑

j=0

| j⟩ = 1√
N

|t⟩ +
√

N − 1
N

|t⊥⟩.

In general, an n-qubit state in the space spanned by {|t⟩, |t⊥⟩}
can be written as

|s(θ ,φ)⟩ = eiφ sin
(

θ

2

)
|t⟩ + cos

(
θ

2

)
|t⊥⟩ (1)

for some θ and φ (see Fig. 1). For a state in Eq. (1) the
probability of finding a target is given by

p(target) = |⟨t |s(θ ,φ)⟩|2 = sin2 θ

2
. (2)

The initial state can also be written as

|s0⟩ = |s(θ0,φ0 = 0)⟩, θ0 = 2 sin−1 1√
N

. (3)

Note that the initial state can be prepared by applying
Hadamard gates to n qubits prepared in state |0⟩⊗n.

A. Quantum iteration

Let us begin by identifying the parameters to construct a
quantum iteration that leads to a quadratic speedup in ampli-
tude amplification. It is not difficult to see that the quantum
iteration corresponds to a rotation in the space spanned by
a target state and its orthogonal complement, |t⟩ and |t⊥⟩,
respectively. It then follows that a sequence of quantum itera-
tions realizes a transformation toward a target state and leads
to a sufficiently high probability to find a target state.

Thus, a quantum iteration can be realized in a decomposi-
tion as follows:

G(β, γ ) = D(β )R(γ ), D(β ) = e−iβ|s0⟩⟨s0|,

R(γ ) = e−iγ |t⟩⟨t | (4)

for β, γ ∈ [−π ,π ]. Note that the operation D(β ), called a
diffusion, can be constructed with an initial state given from
the beginning [see Eq. (3)]. The other one, R(γ ), is called
an oracular operation based on an oracle query, which is a
one-way function f (x) = δt,x for x ∈ {0, 1}n. Then, the oracle
operation works as U |x⟩|y⟩ = |x⟩|y ⊕ f (x)⟩ for x, y ∈ {0, 1}n.
In Fig. 2, a circuit for the operation R(γ ) is shown. Note
that the Grover iteration corresponds to the iteration with
(β, γ ) = (π ,π ). Note also that when γ = π , almost any uni-
tary transformation may serve a diffusion step [29].

Let |s j⟩ := |s(θ j,φ j )⟩ denote a state obtained after j iter-
ations, for which the probability of finding a target is given
by

p j := p j (target) = |⟨t |s j⟩|2 = sin2 θ j

2
.

An increment by the next iteration G(β j+1, γ j+1) for a given
state |s j⟩ is given as follows:

△p j (β j+1, γ j+1) := p j+1 − p j (5)

= |⟨t |G(β j+1, γ j+1)|s j⟩|2 − |⟨t |s j⟩|2. (6)

Note that the increment depends on parameters (β j+1, γ j+1)
of the ( j + 1)th iteration and the target probability pj of a
given state |s j⟩. One can compute and simplify the increment
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(a) (b) (c)

FIG. 4. Quantum amplitude amplification is performed in the case of eight qubits. The x axis shows the number of oracle uses, and the y
axis shows the probability of finding a target state. (a) The π/3 algorithm is plotted [19]. The amplitude increases all the time until 103 oracle
calls, without a quantum speedup. (b) A fixed-point quantum search with optimal query complexity is plotted [20]. The amplitude of the target
state decreases in the meanwhile, and the oracle is called 45 times. (c) QAAOs are randomly generated and concatenated so that the amplitude
keeps increasing until it reaches 1 after the oracle calls 50 times.

for θ ∈ [π − 2θ0,π ]. For θ ∈ [0,π − 2θ0], Eq. (26) can be
rewritten as

△(β, γ ∗) = 1
2 [cos θ − cos(θ + t )]. (29)

The increment above is non-negative for all θ ∈ [0,π − 2θ0)
and maximized at t = 2θ0. From these, an optimal parameter
is obtained as β∗ = ±π . !

Proposition 2 in fact reproduces a proof of the optimality
of the Grover iteration for those states far from a target state.
When a state is closer to a target, i.e., a state |s(θ ,φ)⟩ with
θ ! π − 2θ0 that may be obtained after applying K∗ Grover
iterations, the Grover iteration is no longer a QAAO for the
state; by the iteration the probability of finding a target state
would decrease. This also explains why the Grover algorithm
has to stop right after K∗ iterations, at which a measurement
therefore reads a target state with an error O(N−1).

For the exact and optimal search shown in Eq. (18), an
extra iteration G(β∗, γ ∗) is needed. This in fact performs an

TABLE I. Parameters in the fixed-point quantum search algo-
rithm with an optimal number of oracle queries are shown for the
case of eight qubits. The increment & is negative from the 9th to 12th
iterations. This shows the algorithm is not a sequence of QAAOs.

No. State (θ , φ) Iteration (β, γ ) △(β, γ )

9 (1.9147, 5.1123) (2.8209, 2.895) −0.0061
10 (1.9018, 4.4555) (2.4078, 2.6915) −0.1007
11 (1.6947, 3.2412) (−1.4255, 1.4255) −0.0596
12 (1.5752, 3.2562) (−2.6915, −2.4078) −0.0575

exact transformation from the state resulting from the Grover
algorithm to a target state precisely. We also remark that to
achieve an exact transformation, it is essential to exploit an
oracle query e−iγ |t⟩⟨t | with γ ̸= π , whereas the Grover itera-
tion has γ = π at all times.

Let us now consider a set of parameters which are δ close
to optimal ones. As QAAOs can be defined in a wide range
of parameters from Proposition 1, optimal QAAOs may be
robust to noise in the preparation of the optimal parameters.
These parameters are generated as (βk, γk ) for 1 " k " K∗ +
1 by allowing errors up to δ:

for k ∈ [1, K∗], βk, γk ∈ [π − δ,π + δ],

|βK∗+1 − β∗| " δ, |γK∗+1 − γ ∗| " δ. (30)

For instance, cases with δ = 0.05π , 0.2π , 0.3π are con-
sidered, and the QAAOs are concatenated. In Fig. 3, the
probability of finding a target state is plotted for the case of
eight qubits. The sequences achieve a sufficiently high proba-
bility of finding a target state at the end. It is also shown that
QAAOs are generically resilient to errors in the preparation of
optimal parameters.

E. Exact quantum search algorithms

Having identified QAAOs and their optimal sequences for
an exact quantum search, we are now in a position to present a
generic and systematic scheme for constructing a sequence of
QAAOs such that an exact search is achieved with a quadratic
speedup. Since a QAAO is characterized by a pair of pa-
rameters (β, γ ), we first devise an algorithm that generates

062438-6
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Extension to more than one special value
• What if three are  solutions,  

• Superposition of all special states:

M ai, i = 1, 2, ⋯, M
|a⟩ = 1

M ∑
x∈{ai}

|x⟩ ⟨a |a⟩ = 1

• Uniform superposition of all other states: |a⊥⟩ = 1
N − M ∑

x∉{ai}
|x⟩ ⟨a⊥ |a⊥⟩ = 1

⟨a |a⊥⟩ = 0

• Initial state: |ψ0⟩ = M
N

|a⟩ + N − M
N

|a⊥⟩ ⟨ψ0 |ψ0⟩ = 1

= sin θ0 |a⟩ + cos θ0 |a⊥⟩ sin θ0 = ⟨a |ψ0⟩ = M
N

|a⊥⟩

|a⟩

|ψ0⟩
M
N

N − M
N

θ0

•      M ≪ N , θ ≈ π
2 → m = π

4
N
M



Quantum Counting
• What if we had no prior knowledge of ? 

• Grover operator G rotates vectors in  plane by angle 

M
|a⟩ − |a⊥⟩ 2θ0

sin θ0 = M
N

G = (cos 2θ0 −sin 2θ0
sin 2θ0 cos 2θ0) ⟶ eigenvalues e±2iθ0

⟶ Phase estimation

⟶

⟶

θ0 → M

Quantum algorithm can tell us whether 
a special value exists at all, i.e., M=0.



Shor’s algorithm



Modular Exponentiation

• Taking powers of a number modulo some other number.

7.9 Period of Modular Exponentiation 327

|0 . . .000i
 p

3
2

|v1i+
1
2
|v2i
!

=

p
3

2
|0 . . .000i|v1i+

1
2
|0 . . .000i|v2i.

Following the same calculation as the previous section, the final state of the phase
estimation circuit is

p
3

2
| j1 j2 . . . jmi|v1i+

1
2
�� j01 j02 . . . j0m

↵
|v2i,

where 0. j1 j2 . . . jm is an m-bit approximation of j1 and 0. j01 j02 . . . j0m is an m-bit ap-
proximation of j2. Then, when we measure the qubits at the end of the circuit, we
get an approximation of j1 with probability 3/4 or an approximation of j2 with
probability 1/4.

Exercise 7.37. Consider three eigenstates of U , |v1i, |v2i, and |v3i, with corresponding eigenvalues
e2pi j1 , e2pi j2 , and e2pi j3 . If we use the phase estimation algorithm but prepare the eigenstate register
in the following state, p

3
2
p

2
|v1i+

1p
2
|v2i+

1
2
p

2
|v3i,

what is the probability that we get an approximation to j1, j2, and j3?

7.9 Period of Modular Exponentiation

7.9.1 The Problem

Recall from Section 6.6.2 that “mod” refers to modulus, or the remainder when
dividing. For example, 15 = 3 mod 12 because 15 divided by 12 has a remainder
of 3. This is also how a twelve-hour clock works, as 15 o’clock corresponds to 3
o’clock.

Modular exponentiation is taking powers of a number modulo some other num-
ber. For example, consider powers of 2 taken modulo 7:

20 mod 7 = 1 mod 7,

21 mod 7 = 2 mod 7,

22 mod 7 = 4 mod 7,

23 mod 7 = 8 mod 7 = 1 mod 7,

24 mod 7 = 16 mod 7 = 2 mod 7,

25 mod 7 = 32 mod 7 = 4 mod 7,

26 mod 7 = 64 mod 7 = 1 mod 7,

27 mod 7 = 128 mod 7 = 2 mod 7,

28 mod 7 = 256 mod 7 = 4 mod 7,328 7 Quantum Algorithms

29 mod 7 = 512 mod 7 = 1 mod 7,
...

Notice the results are 1,2,4, . . . repeated. The period or order r of the modular
exponential is the length of the repeating sequence, so in this example, r = 3. Next,
let us consider another example: powers of 3 taken modulo 10:

30 mod 10 = 1 mod 10,

31 mod 10 = 3 mod 10,

32 mod 10 = 9 mod 10,

33 mod 10 = 27 mod 10 = 7 mod 10,

34 mod 10 = 81 mod 10 = 1 mod 10,

35 mod 10 = 243 mod 10 = 3 mod 10,

36 mod 10 = 729 mod 10 = 9 mod 10,

37 mod 10 = 2187 mod 10 = 7 mod 10,

38 mod 10 = 6561 mod 10 = 1 mod 10,
...

Now, the pattern is 1,3,9,7 repeated, and the period is r = 4. In both of these ex-
amples, the repeated sequences started with a 1. This is always true because a0 = 1
for any positive integer a. Furthermore, the modular exponential ax mod N always
follows a repeated pattern as long as a and N are relatively prime (i.e., their greatest
common divisor is 1, so they share no common factors except 1). This fact comes
from a branch of mathematics called number theory.

Since the repeated sequence always starts with 1, another way to define the period
is as the smallest positive exponent r such that ar mod N = 1 mod N. For example,
with 2x mod 7, r = 3 was the smallest positive exponent to yield 1 mod 7, so it
takes r = 3 terms for the pattern to repeat to 1. For the second example, r = 4 is
the smallest exponent such that 3x mod 10 = 1 mod N. More generally, since the
numbers repeat every r powers, ax+r mod N = ax mod N.

The problem is to find the period of modular exponentials. Since this is a mouth-
ful, we often just call this problem period finding or order finding. Note the period
r must be less than N, and so the challenge is to find the period for large N.

Exercise 7.38. Consider the modular exponential 4x mod 5.
(a) Confirm that 4 and 5 are relatively prime.
(b) Calculate enough terms of 4x mod 5, where x = 0,1,2, . . . , to see a pattern.
(c) What is the sequence that is repeated?
(d) What is the period?

Exercise 7.39. Consider the modular exponential 4x mod 13.
(a) Confirm that 4 and 13 are relatively prime.

The period of order of the modular exponential = r = 3

f (x) = 2x (mod 7)

f (x + r) = 2x+r (mod 7)

= 2x (mod 7) = f (x)
= 2x 2r (mod 7)



Modular Exponentiation

The period of order of the modular exponential = r = 4

f (x) = 3x (mod 10)
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38 mod 10 = 6561 mod 10 = 1 mod 10,
...

Now, the pattern is 1,3,9,7 repeated, and the period is r = 4. In both of these ex-
amples, the repeated sequences started with a 1. This is always true because a0 = 1
for any positive integer a. Furthermore, the modular exponential ax mod N always
follows a repeated pattern as long as a and N are relatively prime (i.e., their greatest
common divisor is 1, so they share no common factors except 1). This fact comes
from a branch of mathematics called number theory.

Since the repeated sequence always starts with 1, another way to define the period
is as the smallest positive exponent r such that ar mod N = 1 mod N. For example,
with 2x mod 7, r = 3 was the smallest positive exponent to yield 1 mod 7, so it
takes r = 3 terms for the pattern to repeat to 1. For the second example, r = 4 is
the smallest exponent such that 3x mod 10 = 1 mod N. More generally, since the
numbers repeat every r powers, ax+r mod N = ax mod N.

The problem is to find the period of modular exponentials. Since this is a mouth-
ful, we often just call this problem period finding or order finding. Note the period
r must be less than N, and so the challenge is to find the period for large N.

Exercise 7.38. Consider the modular exponential 4x mod 5.
(a) Confirm that 4 and 5 are relatively prime.
(b) Calculate enough terms of 4x mod 5, where x = 0,1,2, . . . , to see a pattern.
(c) What is the sequence that is repeated?
(d) What is the period?

Exercise 7.39. Consider the modular exponential 4x mod 13.
(a) Confirm that 4 and 13 are relatively prime.

• Period finding or order finding plays an important role in number theory. 

• Note the period r must be less than N, and so the challenge is to find the 
period for large N.
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(b) Calculate enough terms of 4x mod 13, where x = 0,1,2, . . . , to see a pattern.
(c) What is the sequence that is repeated?
(d) What is the period?

7.9.2 Classical Solution

Finding a single modular exponent is fast using the repeated squaring method. For
example, say we want to find

9143 mod 131.

We do not want to calculate 9143, as this is a very big number. Instead, we want
to calculate it in pieces, taking it modulo 131 as we go. To do this, we express the
exponent in binary:

43 = 1010112

= 1 ·25 +0 ·24 +1 ·23 +0 ·22 +1 ·21 +1 ·20

= 1 ·32+0 ·16+1 ·8+0 ·4+1 ·2+1 ·1.

So, we want to calculate

9143 mod 131 = 911·32+0·16+1·8+0·4+1·2+1·1 mod 131

= 911·32 910·16 911·8 910·4 911·2 911·1 mod 131

=
⇣

9132
⌘1⇣

9116
⌘0⇣

918
⌘1⇣

914
⌘0⇣

912
⌘1⇣

911
⌘1

mod 131 (7.11)

This consists of square powers of 91 modulo 131, and we can calculate them by
starting with 911, then squaring it to get 912, then squaring it to get 914, then squar-
ing it to get 918, and so forth:

911 mod 131 = 91 mod 131,

912 mod 131 = 8281 mod 131 = 28 mod 131,

914 mod 131 = (922)2 mod 131 = 282 mod 131 = 784 mod 131 = 129 mod 131,

918 mod 131 = (924)2 mod 131 = 1292 mod 131 = 16641 mod 131 = 4 mod 131,

9116 mod 131 = (928)2 mod 131 = 42 mod 131 = 16 mod 131,

9132 mod 131 = (9216)2 mod 131 = 162 mod 131 = 256 mod 131 = 125 mod 131.

By repeatedly squaring, we were able to calculate these using relatively small num-
bers. Plugging these into Eq. (7.11), we get

9143 mod 131 = (125)1(16)0(4)1(129)0(28)1(91)1 mod 131
= 125 ·4 ·28 ·91 mod 131
= 1274000 mod 131

• Finding a single modular exponent is fast using the repeated squaring method. 
For example, say we want to find . 

• we express the exponent in binary: 

9143 (mod 131)
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= 25 mod 131.

In this case, multiplying 125 · 4 · 28 · 91 is small enough to be done on an ordinary
calculator, but if it were not, it could also be multiplied progressively, e.g.,

125 ·4 ·28 ·91 mod 131 = 125(4(28 ·91)) mod 131
= 125(4(2548)) mod 131
= 125(4(59)) mod 131
= 125(236) mod 131
= 125(105) mod 131
= 13125 mod 131
= 25 mod 131.

To go from the second line to the third, we used 2548 mod 131 = 59 mod 131. Thus,
9143 mod 131 = 25 mod 131, and we were able to calculate this using relatively
small numbers, as opposed to trying to calculate 9143 from the start.

Repeated squaring and other similar methods for calculating modular exponen-
tials have been implemented in computer algebra systems like Mathematica and
SageMath:

• In Mathematica, 9143 mod 131 can be computed using:

PowerMod[91,43,131]

The output is 25, as expected.
• In SageMath, 9143 mod 131 can be computed using:

sage: power_mod(91,43,131)
25

Alternatively, since SageMath is based on Python, we can use Python’s built-in
pow() function:

sage: pow(91,43,131)
25

For the computational complexity of the repeated squaring method, say we are
calculating ax mod N, where x is an n-bit binary number. Then, we start with a and
square it n� 1 times, modulo N. Once we have these, we may have to multiply
them together, which following the progressive approach above takes up to n� 1
multiplications, modulo N. Together, this is (n� 1) + (n� 1) = 2(n� 1) = O(n)
decimal arithmetic operations modulo N. We may be interested in the number of bit
operations, however, rather than decimal operations. Recall from elementary school
that you can multiply two d-digit numbers by multiplying O(d2) pairs of digits. For
example, to multiply 123 and 456,

• Although calculating a single modular 
exponential using the previous 
repeated squares method is fast, 
finding the period is slow because, 
when N is large, we may need to 
calculate many individual modular 
exponentials before a pattern forms. 
There is no known efficient algorithm 
for period finding. 



Shor’s algorithm: 
Period finding to factor an integer

• Example: take two large primes, p and q. Form the product . Goal is 
to find the two factors p and q, when only N is given.  classically hard 
problem.  

• For application in cryptography, p and q have around 600 digits (2000 bits)

N = pq
⟶

(1) Choose a random integer  with no factor in common with . 

      (Euclid algorithm can determine efficiently whether  and  have a    
       common factor or not) 

       If they have a common factor (unlikely), we have found a factor of  and  
       problem is solved. 

(2) Compute   

      One can always find   such that    for  and , which are  
       relatively primes (coprime).  (may not be efficient, though.)

a N
N a

N

f(x) ≡ ax (mod N )
r ar ≡ 1 mod N a N



Euclid’s algorithm
• An efficient method for computing the greatest common 

divisor (GCD) of two integers (numbers). 

• Suppose  and , where q is a quotient and r 
is a remainder.   

• The remainder theorem says  . 
• Repeat until the remainder becomes 0.

a > b a = qb + r

gcd (a, b) = gcd (b, r)

gcd (a, b) = gcd (b, r) = gcd (r, r′ )
a = qb + r , b = qr + r′ 

a=72, b=20, 72=2*30 + 12

b=20, r=12, 20=1*12+8

r=12, r’=8, gcd(12,8)=4

gcd(72, 20) = gcd(2*30+12, 20) = gcd(12, 20)



Period finding to factor an integer
(2) Compute   

      One can always find   such that    for  and , which are  
       relatively primes.  Then the function repeats  

       ,  where   is the period (or order) 
       of the function.  

 Take .  (p=13 and q=7) 

 Take . No common factor with N=91.   

f(x) ≡ ax (mod N )
r ar ≡ 1 mod N a N

f(x + r) ≡ ax+r = ax (mod N ) = f(x) r

N = pq = 91
a = 4 ⟶ f(x) = 4x (mod 91)

x = 1 , ax = 4
x = 2 , ax = 16
x = 3 , ax = 64
x = 4 , ax = 64 × 4 = 256 = 2 × 91 + 74 = 74
x = 5 , ax = 74 × 4 = 296 = 3 × 91 + 23 = 23
x = 6 , ax = 23 × 4 = 91 + 1 = 1 (mod 91)

a = 4
r = 6
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FIG. 1: The function f(x) ≡ 4x (mod 91 ). The period is seen by inspection to equal 6.

make sure we understand how this figure is obtained by working out the values of 4x (mod 91 ) for

x = 1, 2, · · · , 6.

x = 1, ax = 4 , (6a)

x = 2, ax = 16 , (6b)

x = 3, ax = 64 , (6c)

x ≡ 4, ax ≡ 64× 4 = 256 ≡ 2× 91 + 74 ≡ 74 ( mod 91 ) , (6d)

x ≡ 5, ax ≡ 74× 4 = 296 ≡ 3× 91 + 23 ≡ 23 ( mod 91 ) , (6e)

x ≡ 6, ax ≡ 23× 4 ≡ 91 + 1 ≡ 1 ( mod 91 ) . (6f)

The plot in Fig. 1 seems to have a fairly regular behavior, but such smooth behavior is excep-

tional and occurs here because of the particular choice of parameters. Figure 2 shows a plot for

the same value of N but with a = 19. This is a much more random looking figure, as is typical.

In this case the period is r = 12. The apparently random shape of f(x) means that one can not

estimate the period by taking a few nearby values of x and extrapolating.

We now need to be lucky in two respects:

• The period r must be even. This means that r/2 is an integer and so is ar/2. Hence we can
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FIG. 2: The function f(x) ≡ 19x (mod 91 ). The period is seen by inspection to equal 12.

write

0 ≡ ar − 1 ≡ (ar/2 − 1)(ar/2 + 1) ( mod p q ) . (7)

• We need that

ar/2 + 1 ̸≡ 0 ( mod p q ) . (8)

It is automatically true that ar/2 − 1 ̸≡ 0 (mod p q ) because x = r is the smallest power

for which ax − 1 ≡ 0 (mod p q ). Hence neither ar/2 + 1 nor ar/2 − 1 is divisible by N = p q

but, according to Eq. (7), their product is. Since p and q are primes, this is only possible

if ar/2 + 1 is a multiple of one of the factors, p say, i.e. ar/2 + 1 = Cp, and ar/2 − 1 is a

multiple of the other one q, i.e. ar/2 − 1 = C ′q (C and C ′ are constants).1 Consequently p is

the greatest common divisor of N (= p q) and ar/2+1 (= Cp), and q is the greatest common

divisor of N and ar/2 − 1. We can therefore find p and q using the Euclidean algorithm

mentioned earlier.

1 So (ar/2 + 1)(ar/2 − 1) = CC′pq = CC′N which shows that (ar/2 + 1)(ar/2 − 1) is a multiple of N . However,
neither ar/2+1 nor ar/2−1 separately are a multiple of N since this is excluded, at least if ar/2+1 ̸≡ 0 (mod p q )
as assumed.



Period finding to factor an integer

Two conditions:   

(1)    must be even, so  and   are integers. 

(2)   and   are not divisible by    but their product   

        is divisible by   

       so   and 

r r/2 ar/2

ar/2 − 1 ar/2 + 1 N
(ar/2 − 1)(ar/2 + 1) N

ar/2 + 1 = c ⋅ p ar/2 − 1 = c′ ⋅ q

ar = 1 ⟶ (ar/2 − 1)(ar/2 + 1) = 0

p = gcd(ar/2 + 1 , N )
= gcd(65 ,91)
= gcd(26 ,65)
= gcd(13 ,26)
= gcd(0 ,13)

q = gcd(ar/2 − 1 , N )
= gcd(63 ,91)
= gcd(28 ,63)
= gcd(7 ,28)
= gcd(0 ,7)

.  (p=13 and q=7)N = pq = 91

a = 4
r = 6

ar/2 = 46/2 = 43 = 64

f(x) ≡ ax (mod N )
ar ≡ 1 mod N

f(x + r) ≡ ax+r = ax (mod N ) = f(x)



Factoring and RSA encryption
• Factoring is at the heart of RSA (Rivest-Shamir-Adleman) 

encryption.

(1) Bob picks two large prime numbers, p and q. 

(2) Send to Alice their product   (on the public channel) not p and q 
separately. 

          - N:    a few thousands bits 
                  Cannot be factored on a classical computer  
          - (ex) N is 400 digits (1000 bits)   

   

       - Try to pick a number in  may get a prime number  
          - can efficiently test if a number of prime or not,  
          - but no effective algorithm to do prime factorization of a composite number

N = pq

𝒪(100) digit ∼

𝒪(100) ∼ 𝒪(1000) →

Alice Bob

1
ln N

= 1
ln10(400) ≈ 0.001

Probability of picking a 
prime number of N 

digits at random  
~ 1/ln(N) 



Factoring and RSA encryption

(3) send a large “encoding number”,   which has no factors in common with 
       coprime, relatively prime. 

        -  probability that two random integers have no common factors is greater  
            than 1/2.  

        -  not difficult to find .  

        - Bob knows , therefore can determine  such that  

                

  - algorithm to compute  is extension of Euclid’s algorithm and efficient. 

  - the private key  is unique.  

  - Alice (and anyone on public) knows  and  (not ).  
  - The private key (known only to Bob) is p and q (and hence d).

c
(p − 1)(q − 1) → gcd(c, (p − 1)(q − 1)) = 1 →

c
p , q , (p − 1)(q − 1) d

c d ≡ 1 mod (p − 1)(q − 1)
d

d
N c p , q , d



Factoring and RSA encryption
(3) original message that Alice wants to send. 

      Alice computes    = the encoded message,   
     (b is a large number) and send it to Bob (on the public channel). 

(4) Bob computes     
     (can crack the encryption if d is known.) 

(ex)  

       .  Take c=11, no common factor with 72. 

          d=59. 

        A random message:   with  

        Encoded message:    

        Decoded message:   

a =
b = ac (mod N )

a = bd (mod N ) = acd (mod N )

p = 7, q = 13, N = 91
(p − 1)(q − 1) = 6 × 12 = 72
c d = 11 × 59 = 649 = 9 × 72 + 1 (mod 72) →

a = 51 c = 11, d = 59, N = 91
b = ac (mod N) = 5111 (mod 91) = 25
bd (mod N ) = 2559 = 51 → a

c d ≡ 1 mod (p − 1)(q − 1)



Example: classical factoring algorithm

(1) Pick any number  less than 15:  y=13 

(2) Calculate  and find the period (order)   of 

y
f (n) = yn (mod 15) r f (n)

Classical algorithm:   try to factor  N=15.

n = 1 : f (1) = 131 = 13
n = 2 : f (2) = 132 = 169 = 15 × 11 + 4
n = 3 : f (3) = 133 = (15 × 11 + 4) × 13 = 4 × 13 = 52 = 15 × 3 + 7
n = 4 : f (4) = 134 = 7 × 13 = 91 = 15 × 6 + 1

13 (mod 15)
4 (mod 15)
7 (mod 15)
1 (mod 15)

Period: yr = 1 (mod N ) , yr+x = yx (mod N ) , f (r + x) = f (x) ⟶ r = 4

(3) Period is even:  .     and r = 2s yr = 1 (mod N ) y2s = 1 (mod N ) → (ys − 1)(ys + 1) = 0 mod 15)
⟶ (ys − 1)(ys + 1) = kN ⟶ gcd(ys ± 1, N ) will give facotrs of N .

132 − 1 = 168 , gcd(168, 15) = gcd(15 × 11 + 3, 15) = gcd(3, 15) = 3
132 + 1 = 170 , gcd(170, 15) = gcd(15 × 11 + 5, 15) = gcd(5, 15) = 5

We assumed . If , algorithm fails. Pick a different y.ys + 1 ≠ 0 (mod N ) ys = − 1 (mod N )

168 × 170 = 1904 × 3 × 5

Problem of factoring is the problem of finding even period 
 for which  is not equal to r = 2s ys + 1 0 (mod N )



Shor’s algorithm
• Efficient factoring algorithm  security  
• 1st step in Shor’s factoring algorithm is to reduce the problem of 

factoring an integer N to the problem of order finding. 

• Assume N is odd.  

• Suppose we find a solution to  where . 

– N must have a common factor with  or with . 

– Can not be N, since  (ignore trivial solution),  

– A factor of N is either  or  
– Use Euclid algorithm to find a gcd. 

• Therefore, If we can find    such that  
  then we can factor N. 

→

x2 = 1 (mod N) x ≠ 1, x ≠ N ± 1

x + 1 x − 1
x ≠ 1 x ≠ N ± 1
gcd(x + 1, N ) gcd(x − 1, N )

x
x2 = 1 (mod N) (x ≠ 1, x ≠ N ± 1)

(x − 1)(x + 1) = 0 (mod N)



Euclid’s algorithm

• Suppose  and , where q is a quotient and r 
is a remainder.   

• The remainder theorem says  . 
• Repeat until the remainder becomes 0

a > b a = qb + r

gcd (a, b) = gcd (b, r)

gcd (a, b) = gcd (b, r) = gcd (r, r′ )

a = qb + r , b = qr + r′ 



Shor’s algorithm
• If we can find    such that   then 

we can factor N.  

• Pick a random ,    

– If  , we found a factor. 

– If ,  no common positive factors. 
» y  and  N are coprimes or relatively prime or strangers. 
» y is coprime with N.  

• Probability that two integers m and n picked at random are relatively 

primes =  

• Probability that three integers k, m and n picked at random are 
relatively primes =  

• If  ,   and    are coprime.  

• The order of y is the smallest integer such that   

x x2 = 1 (mod N) (x ≠ 1, x ≠ N ± 1)

y 1 ≤ y ≤ N − 1
gcd(c, d) ≠ 1
gcd(c, d) = 1

P( (m, n) = 1 ) = [ζ(2)]−1 = 6
π2 = 0.60792⋯

P( (k, m, n) = 1 ) = [ζ(3)]−1 = 0.83190⋯
gcd(y, N ) = 1 y N

yr = 1 (mod N)



Order and Modular Exponentiation
• The order (r) of y is the smallest integer such that    for 

two relatively prime y and N. 

• The group of numbers coprime to N forms a cyclic group (?). 

• Every element can be written as  for a generator . 

• If r is even,    and  , since N is odd. 
• If the probability of a random coprime number y having an even order is 

high, we see that we have reduced the factoring problem to the problem 
of finding the order of a number. (See Nielsen and Chuang, Quantum 
Computation and Quantum Information for details). 

yr = 1 (mod N)

gt (mod N) g

x = yr/2 x2 = yr = 1 (mod N)

N=5, The group of numbers coprime to N forms a group, {1, 2, 3, 4}

g = 2, g0 = 1, g1 = 1, g2 = 2, g3 = 3, g4 = 1, g5 = 2, g6 = 4



Order and Modular Exponentiation
• Modular exponentiation 

– For a modular exponentiation function , the 
order of the modular exponentiation (the order of ) is the 
smallest positive integer r such that . 

– The r is the period of the function:    

• How do we find the order of ? 

– Calculate modular exponential function  for many values of    in 
parallel, and use QFT to detect the period in the sequence of function 
values. 

y = f(x) = ax (mod N)
a mod N

ar = 1 (mod N)

f(x + r) = f(x)
a

f(x) x

ar = kN + 1
ar+1 = kNa + a
ar+1 = a (mod N)
ar+x = ax (mod N)



Order Finding (Period Finding)
|0⟩⊗K QFT

U
H⊗K

|0⟩⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Begin with two registers: Q = 2K

N = 2n
for source qubits
for target qubits

(1) Both registers are initialized to  |ψ0⟩ = |0⟩⊗K ⊗ |0⟩⊗n

(2) Apply Hadamard to the source qubits: H⊗K |x⟩ = 1

2
K

Q−1

∑
y=0

(−1)x⋅y |y⟩

|ψ1⟩ = H⊗K |0⟩ = 1

2
K ∑

y
|y⟩

Superposition of all  statesQ = 2K

Q = 2K

N = 2n

source qubits

target qubits



|ψ1⟩ = H⊗K |0⟩ = 1

2
K ∑

y
|y⟩

Order Finding (Period Finding)

(2) Apply Hadamard to the source qubits: H⊗K |x⟩ = 1

2
K

Q−1

∑
y=0

(−1)xy |y⟩

Superposition of all  statesQ = 2K

Equivalently apply QFT: |q⟩ ⟶ QFT |q⟩ = 1
Q

Q−1

∑
q′ =0

exp( 2πiqq′ 

Q ) |q′ ⟩

|0⟩ ⟶ QFT |0⟩ = 1
Q

Q−1

∑
q′ =0

|q′ ⟩Hadamard ≅ multi − dimensional DFT

|0⟩⊗K QFT

U
H⊗K

|0⟩⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Q = 2K

N = 2n

source qubits

target qubits



Order Finding (Period Finding)

(3) Apply a quantum gate  that implements the modular exponentiationUa

|0⟩⊗K QFT

U
H⊗K

|0⟩⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

q ⟶ f(q) = aq (mod N) for a randomly chosen a

 has   as its smallest period: f(q) r f(q + r) = f(q)
ar+x = 1 (mod N)
ar = 1 (mod N)

 is distinct on   otherwise it would have a smaller period.f(q) [0, 1, 2,,⋯, r − 1]

|ψ2⟩ = Ua |ψ1⟩ = Ua [ 1
Q

Q−1

∑
q=0

|q⟩ ⊗ |0⟩] = 1
Q

Q−1

∑
q=0

|q⟩ ⊗ |aq (mod N)⟩⏟There should be r different function values.

Q = 2K

N = 2n

source qubits

target qubits



Uf
|x⟩
|y⟩

|x⟩
|y ⊕ f(x)⟩

•  is not suitable because  is not unitary in general. 

•

x ⟶ f(x) f(x)

(x, y)
Uf⟶ (x, y ⊕ f(x))

Uf⟶ (x, y ⊕ f(x) ⊕ f(x)) = (x, y)

Uf ( |x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩

Uf
|0⟩
|0⟩

|ψ⟩H

|ψ⟩ = 1
2 ( |0⟩ ⊗ | f (0)⟩ + |1⟩ ⊗ | f (1)⟩) = ∑

x=0,1

1
2

|x⟩ ⊗ | f (x)⟩

|q⟩ ⟶ QFT |q⟩ = 1
Q

Q−1

∑
q′ =0

exp( 2πiqq′ 

Q ) |q′ ⟩



Order Finding (Period Finding)

(4) make a measurement on the second register.  must obtain a value which 
has to be one of r-distinct values of         all superposed states 
of the 1st register inconsistent with the measured value must disappear. 

 for simplicity, assume     there are m-different values of   which 
have the same value of     exactly  states of register 1 will 
contribute to the measured state of register 2.

⟶
f(q) ⟶ f(q0) ⟶

⟶ Q = mr ⟶ q
f(q) ⟶ m = Q /r

|0⟩⊗K QFT

U
H⊗K

|0⟩⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|ψ3⟩ = 1
m

m−1

∑
j=0

| j r + q0⟩ ⊗ | f (q0)⟩
 Periodic superposition of states in register 1 

with period r (which is what we want to measure). 
 how do we measure r?

⟶

⟶

Q = 2K

N = 2n

source qubits

target qubits



Order Finding (Period Finding)

(5) To measure r, use superposition before measurement! 

|0⟩⊗K QFT

U
H⊗K

|0⟩⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Define: g(a) =
r
Q

= 1
m

, a = j r + q0

0 , otherwise |ψ3⟩ =
Q−1

∑
a=0

g(a) |a⟩

(a − q0 is a multiple of r)

|ψ4⟩ = QFT |ψ3⟩ = 1
Q ∑

c
∑

j
g( jr + q0) exp( 2πi( jr + q0)c

Q ) |c⟩

= 1
Q ∑

c
[∑

j
g( jr + q0) exp( 2πi( jr)c

Q )] exp( 2πiq0c
Q ) |c⟩

Q = 2K

N = 2n

source qubits

target qubits

Consider 
source 

qubits only.

|ψ3⟩ = 1
m

m−1

∑
j=0

| j r + q0⟩ ⊗ | f (q0)⟩



Order Finding (Period Finding)
|0⟩⊗K QFT

U
H⊗K

|0⟩⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|ψ4⟩ = 1
Q ∑

c
[∑

j
g( jr + q0) exp( 2πi( jr)c

Q )] exp( 2πiq0c
Q ) |c⟩

    must be an integer, .∴ rc
Q

= k exp[2πi( rc
Q )] = 1

Q−1

∑
j=0

g( jr + q0) = m × 1
m

= m

|ψ4⟩ = ∑
c

1
r

exp( 2πiq0c
Q ) |c⟩ =

r−1

∑
k=0

1
r

exp( 2πiq0k
r ) |k

Q
r

⟩

m = Q
r m non-zero terms

If     is not an integer,  the sum goes to zero:  .
rc
Q ∑

j
g( jr + q0) exp( 2πi( jr)c

Q ) = 0

c = k
Q
r

g(a) =
r
Q

= 1
m

, a = j r + q0

0 , otherwise



Order Finding (Period Finding)
|0⟩⊗K QFT

U
H⊗K

|0⟩⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩
(6) We measure register 1. |ψ4⟩ =

r−1

∑
k=0

1
r

exp( 2πiq0k
r ) |k

Q
r

⟩

Measurement gives a value of  
for a random  between   and  .

c = kQ /r
k 0 r − 1  We know → Q , c → c

Q
= k

r
 -  If , k and r have no common factor. 
- The ratio  as an irreducible fraction and can read off values of k and r. 
- k is chosen randomly by measurement. 
- For a large r, the probability that  is greater than . 
- By repeating   times,  one can amplify the success 

probability of finding r.

gcd(k, r) = 1
c/Q

gcd(k, r) = 1 1/log(r)
𝒪(log r) < 𝒪(log N )



Order Finding (Period Finding)
(7)  Using order finding to factor a large number N

We have the order  of  .r ax (mod N )
Check if  is even and r ar/2 (mod N ) ≠ − 1
→ y ≡ ar/2 , y2 = 1 (mod N ) → y2 − 1 = (y + 1)(y − 1) is divisible by N .

 has a common factor with  or .N y + 1 y − 1
must be one of gcds, gcd(N, y ± 1)

Use Euclid’s algorithm for .gcd(y, x)
Let us assume .x , y : integers , x > y, and z = gcd(x, y)

  and  are multiple of . 
 the remainder    is also a multiple of . 
 If ,    problem solved. 

→ x , y x − y , x − 2y , ⋯ z
→ r = x − ky < y z
→ r = 0 z = y →

z = gcd(x, y) = gcd(y, r1) = gcd(r1, r2) = gcd(r2, r3) = ⋯ = gcd(rn, rn+1)

 are the successive remainders  .  
The last non-zero remainder is 
r1, r2, ⋯ ri = ri−1 − kiy

z .



Shor’s factoring algorithm
1. If  is even, return the factor 2 (check for other small prime factors 

such as 3, 5 …) 
2. Check whether   for . If yes, return the factor 

. 

3. Randomly choose  between  and . If , 
return the factor . 

4. Use the order finding algorithm to find the order of . 
i.e.,  such that . 

5. If  is even and , then evaluate 
. If one of these is a non-trivial factor (other than 

1), return that value as a factor. If not, go back to step 3 and 
repeat.

N

N = ab a > 1, b ≥ 2
a

a 1 N − 1 z = gcd(a, N ) > 1
z

a (mod N )
r ar = 1 (mod N )

r ar/2 ≠ − 1 (mod N )
gcd(ar/2 ± 1,N )



Shor’s factoring algorithm
• To factor an integer  N, Shor's algorithm runs in polynomial time, 

meaning the time taken is polynomial in , the size of the 
integer given as input.  Specifically, it takes quantum gates of order 

. 

• This is significantly faster than the most efficient known classical 
factoring algorithm, the general number field sieve, which works in 

sub-exponential time: 

log N

O((log N )2(log log N )(log log log N ))

O(e1.9(log N)1/3(log log N)2/3)



Example: classical factoring algorithm

(1) Pick any number  less than 15:  y=13.   We want y and N are relatively primes.  

(2) Calculate  and find the period (order)   of 

y
f (n) = yn (mod 15) r f (n)

Classical algorithm:   try to factor  N=15.

n = 1 : f (1) = 131 = 13
n = 2 : f (2) = 132 = 169 = 15 × 11 + 4
n = 3 : f (3) = 133 = (15 × 11 + 4) × 13 = 4 × 13 = 52 = 15 × 3 + 7
n = 4 : f (4) = 134 = 7 × 13 = 91 = 15 × 6 + 1

13 (mod 15)
4 (mod 15)
7 (mod 15)
1 (mod 15)

Period: yr = 1 (mod N ) , yr+x = yx (mod N ) , f (r + x) = f (x) ⟶ r = 4

(3) Period is even:  .     and r = 2s yr = 1 (mod N ) y2s = 1 (mod N ) → (ys − 1)(ys + 1) = 0 (mod 15)
⟶ (ys − 1)(ys + 1) = kN ⟶ gcd(ys ± 1, N ) will give facotrs of N .

132 − 1 = 168 , gcd(168, 15) = gcd(15 × 11 + 3, 15) = gcd(3, 15) = 3
132 + 1 = 170 , gcd(170, 15) = gcd(15 × 11 + 5, 15) = gcd(5, 15) = 5

We assumed . If , algorithm fails. Pick a different y.ys + 1 ≠ 0 (mod N ) ys = − 1 (mod N )

168 × 170 = 1904 × 3 × 5

Problem of factoring is the problem of finding even period  
for which  is not equal to 

r = 2s
ys + 1 0 (mod N )



Example: Shor’s factoring algorithm

(1) Choose the number of qubits so .  .   

      Pick  such that . Pick y=13. 

(2) Initialize two quantum registers of n=4 qubits to  state.

2n > N n = 4, 24 > N = 15
y gcd(y, N ) = 1

|0⟩

The idea of Shor’s algorithm

1. Evaluate all values of periodic function  simultaneously. 

2. Adjust the probability amplitude to get a value of the period  with high probability.  
(In some cases, 1/2 is good enough. The finite FT can transform cyclic behavior of the periodic 
function into the enhanced amplitude of some states.)

yn (mod N )
r

(3) Randomize 1st register. Make the superposition of states with all possible four-qubit basis states.

|ψ⟩ = |0000⟩ ⊗ |0000⟩ = |0⟩⊗4 ⊗ |0⟩⊗4

|0000⟩ → 1
16

( |0000⟩ + |0001⟩ + ⋯ + |1111⟩) = 1
16

15

∑
k=0

|k⟩

|0⟩ = |0000⟩
|1⟩ = |0001⟩
|2⟩ = |0010⟩
|3⟩ = |0011⟩

|4⟩ = |0100⟩
|5⟩ = |0101⟩
|6⟩ = |0110⟩
|7⟩ = |0111⟩

|8⟩ = |1000⟩
|9⟩ = |1001⟩

|10⟩ = |1010⟩
|11⟩ = |1011⟩

|12⟩ = |1011⟩
|13⟩ = |1100⟩
|14⟩ = |1101⟩
|15⟩ = |1111⟩

|0⟩⊗K QFT

U
H⊗K

|0⟩⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩



Example: Shor’s factoring algorithm
(4) Compute the function  on the second register.f (k) = 13k (mod 15) = yk (mod N )

|ψ2⟩ = 1
16

15

∑
k=0

|k⟩ ⊗ | f (k)⟩ = 1
16 ( |0⟩ ⊗ | f (0)⟩ + |1⟩ ⊗ | f (1)⟩ + ⋯ + |15⟩ ⊗ | f (15)⟩)

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f (k) 1 13 4 7 1 13 4 7 1 13 4 7 1 13 4 7

|ψ2⟩ = 1
16 ( |0⟩ ⊗ |1⟩ + |1⟩ ⊗ |13⟩ + |2⟩ ⊗ |4⟩ + |3⟩ ⊗ |7⟩

+ |4⟩ ⊗ |1⟩ + |5⟩ ⊗ |13⟩ + |6⟩ ⊗ |4⟩ + |7⟩ ⊗ |7⟩
+ |8⟩ ⊗ |1⟩ + |9⟩ ⊗ |13⟩ + |10⟩ ⊗ |4⟩ + |11⟩ ⊗ |7⟩
+ |12⟩ ⊗ |1⟩ + |13⟩ ⊗ |13⟩ + |14⟩ ⊗ |4⟩ + |15⟩ ⊗ |7⟩)

|0⟩⊗K QFT

U
H⊗K

|0⟩⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Computed in 
one operation

(5) Perform measurement on 2nd register. Superposition  will collapse and four terms survive.|ψ2⟩

|ψ3⟩ = 4
16 ( |2⟩ ⊗ |4⟩ + |6⟩ ⊗ |4⟩ + |10⟩ ⊗ |4⟩ + |14⟩ ⊗ |4⟩)

Suppose we get .|4⟩ = |0100⟩



Example: Shor’s factoring algorithm
(4) Perform QFT:  |k⟩ ⟶ 1

16

15

∑
u=0

exp( 2πiuk
16 ) |u⟩

|0⟩⊗K QFT

U
H⊗K

|0⟩⊗n

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|2⟩ ⟶ 1
16

15

∑
u=0

exp( 2π iu2
16 ) |u⟩

|6⟩ ⟶ 1
16

15

∑
u=0

exp( 2π iu6
16 ) |u⟩

|10⟩ ⟶ 1
16

15

∑
u=0

exp( 2π iu10
16 ) |u⟩

|14⟩ ⟶ 1
16

15

∑
u=0

exp( 2π iu14
16 ) |u⟩

|ψ4⟩ = 4
16

1
16

15

∑
u=0

|u⟩ [ e2πiu2/16 + e2πiu6/16 + e2πiu10/16 + e2πiu14/16 ] = 1
8

15

∑
u=0

|u⟩ Au

Probability pf getting results  after 1st register is measured:|u⟩ Pu = 1
8 Au

2
P0 = P4 = P8 = P12 = 1

4

We obtain states,  with equal probability.  
Probabilities are non-zero only if 16 divides  where  is the period.

|0⟩, |4⟩, |8⟩, |12⟩
ur r

Results of Shor’s algorithm is one of states  with equal 
probability, and the period satisfies .

|0⟩, |4⟩, |8⟩, |12⟩
ur = 16 k

uc
N

= k



Example: Shor’s factoring algorithm

What is the probability to get the correct period from the first try?

Results of Shor’s algorithm is one of states  with equal 
probability, and the period satisfies .

|0⟩, |4⟩, |8⟩, |12⟩
ur = 16 k

|u⟩ = |0⟩

|u⟩ = |4⟩

|u⟩ = |8⟩

|u⟩ = |12⟩

Does not give any information. Rerun algorithm.

. Lowest . Period is 4 r = 16 k k = 1 r = 4

.    incorrect. Rerun algorithm.8 r = 16 k r = 2
.     .     12 r = 16 k k = 3 r = 4

Algorithm has 1/2 probability of success from the 1st run.

• Generalization:   Shor’s original paper contained 
• Quantum factoring algorithm  
• Algorithm for the discrete logarithm problem: generalization of Shor’s 

algorithm has been obtained for problems falling in the general class of 
hidden subgroup problems. 



Basic Group Theory
• Group:   a set  with an associative binary operation  satisfying  

• For any two elements  and ,   (closure) 

•  such that  for  (identity) 

•  such that  for  (inverse) 

•  (associativity) 

•  forms a group under addition modulo n. 

• Set of k-bit string,  forms a group under bitwise addition modulo 2. 

• For a prime ,  forms a group  under multiplication modulo . 

• : all unitary operators on an n-dimensional vector space . 

• Order = # of elements =  

• Finite group if . Otherwise  is an infinite group.  

• The order of an element  = the size of the subgroup of  that it generates.  

• The order of an element  must divide the order of the group.  

• A set of generators of a group  is a subset of  such that all elements of  can be written 
as a finite product of the generators and their inverse.

G ∙
g1 g2 ∈ G g1 ∙ g2 ∈ G

∃ e ∈ G e ∙ g = g ∙ e = g ∀g ∈ G
∃ g−1 ∈ G g−1 ∙ g = g ∙ g−1 = e ∀g ∈ G
g1 ∙ (g2 ∙ g3) = (g1 ∙ g2) ∙ g3

(ℤn, + (mod n)) = {0, 1, 2, ⋯, n − 1}
ℤk

2
p {1, 2, ⋯, n − 1} ℤ*p p

U(n) V
|G |

|G | < ∞ G
g G

g
G G G



Basic Group Theory
• A set of generators of a group is independent, if no generator can be written as a product 

of the other generators.  
• A group is finitely generated if a finite group of generators exists. 
• If a group can be generated by a single element, it is cyclic. 

• The centralizer  of a subgroup  of  is the set of elements of  that commute with 
all elements of :  . 

• For ,   is a subgroup of .  

• If ,  is Abelian or commutative.  

• Every finite Abelian group is isomorphic to a product of one or more cyclic groups, . 

• If  and  and  are relatively prime, ,  is isomorphic to . 

• Any Abelian group  has the unique decomposition (up to ordering of factors) into cyclic 
groups of prime power order:    

•  (prime factorization) where  and  are distinct primes 

• Product group  with operations  and  =  with 
.

Z(H ) H G G
H Z(H ) = {g ∈ G |gh = hg for all h ∈ H}

H < G Z(H ) G
g1 ∙ g2 = g2 ∙ g1 G

ℤn

n = pq p q ℤn ≅ ℤp × ℤq ℤn ℤp × ℤq

A
A ≅ ℤc1

× ℤc2
× ⋯ × ℤcK

|A | = ∏
i

ci ci = psi
i pi

G × H ∙ ∘ {(g, h) |g ∈ G, h ∈ H}
(g1, h1) ⋆ (g2, h2) = (g1 ∙ g2, h1 ∘ h2)



Discrete Logarithm Problem
• All standard public key encryption system and digital signature schemes are 

based on either factoring or discrete logarithm problem. 

• :  group of integers  under multiplication modulo . 

• :  generator of  (any  relatively prime to  will work) 

• The discrete logarithm of  with respect to base  is the element 
 such that . 

• Discrete logarithm problem:  Given a prime , a base  and an 
arbitrary element , find an  such that  

• Find the discrete logarithm of  with respect to base  such that 
 

• For a large , this problem is computationally difficult to solve. 
• It is a special case of Abelian hidden subgroup problem. 
• Can be generalized to arbitrary finite cyclic groups. 

ℤ*p {1, 2, ⋯, p − 1} p
b ℤ*p b p − 1

y ∈ ℤ*p b
x ∈ ℤ*p bx = y (mod p)

p b ∈ ℤ*p
y ∈ ℤ*p x ∈ ℤ*p bx = y (mod p)

y ∈ ℤ*p b
bx = y (mod p)

p



Hidden Subgroup Problem
• Hidden subgroup problem:  Let  be a group. Suppose a subgroup 

 is implicitly defined by a function  on  in that  is constant and 
distinct on every coset of .  Find a set of generators of . 

• Aim is to find an algorithm that computes a set of generators for  in 
 steps for some integer .  

• Finite Abelian hidden subgroup problem:  Let  be a finite Abelian group 
with cyclic decomposition . Suppose  contains a 
subgroup  that is implicitly defined by a function  on  that is 
constant and distinct on every coset of .  Find a set of generators.  

• Period finding as a hidden subgroup problem:  is a periodic function on 
 with period  that divides . The subgroup  generated by  

is the hidden subgroup.   Once a generator  for  has been found, the 
period  can be found by taking the greatest common divisor of  and .

G
H < G f G f

H H
H

𝒪((log |G | )k) k
G

G = ℤn0
× ⋯ × ℤnL

G
H < G f G

H
f

ℤN r N H < ℤN r
h H

r h N

• H is a subgroup of G. The left coset is defined as gH = {gh | h ∈ H, for all g ∈ G}



Hidden Subgroup Problem
• The discrete logarithm problem as a hidden subgroup problem 

• For a  given group  where  is a prime and base  and 
an arbitrary ,  find  such that . 

• Consider    where .  

• The set of elements satisfying  is the hidden subgroup 
 of , consisting of tuples of the form . 

• From any generator of , the element  can be computed. 

• Therefore solving the hidden subgroup problem yields , which is 
the solution of the discrete logarithm problem. 

G = ℤ*p p b ∈ G
y ∈ G x ∈ G y = bx (mod p)

f : G × G ⟶ G f(g, h) = b−g yh

f(g, h) = 1
H G × G (mx, m)

H (x, 1)
x



Quantum Phase Estimation and 
Finding Eigenvalues



Quantum Phase Estimation and 
Finding Eigenvalues

• Good example of phase kickback and use of QFT 
• Unitary operator   
• How to find eigenvalue? = How to measure the phase? 

• How to find  to a given level of precision? 

• Find the best n-bit estimate of the phase  

• Given a unitary matrix  and one of its eigenvectors , find or 
estimate its eigenvalue. 

ϕ
ϕ

U |u⟩

U : U |u⟩ = eiϕ |u⟩ , 0 ≤ ϕ < 2π

U2j |u⟩ = (eiϕ)2j |u⟩ = eiϕ 2j |u⟩



Quantum Circuit for QPE
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U20

QFT†

U21 U2n−2 U2n−1

(0) (3)(2)(1)

{
{

n control 
registers

m eigenstate 
registers

QPE = H + controlled − U2j + QFT†



Quantum Circuit for QPE
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QPE = H + controlled − U2j + QFT†
|ψ0⟩ = |0⟩⊗n ⊗ |u⟩

|ψ1⟩ = (H |0⟩)⊗n ⊗ |u⟩ = 1
2

n ( |0⟩ + |1⟩)⊗n ⊗ |u⟩

|ψ2⟩ =
n−1

∏
j=0

CU2j 1
2

n ( |0⟩ + |1⟩)⊗n ⊗ |u⟩



Quantum Circuit for QPE
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|ψ2⟩ =
n−1

∏
j=0

CU2j 1
2

n ( |0⟩ + |1⟩)⊗n ⊗ |u⟩

1
2 ( |0⟩ + |1⟩) ⊗ |u⟩ CU2j 1

2 ( |0⟩ ⊗ |u⟩ + U2j |1⟩ ⊗ |u⟩)
= 1

2 ( |0⟩ + eiϕ 2j |1⟩) ⊗ |u⟩



Quantum Circuit for QPE
|ψ2⟩ = 1

2
n ( |0⟩ + eiϕ 2n−1 |1⟩)( |0⟩ + eiϕ 2n−2 |1⟩)⋯( |0⟩ + ei2ϕ |1⟩)( |0⟩ + eiϕ |1⟩) ⊗ |u⟩

= 1
2

n

2n−1

∑
y=0

eiϕy |y⟩ ⊗ |u⟩} Phase kick-back: phase factor  has been 
propagated back from the second eigenstate 
register to the first control register

eiϕy

QFT |a⟩ = 1
2

n

2n−1

∑
k=0

e2πiak/2n |k⟩ 2πia
2n = iϕ ϕ = 2π( a

2n + δ)
a = an−1an−2⋯a0

•  is the best n-bit binary approximation of  

•  is the associated error.

2πa
2n ϕ .

0 ≤ |δ | ≤ 1
2n+1

|ψ3⟩ = QFT−1 |ψ2⟩ = 1
2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πi(a−x)y/2n e2πiδy |x⟩ ⊗ |u⟩

QFT−1 |y⟩ = 1
2

n

2n−1

∑
x=0

e−2πixy)/2n |x⟩

Operate only n control register.

w = exp( 2πi
2n )

F | j⟩ = 1
2

n

2n−1

∑
j=0

wjk |k⟩



Quantum Circuit for QPE
|ψ3⟩ = QFT−1 |ψ2⟩ = 1

2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πi(a−x)y/2n e2πiδy |x⟩ ⊗ |u⟩

Operate only n control register.

(1) If , δ = 0
1
2n

2n−1

∑
y=0

exp( 2πi(a − x)y
2n ) = δax ⟶ |ψ3⟩ = |a⟩ ⊗ |u⟩ ⟶ ϕ = 2πa

2n

(2) If , δ ≠ 0 Measuring 1st register and getting the state  is the best n-bit 

estimate of . The corresponding probability is 

|x⟩ = |a⟩
ϕ Pa = |Ca |2 ≥ 4

π2 ≈ 0.405



Quantum Circuit for QPE

|ψ3⟩ = QFT−1 |ψ2⟩ = 1
2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πix(ϕ−y/2n) |y⟩ ⊗ |u⟩
|ψ2⟩ = 1

2
n

2n−1

∑
x=0

e2πixϕ |x⟩ ⊗ |u⟩

QFT−1 |x⟩ = 1
2

n

2n−1

∑
y=0

e−2πixy/2n |y⟩

Probability of observing  =|y⟩ P(y) = 1
2n

2n−1

∑
x=0

e2πix(ϕ−y/2n)

2

= 1
22n

1 − r2n

1 − r

2

, r ≡ exp[2πi(ϕ − y
2n )]

(1) If , ϕ = y
2n

(2) If , ϕ ≠ y
2n

|ψ3⟩ = |y⟩ ⊗ |u⟩ P(ϕ = y
2n ) = 100 %

closest n − bit approximation to ϕ = 0.ν1ν2⋯νn ≡ ν ϕ − ν ≡ δ , 0 ≤ |δ | ≤ 1
2n+1

r ≡ exp[2πi(ϕ − y
2n )] = exp(2πiδ)

P(y) = 1
22n

1 − r2n

1 − r

2

,

length of minor arc
length of cord = 2πδ2n

|1 − r2n |
≤ half circumference

diameter ≤ πR
2R

= π
2 ⟶ |1 − r2n | ≥ 4δ2n

-1
r2n = [exp(2πiδ)]2n = exp(2πiδ2n) = eiθ

1
-1

1

θ

r2n Length of minor arc 
= θ = 2πδ2n

Length of a cord from 1 to 
=

r2n

|1 − r2n |

ϕ = 2πa
2n



Quantum Circuit for QPE

P(y) = 1
22n

1 − r2n

1 − r

2

≥ 1
22n ( 4δ2n

2πδ )
2

= 4
π2 > 0.405

length of minor arc
length of cord = 2πδ

|1 − r |
> 1 , |1 − r | < 2πδ

1

-1

-1

1

θ

r = e2πiδ Length of minor arc = θ = 2πδ
Length of a cord from 1 to  =r |1 − r |

• We will get the correct answer with probability greater than a constant. 

• Probability of getting incorrect outcome can be calculated using |δ | > 1
2n+1

1-1

1

θ

r2n

-1

|1 − r2n | < 2
length of minor arc

length of cord = 2πδ
|1 − r |

< π
2 , |1 − r | > 4δ

P(y) = 1
22n

1 − r2n

1 − r

2

≤ 1
22n ( 2

4δ )
2

= 1
22n(2δ)2 If ,   δ = c

2n P(c) ≤ 1
4c2

• N-bit estimate of phase   is obtained with a high probability. 
• Need to repeat the calculation multiple times. 
• Increasing n will increase the probability of success (not obvious but true). 
• Increasing n (# of qubits) will improve the precision of the phase estimate.

ϕ length of minor arc
length of cord ≤ half circumference

diameter ≤ πR
2R

= π
2



Classical 
Solution

322 7 Quantum Algorithms

When the eigenvector is the state of a quantum system, it is often called an eigen-
state. So, |+i and |�i are eigenstates of the X gate.

Although the eigenvectors and eigenvalues of a matrix are very important in
many areas of science, technology, and engineering, including quantum mechan-
ics and quantum computing, the details of their importance are beyond the scope of
this introductory textbook. How to find eigenvectors and eigenvalues of a matrix are
also beyond the scope of this textbook. Instead, we will focus on a specific problem:

Given a unitary matrix U and one of its eigenvectors |vi, find or estimate its
eigenvalue.

From linear algebra, it is known that the eigenvalues of a unitary matrix must have
the form eiq for some real number q . For this reason, this problem is called phase
estimation, since finding the eigenvalue is equivalent to finding the phase q .

Exercise 7.34. Consider the Hadamard gate,

H =
1p
2

✓
1 1
1 �1

◆
.

(a) Verify that
✓

1+
p

2
1

◆
is an eigenvector of the Hadamard gate with eigenvalue 1.

(b) Verify that
✓

1�
p

2
1

◆
is an eigenvector of the Hadamard gate with eigenvalue �1.

Exercise 7.35. Consider the following unitary matrix

U =
1p
2

0

BB@

1 0 1 0
0 eip/4 0 eip/4

1 0 �1 0
0 eip/4 0 �eip/4

1

CCA .

Verify that

0

BB@

2+ ip
2+1
1
1

1

CCA is an eigenvector of U with eigenvalue eip/4.

7.8.2 Classical Solution

Since we are promised that |vi is an eigenvector of U , and its eigenvalue takes the
form eiq , then we know that multiplying |vi by U will result in |vi multiplied by eiq ,
i.e.,

U |vi= eiq |vi.

If |vi is an N-dimensional vector and U is an N ⇥N matrix, we can write out this
equation as
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0

BBB@

U11 U12 . . . U1N
U21 U22 . . . U2N

...
...

. . .
...

UN1 UN2 . . . UNN

1

CCCA

0

BBB@

v1
v2
...

vN

1

CCCA
= eiq

0

BBB@

v1
v2
...

vN

1

CCCA
.

Multiplying out the left-hand side,
0

BBB@

U11v1 +U12v2 + · · ·+U1NvN
U21v1 +U22v2 + · · ·+U2NvN

...
UN1v1 +UN2v2 + · · ·+UNNvN

1

CCCA
= eiq

0

BBB@

v1
v2
...

vN

1

CCCA
.

We can use any row to find eiq . For example, using the first row,

U11v1 +U12v2 + · · ·+U1NvN = eiq v1.

Thus the eigenvalue is

eiq =
U11v1 +U12v2 + · · ·+U1NvN

v1
.

This takes N multiplications, N �1 additions, and one division, for a total of 2N =
O(N) elementary arithmetic operations.

7.8.3 Quantum Solution

Say the unitary matrix U is an n-qubit quantum gate, so U is an N⇥N matrix, where
N = 2n. We assume that we have n qubits whose state is the eigenstate |vi:

|vi|{z}
n qubits

.

To estimate the phase of its corresponding eigenvalue to m bits of precision, we also
have m additional qubits, all initially in the |0i state:

|0 . . .000i| {z }
m qubits

|vi|{z}
n qubits

.

So, the total number of qubits in our circuit is m+n. Let us refer to these groupings
as the “eigenvalue register” and the ”eigenstate register,” since the m qubits will
eventually contain an m-bit approximation of the phase of the eigenvalue, and the
n qubits are in the eigenstate |vi. To estimate the phase of the eigenvalue, we apply
the following quantum circuit:



QPE
• More precisely, the algorithm returns an 

approximation for  the phase, with high probability 
within additive error  , using   qubits 
(without counting the ones used to encode the 
eigenvector state) and   controlled-U 
operations.

ϵ 𝒪(log(1/ϵ))

𝒪(1/ϵ)





Support Vector Machine
• SVM is a linear classifier that can be viewed as an extension of the 

perceptron (Rosenblatt 1958). The perceptron guarantees that we can find 
a hyperplane, if it exists. The SVM finds the maximum margin separating 
hyperplane. 

• Setup: Define a linear classifier,  and assume a 
binary classification with labels . 

• Typically, if a data set is linearly separable, there are infinitely many 
separating hyperplanes. A natural question is:  

• Q: What is the best separating hyperplane? 
• SVM answer: The one that maximizes the distance to the closed data 

points from both classes.

h( ⃗x) = sign( ⃗w ⋅ ⃗x + b)
{+1, − 1}



Margin
• Margin: A hyperplane is defined through   as a set of points such 

that . Define the margin  as the distance 
from the hyperplane to the closest point across both classes.

⃗w , b
H = { ⃗x | ⃗w ⋅ ⃗x + b = 0} γ

• Distance of a point  to the hyperplane ?⃗x H
⃗xP = ⃗x − ⃗d
⃗d ∥ ⃗w → ⃗d = α ⃗w for α ∈ ℝ

⃗xP ∈ H → ⃗w P ⋅ ⃗x + b = 0

0 = ⃗w P ⋅ ⃗x + b = ⃗w ⋅ ( ⃗x − ⃗d) + b = ⃗w ⋅ ( ⃗x − α ⃗w ) + b

⇒ α = ⃗w ⋅ ⃗x + b⃗
⃗w ⋅ ⃗w

⇒ | ⃗d | = ⃗d ⋅ ⃗d = α2 ⃗w ⋅ ⃗w = | ⃗w ⋅ ⃗x + b⃗ |

⃗w ⋅ ⃗w

Margin of H = γ( ⃗w , b) = min
⃗x∈D

| ⃗w ⋅ ⃗x + b |
| ⃗w |

γ(β ⃗w , βb) = γ( ⃗w , b), ∀β ≠ 0
Scale invariance 



Max Margin Classifier
• We can formulate our search for the maximum margin separating hyperplane 

as a constrained optimization problem. The objective is to maximize the 
margin under the constraints that all data points must lie on the correct side 
of the hyperplane:

max
⃗w ,b

γ( ⃗w , b) such that ∀ i yi( ⃗w ⋅ ⃗xi + b) ≥ 0

Maximize the margin Separating hyperplanes

γ( ⃗w , b) = min
⃗x∈D

| ⃗w ⋅ ⃗x + b |
| ⃗w |

max
⃗w ,b

1
| ⃗w |

min
⃗x∈D

| ⃗w ⋅ ⃗x + b | such that ∀ i yi( ⃗w ⋅ ⃗xi + b) ≥ 0

• Hyperplane is scale-invariant so we can choose 
 such that . The problem 

becomes a quadratic optimization problem.
⃗w , b ⃗w ⋅ ⃗x + b = 1

min⃗
w

| ⃗w ⋅ ⃗w |2 such that ∀ i yi( ⃗w ⋅ ⃗xi + b) ≥ 1



Support Vectors
• For optimal , some training points will have tight constraints,⃗w , b

yi ( ⃗w ⋅ ⃗xi + b) = 1
• Such training points are called support 

vectors. 
• Support vectors are special because they are 

the training points that define the maximum 
margin of the hyperplane to the data set and 
they therefore determine the shape of the 
hyperplane. If you were to move one of them 
and retrain the SVM, the resulting hyperplane 
would change. The opposite is the case for 
non-support vectors (provided you don't 
move them too much, or they would turn into 
support vectors themselves). This will 
become particularly important in the dual 
formulation for Kernel-SVMs



Support Vector Machine with soft constraints
L = min

⃗w , b
| ⃗w ⋅ ⃗w |2 + C

n

∑
i=1

ξi such that ∀ i yi( ⃗w ⋅ ⃗xi + b) ≥ 1 − ξi and ∀i ξi ≥ 0

⇒ L = min
⃗w , b

| ⃗w ⋅ ⃗w |2 + C
n

∑
i=1

max [1 − yi( ⃗w ⋅ x + b), 0]

• Kernel can be defined as , where  represents 
feature vector:   

Kij = k( ⃗xi, ⃗xj) = ⃗ϕ ( ⃗xi) ⋅ ⃗ϕ ( ⃗xj) ⃗ϕ
⃗x ∈ ℝd ⟶ ϕ( ⃗x) ∈ ℝD
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x1

x2

−1 0 1
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Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot
shows the original input space (x1, x2) together with data points from two classes labelled red and blue. Two
‘Gaussian’ basis functions φ1(x) and φ2(x) are defined in this space with centres shown by the green crosses
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space
(φ1, φ2) together with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p(x). In the direct approach, we are maximizing a likelihood
function defined through the conditional distribution p(Ck|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions
So far in this chapter, we have considered classification models that work di-

rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear transformation of the inputs using a
vector of basis functions φ(x). The resulting decision boundaries will be linear in
the feature space φ, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space φ(x) need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the

• Support vectors satisfy:  
yi( ⃗w ⋅ ⃗ϕ ( ⃗xi) + b) = 1

x1

x2

ϕ1

ϕ2
“Feature extraction”



Kernel Support Vector Machine
• Then the Support Vector Machine with soft constraints has the dual form:

L = min
αk

1
2 ∑

i, j
αiαjyiyjKij − ∑

i
αi such that o ≤ αi ≤ C and ∑

i
αiyi = 0

•
Here   and  ⃗w = ∑

i
αiyiϕi( ⃗xi) h( ⃗x) = sign (∑

i
αiyik( ⃗xi, ⃗x) + b)

Kij = k( ⃗xi, ⃗xj) = ⃗ϕ ( ⃗xi) ⋅ ⃗ϕ ( ⃗xj)

min⃗
w

| ⃗w ⋅ ⃗w |2 such that ∀ i yi( ⃗w ⋅ ⃗xi + b) ≥ 1

h( ⃗x) = sign( ⃗w ⋅ ⃗x + b) • Linear models for classification  
• Support Vector Machines 
• Quantum Support Vector Machines  
• Quantum Kernel Methods


