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Quantum Optimization

* Introduction

« Quantum Approximation Optimization Algorithm (QAOA

 Adaptive Derivative Assembled Problem Tailored QAOA (ADAPT-QAOA)
« Feedback-based ALgorithm Quantum Optimization (FALQON)



Quantum Optimization

Optimization problems are everywhere: math, science, business, finance etc

— In general, time-consuming.
—In many cases, can not be solved in polynomial time.
— Need approximation algorithms: find approximation of the best solution
rather than the best solution (time complexity is reduced).
Two classes
— Continuous optimization
— Discrete optimization: combinatorial optimization
« Quadratic Unconstrained Binary Optimization (QUBO)

Apply quantum algorithms to solve optimization problem
— (1) Gate model: use universal gates (Pauli’s), problem-independent.

— (2) Non-gate model (quantum annealer): relies on adiabatic theorem to
find a minimum energy of Hamiltonian corresponding to the minimum

value of some cost function.



Quadratic Unconstrained Binary
Optimization (QUBO)

QUBO: combinatorial optimization problem with a wide
range of applications from finance to ML (partitioning, graph
coloring, task allocation, max-sat, max-cut etc)

I Z” — R Quadratic polynomial over binary variable

x; € Z, =1{0,1}, h,q; €R

f<x>—22%xzx+2hx X = XX, XpX)

=1 j=1 : :
(binary strings of n-bits)

Find a binary vector x* which minimizes f

x* = argmin f(x)
xeZZs

In matrix notation, f(x) = x'Ox, where O € R™"



Quadratic Unconstrained Binary
Optimization (QUBO)

In matrix notation, f(x) = x'Ox, where 0 € R™"
Jx) = = 2x) = 3xy + 8x3 + dxy + 4x120p + 53105 + 6123 + 10x3%4

(—2 2 5/2 0)(*) 2

X: =X
2 =3 3 0}||* - ot
— (X1 XHr X2 X —
e T 1 I EA R . €27, =1{0,1}
\O 0 5 4) \x4)

QUBO:

— NP hard problem

— Quadratic function might have several local minima
— Close connection to Ising model



P vs NP

In Theoretical Computer Science, the two most basic classes of problems are
P and NP.

P includes all problems that can be solved efficiently

— For example: add two numbers. The formal definition of "efficiently” is in time that's
polynomial in the input's size.
NP (nondeterministic polynomial (time)) includes all problems that given a
solution, one can efficient verify that the solution is correct.
— An example is the following problem: given a bunch of numbers, can they be split into
two groups such that the sum of one group is the same as the other. Clearly, if one is

given a solution (two groups of numbers), it's simple to verify that the sum is the
same. (This is a partitioning problem).

What's unknown is whether problems such as the one above have an efficient
algorithm for finding the solution. This is the (in)famous (unsolved) P = NP
problem, and the common conjecture is that no such algorithm exists.

Now, NP hard problems are such problems that were shown that if they can be
efficiently solved (which, as mentioned, is believed to not be the case), then
each and every problem in NP (each and every problem whose results can be
efficiently verified) can be efficiently solved. In other words, if you're up to
showing that P=NP, you might want to take a stand at any of those NP-hard
problems since they are "equivalent” in some way to all others.



Ising Model

Mathematical model for ferromagnetism in statistical
mechanics.

The energy of spin configuration for a given lattice is
given by the following classical Hamiltonian

E(S)=—ZJUS,s—Zh s=1{s}, s, €{-1L1}

Jij Is called an interaction, spin- spm coupling, and #; is an external

magnetic field, interacting with spin ..
The configuration probability is given by the Boltzmann distribution
e_ﬂH(S) 1

PO=s o P=hr

Quantum Ising model:  H = 2] 07 07 — Z h;o



Quadratic Unconstrained Binary
Optimization (QUBO)

QUBO: combinatorial optimization problem with a wide
range of applications from finance to ML (partitioning, graph
coloring, task allocation, max-sat, max-cut etc)

I Z” — R Quadratic polynomial over binary variable

x; € Z, =1{0,1}, h,q; €R

f<x>—22%xzx+2hx X = XX, XpX)

=1 j=1 : :
(binary strings of n-bits)

Find a binary vector x* which minimizes f

x* = argmin f(x)
xeZZs

In matrix notation, f(x) = x'Ox, where O € R™"



QUBO example: Max-cut Problem

Max-Cut is the NP-hard problem of finding a partition of
the graph's vertices into an two distinct sets that
maximizes the number of edges between the two sets.

Undirected Graph: G = (V, E)
— V: set of nodes, and E: set of edges

Partition vertices into two complementary sets such that
the number of edges between the two sets is as large as
possible. o

,I h\\
As the Max-Cut Problem is NP-hard, I
no polynomial-time algorithms for
Max-Cut in general graphs are

known.
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QUBO example: Max-cut Problem

~
\

 The cost function to be maximized:

Cx) = Z (xl- + X — 2xl-xj> where x; € {0,1}

(i.)EE \
x;+x — 2xx; =1, if x; and x; belong in different sets.

s; € Z,={—-1,1} x;+x;— 2xx; = 0, if x; and x; belong in the same set.

41 , .
Si . the cost function can be rewritten

* Introducing x, =

C(s) :% Z (1 - Sisj) — C(s) =% 2 (1 - a?a?) (i’j).f the edge index

1] i ;. vertex index

(i,))eE (i,))eE
. 1 0 c“|0) =+ 1|0) o; : Pauli's Z matrix actingon the i™ vertex
~\0 -1 Al ==111 o7 : Pauli’s Z matrix actingon the j” vertex
1) 1) ; g J
(1 (0 . e B
10) = 0 1) = X Matrices = linear operators = observables

Eigenvalues = what are actually measured in experiments



Ising formulations of many NP problems
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e ltisp

ossible to generalize the Ising model

beyond QUBO.

— Polynomial unconstrained binary optimization

(PL
— Hig

BO)
ner-order unconstrained binary optimization

(HU

BO)

— Unconstrained binary quadratic problem
(UBQP)

— Constrained optimization problems



Adiabatic Theorem

7 _ oy w
di

nstantaneous eigenstate:  H(¢) y, (1) = E,(¢) v, (1)

Schrodinger equation:

nitial condition: w(t=0)=yy
00)

f evolution is slow enough, w(f) ~ e

Born and Folk 1928

w(t) = U@ y(0)

O

Ur(t) = ) (—i)° /Ot dtQ"'/Ot2 dt1Hi(tq) - - Hi(t1)

q=0



Adiabatic Theorem

« Adiabatic theorem: A physical system remains in its instantaneous eigenstate, if a given
perturbation is acting on it slowly enough and if there is a gap between the eigenvalue
and the rest of the Hamiltonian’s spectrum. (Max Born and Vladimir Folk 1928)

- Under a slowly changing Hamiltonian H(t) with instantaneous eigenstate | n(f)) and the
corresponding energy E(7), a quantum system evolves from initial state
[w(0)) = ) ¢,(0)[n(0)) tofinal state |y () = Y ¢, ()| n(®)) where

n n
!

. . 1
¢, (1) = c,(0) e D with the dynamical phase 0, (1) = — %J E (1) dt and
0

t
geometrical phase y(t) = iJ (n(t")|n(t))dt
0

« Adiabatic approximation: the rate of change of Hamiltonian H(t) Is small and there is
finite gap E, (t) — E (1) # 0 between energies for m #n —
. (m(0) | H(t) | n(1))
/ / —_ 0
(n(1) | (1)) EO—EQ)

e |c,(® |2 =|c,(0) |2 so if the system begins in an eigenstate of H(0), it remains in an
eigenstate of H(t) during the evolution with a change of phase only.



Adiabatic Theorem

H(t) |n()) = E (1) | n(?)) |n(z)) : is eigenstates of Hamiltonian, basis

_ satisfies time-dependent ., 9. _
W) =D e ln@) S ton 1 WD) = HOly(0)

- H@) | n(0) + H@®) | 7(0)) = E (1) | n(0)) + E, (1) | a(0))
Assume m # n and perform inner product with |m(?)):  H(®)|m(t)) = E, (¢) | m(¢))
(m(t) | n()) = 6,
(m@) | H() | n(0)) + (m@ | H®) | (D)) = E, () (m(0) | n(®)) + E, () (m(?) | i(5))

(m(2) | H(?) | n(1))

(m(®) | H@®) |n(0) + E,(0) m®)]7(0) = E0) {m@ |4@) -~ (mO1#@O) = ==~

Adiabatic approximation: the rate of change in Hamiltonian H(¢) is small and there is
finite gap E, (f) — E () # 0 between energies — (m(r)|7n(t)) ~ 0.



Adiabatic Theorem

d
ih— |y () = H(@) |w())

or = i1 Y e On0) + ¢, D) = Y B0 e ()] n()
lw(@®) =) c,(]n®) m "

n

Inner product with | m(7)):  (m(?)] [ihz e, n@) + ¢, (O ]n@) = Z E, (1) Cn(f)ln(f»]

Using (m(f) | n(f)) = 8, we obtain 1 ¢u(D) iR 2 ¢, (1) {m(0) | () = ¢, (1) E, (1)

In the adiabatic limit,

(m(@) | 7)) ~ 0 for m # n ih ¢,,(1) + ihc, () (m(@) | i(®) = c,(t) E, (1)

y E.D . - { E® .
zcm<r>=< : —z<m<r>|m<r>>> ) = Ep(D) =1 (— : +z<m<r>|m<r>>) )

d 1 dc, (1) B ¢, (1) B _i . ,
- Inc, (1) = O d o) hEm(t) + i i{m(t) | m(t))

: . 1 (! t
C(D) = €, (0)e n Vet Ou(0) = —— [ E,(t)dt’ y() =i J (m(t') | in(r')) dt’
0 0
dynamical phase, geometrical phase,

real, function of E pure real



Adiabatic Theorem

. : 1 (! t
c,,(1) = ¢, (0)enDeltn® On() = = — [ E,(t)dt y(t) =i J (m(t) | m()) dt
0 0
dynamical phase, geometrical phase,
real, function of E pure real,

Has something to do with
direction in the Hilbert space

d
;<m(t) |m(2)) = () | m(t)) + (m(t) | m())

dt
= (m(0) | m(0))* + (m(®) | m(2))
= 2 Re (m(t) | m(t)) — 7,,(t) 1 pure real

0=
(Plw)* = wld)



Adiabatic Theorem

7 _ oy w
di

nstantaneous eigenstate:  H(¢) y, (1) = E,(¢) v, (1)

Schrodinger equation:

nitial condition: w(t=0)=yy
00)

f evolution is slow enough, w(f) ~ e

Born and Folk 1928

w(t) = U@ y(0)

O

Ur(t) = ) (—i)° /Ot dtQ"'/Ot2 dt1Hi(tq) - - Hi(t1)

q=0



Quantum Annealing

Hp IS the problem Hamiltonian whose ground state encodes the solution to
the optimization problem

H,, is the initial Hamiltonian whose ground state is easy to prepare.

Prepare a quantum system to be in the ground state of H, and evolve the
system using the following time-dependent Hamiltonian,

4 4
H(1 :<1——>H +—H
) ) TP

The system will remain to its ground state at all times, which means for t=T,
the system will be in the ground state of Hp, our problem Hamiltonian.

D-wave has built Quantum Annealing that solves optimization problem by
transferring the original optimization to a hardware, that allows nearest
neighbor interaction of qubits.

If the energy gap b/w the ground state and 1st excited state is small, T must

be very large — computationally difficult.
Apolloni, Bianchi, De Falco 1988



Breaking limitation of quantum annealer in solving
optimization problems under constraints
Masayuki Ohzeki'!->*"

Quantum annealing is a generic solver for optimization problems that uses fictitious quantum fluctuation. The most ground-
breaking progress in the research field of quantum annealing is its hardware implementation, i.e., the so-called quantum
annealer, using artificial spins. However, the connectivity between the artificial spins is sparse and limited on a special net-
work known as the chimera graph. Several embedding techniques have been proposed, but the number of logical spins, which
represents the optimization problems to be solved, is drastically reduced. In particular, an optimization problem including fully
or even partly connected spins suffers from low embeddable size on the chimera graph. In the present study, we propose an
alternative approach to solve a large-scale optimization problem on the chimera graph via a well-known method in statistical
mechanics called the Hubbard-Stratonovich transformation or its variants. The proposed method can be used to deal with
a fully connected Ising model without embedding on the chimera graph and leads to nontrivial results of the optimization
problem. We tested the proposed method with a number of partition problems involving solving linear equations and the traffic

flow optimization problem in Sendai and Kyoto cities in Japan. ° . L
a o e}
L & | LB L & L P L L P
2002.05298 . “ i
2] el @
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Limitation of Quantum Annealing

« Performance of quantum annealing are governed by the
size of the gap.

£l (1)1 229 | 0s)) ‘

~— 7 T~
At > max‘ ds
0<<l1 A(s)?
T=As, 0<s<1

/ } >
H(0) = H, H(t=T)=H,

dH(s)

« Performance is poor, when eigenvalues are degenerate.



Variational Quantum Algorithms

Hybrid quantum-classical model is suggested to circumvent the issue of
going slow with quantum annealer as well as implementing Hamiltonian
In the available hardware.

Quantum: parameterize wave function
Classical: minimize/maximize the expectation value of H in the problem.

E©O) = (w(0) | H|yw®))

Quantum Classical

Output
f(x;0)

'

Cost
Ely - f(x; 01

'

Update
6i-1 — 6;

State
preparation |33> N U(CE, 9) ]
x = |x)
U(x; 6;)

X

Quantum circuit




Variational Quantum Algorithms

— SRS
o\ “2’?’ QZ’?’
e

IIIII

Classical
---------------------------------------
Output
_| A f(x;:0)
Stat v
t
Prepat Yy U(x;0) HA| Cost
x = |x) Ely - £(x; 01
U(x; 6;)
A ] _/74 v
Update
Quantum circui t 0i-1 — 6; J

————————————————————————————————————————




Variational Quantum Algorithms

2016: first cloud-based quantum computer became available.

Current state-of-the-art device size ranges from 50 to 100 qubits which allows one
to achieve ‘quantum supremacy’: outperforming the best classical supercomputer,
for certain contrived mathematical tasks.

— Sycamore (53 qubits, corresponding to a computational state-space of
dimension 2°3 =~ 10'%): 200 seconds vs 10,000 years for sampling the output of
a pseudo-random quantum circuit.

Variational Quantum Algorithms (VQAs) have emerged as the leading strategy to
obtain quantum advantage on NISQ (Noisy Intermediate-Scale Quantum) devices.
Accounting for all of the constraints imposed by NISQ computers with a single
strategy requires an optimization-based or learning- based approach, precisely
what VQAs use.

VQAs are arguably the quantum analog of highly successful machine-learning
methods, such as neural networks.

VQAs leverage the toolbox of classical optimization, since VQAs use parametrized
guantum circuits to be run on the quantum computer, and then outsource the
parameter optimization to a classical optimizer. This approach has the added
advantage of keeping the quantum circuit depth shallow and hence mitigating
noise, in contrast to quantum algorithms developed for the fault-tolerant era.



IBM QUANTUM PROCESSORS ROADMAP

Sources: Global X analysis of information derived from: IBM. (2022). Our new 2022 development roadmap.

5000 Kookaburra,
4158
4000 []
1% 3000
=
C:; Flamingo,
2000 Condor, 1,386
1121
Osprey, . .
1000 Hummingbird,  Eagle, 433
Falcon, 65 127
27 []
ol ] N
2019 2020 2021 2022 2023 2024 2025
Year

Note: 2022 onwards includes planned processor launches.



Quantum Approximate Optimization
Algorithm (QAQOA)

« Abstract: We introduce a quantum algorithm that

) ) . : 1411.4028
produces approximate solutions for combinatorial
optimization problems. The algorithm depends on a E Farhi
itive int th lit ' ’
positive integer p and the quality of the J. Goldstone.

approximation improves as p is increased. The
quantum circuit that implements the algorithm S. Gutmann
consists of unitary gates whose locality is at most the
locality of the objective function whose optimum is
sought. The depth of the circuit grows linearly with p
times (at worst) the number of constraints. If p is
fixed, that is, independent of the input size, the 500
algorithm makes use of efficient classical
preprocessing. If p grows with the input size a
different strategy is proposed. We study the 200
algorithm as applied to MaxCut on regular graphs Citations: 166
and analyze its performance on 2-regular and 3- 200 Year: 2020
regular graphs for fixed p. For p = 1, on 3-regular
graphs the quantum algorithm always finds a cut tha '
is at least 0.6924 times the size of the optimal cut.

Citations per year

400

2014 2017 2020 20232024



Why should we care about QAOA?

« Solve optimization problems
— Solves quadratic unconstrained problems with binary variables

* Near-term algorithm
— Algorithm runs on small quantum computers
— Low depth, robust to errors

— Requires relatively few physical qubits to get to interesting practical
problem sizes

» Adaptable algorithm

— In principle, we can easily model the objective function that we are
trying to solve

« Expected to be faster than classical

— Classical approaches move through the search space one solution
at a time

—In quantum, we can create a superposition of states and operate in
all states in parallel.



Quantum Approximate Optimization
Algorlthm (QAOA) Farhi et al 2014

« Hybrid quantum algorithm: contains a parameterized quantum circuit which
depends on variational parameters.

» Use classical computer to optimize the output of the quantum circuit.
« Consider the Ising model for illustration.

(’i f) — ('7"'1 s oo s "81 70009 "87))

' '

Variational parameters }

- N
‘_+_> 4 _6,—‘1.'.'{311‘15 ..... _6)_—'1;{3,,1‘13 _/ﬁ,:
[e—
[+) f L He—iBHa— . 9 _e—iﬁ,,HB._qlA\= ég =2
¢ ' =T~ e
] T TS
\B \W Q (o
S~ .5.
‘_+_> 4 _.6?—‘1.'.|i‘.'31 HB ..... ._e—’i.ligl,HB .._/ﬁ.: =
_ _ . J

depth p



Quantum Approximate Optimization Algorithm (QAOA)

Variational parameters }

- a i i (ﬁ" -g) = (’)1 s +es Vo ."31 g eeey ‘31)
H(t)—(l T)HM+THP ‘ F $I
H,, = Hy : mixer Hamiltonian +) 4 He-iiHsf— | ip, Hp| /$=f c b
O —iB1Hpll— . .... O |l —iB,Hgll- - -2 E et
Hp = H: problem Hamiltonian +) 1 T e . T [ ks /f\ fmgg 5
p | | S
”Y '6 H HM BJ HP)WJ) ‘+>®n 1+ 1 e~ HBE—- e~ PrHB —/7A\=\ = )
Jj=1 _
depth p
U(Hp,vi) = exp | —iv; Z O']Z-Jz = H CNOTj)kR];(QW/Z‘)CNOTj,k . n Y
jkeE j,k€E U(HM,,B]') = €Xp —lﬁj Z O;
i=1
eXp Yil | = e il
’k> Rz(27i) i1
n .
= [1&es
i=1

FP(PY? /6) — <77 /B‘HP"% /6>



Quantum Approximate Optimization
Algorlthm (QAOA) Farhi et al 2014

1
Hp=C(s) =H,= ) Z (1 — ol.zajz> : Problem Hamiltonian
(i,j)€E

(i,j) : the edge index

I ;. vertex index

-~

Hy, =B =Hg= Z GjX : Mixer Hamiltonian =~y
J t t
Full Hamiltonian: H(t) = (1 — T) Hy + = Hp

t p
) =exp | i [ 1) ar] lon) = exp |~ Y HGADA oo
0 j=1
p At At Undirected Graph: G = (V, E)
N . J J V: set of nodes
~ Hexp [_ZAt [(1 N T) Hyr + THP” [%0) E: set of edges
j=1

p - ;
~ H exp [—iAt <1 — ‘%) HM] exp [—Z‘AtJTAtHP] |%o)

j=1 Works in the adiabatic limit or p — o0

U(Hys, 8;)U(Hp, ;) |[+)&"

p
=1

— ﬁexp [— ’L'ﬁjHM:| exp [— i')/jHPl|¢0> |:> |')’7 /8> =

j:1\ AN

]

-~ -~

U(Hz,B5) U(Hp,vj)



Trotter formulas or
Trotter—Suzuki decompositions

* Product formulas simulate the sum of terms of a Hamiltonian
by simulating each one separately for a small time slice.

. cat o3 . t r
For H=A+B+C, U = e iAHBHON - (e"A7 e~ b7 e"C7) , for a large r

r = the number of time steps to simulate for.

General theory of fractal path integrals with applications to many-body
theories and statistical physics

Masuo Suzuki
Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-Ku, Hongo, Tokyo 113, Japan

(Received 26 March 1990; accepted for publication 12 September 1990)

A general scheme of fractal decomposition of exponential operators is presented in any order
m. Namely, exp[x(4 + B)] =S, (x) + O(x” ') for any positive integer m, where

S, (x) = " "% " ¢%- .. ™" with finite M depending on m. A general recursive scheme of
construction of {z,} is given explicitly. It is proven that some of {t;} should be negative for
m>3 and for any finite M (nonexistence theorem of positive decomposition). General
systematic decomposition criterions based on a new type of time-ordering are also formulated.
The decomposition exp[x(4 + B)] = [S,, (x/n)]" + O(x™*'/n™) yields a new efficient
approach to quantum Monte Carlo simulations. '



Quantum Approximate Optimization
Algorlthm (QAOA) Farhi et al 2014

1 Co :
cw=5 3 (1-0ic?). B=Y o () the edge index
2 j [ ; vertex index

(i.))eE
1 0 o; : Pauli’s Z matrix actingon the i vertex
< —_
(0 - 1) o/ : Pauli’s Z matrix actingon the j™ vertex
z _ z _ _ (1 _ (0O
6%|0) =+ 1]0) o1y =—1][1) 10)=1, =1,
uCp=erC=[] e7%, vB.p=e =]l
(i,J)EE =1
> = . ®n _iﬁajx— ﬂ—X ﬂ
wG.B) = [[Tve.syuc. n|He0) e~ = cos fj — io] sin
i=1

1 2"—1
= UB.B,) U(C.y,) - UB.B)UC.r)— D, i)
=1

ik
2p angles (parameters): 7 = (y,, 75, -+, ,) and § = (B, o, - 3,)

Goal is to find minimum/maximum over angles: M, = max (w7, /)| Clw (7. 5)

VP



Quantum Approximate Optimization Algorithm (QAOA)
 How do U(C,y) and U(B, ) operate on |y)?

| 1
U(C,7) H®" |0 - 0) = ¢~C H®|( ... o>=exp[—iyE Y <1—0 . )]H®"|o 0)
(i,J))EE
- H exp[ <1—a c; )]H®”|O 0)

=

1
exp[ 75 (1 — o/ 0; )]H‘g’”l() . 0) = exp( - i—)exp( +l;alZa]Z)H®”|O 1)

exp( + 116120]Z> |---0---0---) = exp( + 111 1) | ---0---0--+)
Four different 2 2
possibilities: eXp< + lgglzgjz> | SO = exp< lgl 1) | - SO )
exp(-'—llo'ZGZ) |...1...O...> :exp( lll 1) |...1...O...>
2 9)
exp( -|— IZO'ZGZ> | ...1...1...> — exp< + lll 1) | ...1...1...>
2 9)



Quantum Approximate Optimization Algorithm (QAOA)

. . 1 2 A\
« If bits 7 and j are the same, eXp_—l;/5<1—0,~6j>_I--->=+1|---)

LJ

- If bits 7 and j are different, exp-— i;/% (1 — o%0 ) | Y= )

:> - If bits 7 and j are different, rotate the output state around z axis by an angle y.

ozla) = (=1)|a) R,(0) = exp( — ig%) = (e_im 0 >

0 e+it9/2

In circuit: CNOT [xy)| = |xx DY)
I®R () |xx ) =exp( = ir(=1)'®) [xx @)

ST

| x)
n i R, (2v:)

For U,y = e~? =[] e = | | Ri2p) 7D
j=1

j=1

- Rotation of all n-qubits about x-axis with angle 2/



Quantum Approximate Optimization Algorithm (QAQOA)
= 21 i)

v B = [[[ve.puc.plaeo 1) r—

"/ N7 1) 469—|Rz<2?>|-€9*

e~ iho} = cosf—isinfo’ = = RI(2p)

lw(Z.B)) = UB,B,) UC.,y,) - UB,p

Rotate qubit | around x-axis by 2 1

Aubt y2p C== ) (1—050;), B=) o
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Quantum Approximate Optimization Algorithm (QAQOA)

o 1 2"—1
W7, 5)) = UB.B,) U(C.7,) - UB.B)UC.1)—= ¥ |i)
i=1

V2
Forn=2andp =1, |w@.5) =3p)100)+6(,B)01) + (. )| 10) + 65, )| 11)
1 (e lw (. B)) 1}
c== % (1-0ic) 0.3
(i,j))eE
C= ) C@lx)x|
x€{0,1}®" 0.1
1 2"—1
) =— > 1) > 1)
N |00) |01) |10) |11)
2
Fr ) =max w. P CluG.p) = 3 Co|elyep)
’ x€{0,1}®"
Measure of how good the approximation _ F)(7, p)

is to actual best value of the cost function 4= C

max



Maximum Likelihood detection
QAOA Traveling salesman problem
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https://colab.research.google.com/drive/1pkUutpqZa16GmDZdZtD__tIopdpfxoov

Ansatz Main Idea Enhancement & Applications
ma-QAOA [77] Multi-angle ansatz with a unique parameter for Improves approximation ratio for MaxCut
each element of cost and mixer Hamiltonians while reducing circuit depth
2021
QAOA+ [78] Augments traditional QAOA with an additional Higher approximation ratios for MaxCut
multi-parameter problem-independent layer on random regular graphs
DC- Adds a problem-dependent counterdiabatic driv- Improves the convergence rate of the ap-
QAOA [79, 80] ing term to the QAOA ansatz proximation ratio while reducing circuit
depth
ab-QAOA [81] Incorporates local fields into the operators to re- Computation time reduction for combina-
duce computation time torial optimization
ADAPT- Iterative version of QAOA with systematic selec- Can be problem-specific and addresses
QAOA [82] 2020 tion of mixers based on gradient criterion hardware constraints
Recursive Non-local variant of QAOA that iteratively re- Overcomes locality constraints and
QAOA [83] duces problem size by eliminating qubits achieves better performance

QAOAnsatz [84]

GM-QAOA [35]

Extends the original formulation with broader
families of operators and allows for encoding of
constraints

Uses Grover-like selective phase shift mixing op-
erators

2306.09198

Adaptable to a wider range of optimization
problems with hard and soft constraints

Solves k-Vertex Cover, Traveling Salesper-
son Problem, Discrete Portfolio Rebalanc-
ing



Th-QAOA [86]

Constraint
Preserving
Mixers [87]

WS-QAOA [88]

FALQON [66]

2021

FALQON+ [89]

FQAOA [90]

Quantum

Dropout [91]

ST-QAOA [92]

Modified
QAOA [31]

Replaces standard phase separator with a thresh-
old function

Constructs mixers that enforce hard constraints

Modifies the initial state and mixer Hamiltonian
based on the optimal solution to the relaxed
QUBO problem

Uses qubit measurements for feedback-based
quantum optimization, avoiding classical opti-
mizers

Combines FALQON’s initialization with QAOA

for better parameter initialization

Utilizes fermion particle number preservation to
intrinsically impose constraints in QAOA process

Selectively drops out clauses defining the quan-
tum circuit while keeping the cost function intact

Uses an approximate classical solution to con-
struct a problem instance-specific circuit

Modifies cost Hamiltonian with conditional rota-
tions

Solves MaxCut, Max k-Vertex Cover, Max
Bisection

Solves optimization problems with hard
constraints

Solutions guaranteed to retain the GW
bound for the MaxCut problem

Produces monotonically improving approx-
imate solutions as circuit depth grows while
bypassing classical optimization loops

Improves initialization of standard QAOA
for non-isomorphic graphs with 8 to 14 ver-
tices

Improves performance in portfolio opti-
mization, applicable to Grover adaptive
search and quantum phase estimation

Improves QAOA performance on hard
cases of combinatorial optimization prob-
lems

Achieves same performance guarantee as
the classical algorithm, outperforms QAOA
at low depths for MaxCut problem

Improves approximation ratio for MaxCut
atp=1



QAOA summary

One can solve the optimization problems on a quantum
computer by initializing the quantum device in the
ground state of a hamiltonian that is easy to prepare and
adiabatically tuning H into the problem Hamiltonian.

In a digital quantum computer, this translates into a
Trotterized version of the adiabatic evolution operator. In
the limit of an infinite product, this Trotterized form
becomes exact.

QAOA is a hybrid quantum-classical variational algorithm
with a finite order version of the evolution operator.

Many experimental and theoretical studies, suggesting
QAOA may provide a significant quantum advantage
over classical algorithms, and that it is computationally
universal.



Limitations and potential
issues with QAOA

The performance improves with the number of alternating layers
In the Ansatz, which is limited by coherences times in exiting and
near-term quantum processors.

More layers implies more variational parameters (challenging for
classical optimizers).

Short-depth ansatz is not really the digitized version of the
adiabatic problem but rather an adhoc ansatz, which does not
guarantee to perform optimally.

Fixed form of standard QAOA is not optimal but no systematic
approach for finding a better ansatz.

ADAPT-QAOA converges faster, reducing the required number
of CNOT gates and optimization parameters.

Connection to concept of shortcuts to adiabaticity.
Inspired by ADAPT-VQE (Refs in 2005.10258).



Adaptive Derivative Assembled
Problem Tailored - Quantum

Approximate Optimization
Algorithm (ADAPT-QAOA)

* https://arxiv.org/pdf/2005.10258.pdf



2005.10258

ADAPT-QAOA
(7. )) = (H —iHMﬁke—iHow]>wref> = [%(7.8) = (H Z‘AwkeiHckawre@

Algorithm 1 ADAPT-QAOA

@) = [rer) = [)°" Initial state: [1®) = [trer) = [+)°"

Predefined: Number of layers p; Cost Hamiltonian H¢;
Initial parameter for optimization: ~vp; Operator pool with
m operators A;, j € [1,m)]

) for k=1...p do

mixer pool = set of Aj : {Aj } //From operator pool select operator

for j =1...m do

n=number of qubits

//Get max measured gradient operator A
Set Y& = 7o
Define |¢(k)> — e—ichw(k—l)>
Ak = argmax (—i «(®|[Ho, 4] ®): )
end for
//Add AP to current ansatz:
)y = o= iAMdBE g iHCTE | (= 1))
// Optimization
min(y® |Ho ™) — 5,7
output.add (3, 7, A%Qx,min<w(k)|HC|w(k)>)
end for
return output




2005.10258

ADAPT-QAOA
(7. )) = (H —zﬂMﬁke—iHo%]>wref> = [%(7.8) = (H ZwkeiHckawre@

k=1 _

Define |¢("“)> = e_iHC’Yk|¢(k_1)>
’¢(0)> = [threr) = H—>®” AR = argmax (_7, t<¢(k)|[Hc,Aj]\¢(k)>t)

77/3;5’%@ t t ansat
. max UO current ansatz:
n=number of qubits 58 — oA i 1y
// Optimization
min(yp™ | Hel[p™) = 5,7
output.add(f, 7, Afnse, min(y ) [He [ *)))
end for
return output

mixer pool = set of A;: {A;}

0 0
AB, = AP Wil Hpl) ~ 0Bk (p—1]e TP e PrAs Hpe=Prdie=mle |y, 1)
Pr=0 g Br=0
— <¢k_1‘ei7kHPei5kAj ('iAjHP _ inAj) e—inAj e~ HP lwk—1>
Br=0

—i (Yp_1|e P [Hp, Ajle e8P o 1)



2005.10258

ADAPT-QAQOA

|¢(O)> — |tres) = |_|_>®n

mixer pool = set of A;: {A;}

‘wp(i, §)> = <ﬁ [GiAk;BkzeiHC’Yk}> [ref)

6(1) elements FQaoa = {ZiEQ Xi}
O(n) elements Fsingle = Uieq {Xia Y;} U {Zie@ Y’L} U Pqaoa
@(I’lz) elements Pmulti :Ui,jEQXQ {B’LCJ|B27 Cj < {Xa Ya Z}} U Psingle

PQAOA C Psingle - Pmulti
———— Best performance

1
He=—5 sz‘,j(f — ZiZ;)
0]

- H.= Hp has a z, symmetry associated with the operator F = ®; X.. Since
[F,H-] =0, one can show that the gradient is only nonzero for [FF/,A.] = 0. The
A; that commutes with F are Pauli strings that have an even number of Y or Z
operators.
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ADAPT-QAOA applied to Mascot

a 0 b) (40 ]
@) 10 —— QAOA ()10§
E ADAPT-Single . E
D 1021 —— ADAPT-Multi L 402
i= c
. ] _Q E
E 1044 8 10
= 5 |
S 6] £
o 10764 © 1064
> 3 = ]
> %
o) z 3 :
c 10-8- -8_5
w 0 w 10 ;
10704 10"%

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Layer (p) Layer (p)

FIG. 1. Comparison of the performance of standard QAOA (blue) with ADAPT-QAOA for the single-qubit (orange) and
multi-qubit (green) pools. The algorithms are run on the Max-Cut problem for the regular graphs shown in the figure, which
have n=6 vertices and are of degree D=3 (a) and D=5 (b). The energy error (the difference between the energy estimate
obtained by the algorithm and the exact ground state energy of H¢) is shown as a function of the number of layers in the
ansatz. Results are shown for 20 different instances of edge weights, which are randomly sampled from the uniform distribution
U(0,1). The shaded regions indicate 95% confidence intervals.

Nelder-Mead for optimization
= downhill simplex method
= amoeba method

Yo =0.01 = polytope method



e How much does the (a) (b)MU|ti-C!UbitS mixer

0.7 1
ADAPT-QAOA ansatz 0.30 1
differ from the standard 0.6 - Original Original
0.25 - ;
QAOA ansatz? Entagg'tgsg
051 o , , :
. . Single-qubit gates Single-qubit
* When the single-qubit o - 5. 0.20 1 gates o
mixer pool is used, the 5 047 0.0 02 04 06 08 = 0.0 02 04 06 08
. : ’ s Probability T 15 Probability
single- qubit operators Xi ¢ 43 2
atre cdhocslen .mstead of the . n=6’ D=3 0.10 n=6, D=3
standard mixer . . .
. Single qubit mixer
approximately 36.6% of 0.1- 0.05 -
the time for n=6,D=3
0.0 - 0.00 -
graphs and 25% of the I\ R RN 4 O O G G (G S g 3%

time for n=6,D=5 graphs. \
(c) (d)

* For the multi-qubit mixer

°
~
1

pool, the algorithm Original 0.20 Original
chooses operators other 0.6 - Entangling
than the standard mixer 0.5 4 Single-qubit gates Single%it;i
approximately 75% of the W0 02 0% oo 08 - I PRI
time for n=6, D=3 graphs E 0.41 Probability 8 Probability
and 80% of the time for £ 03 £ 0.10
n=6, D=5 graphs. - n=6’ D=5
e This trend supports the Slng|e qub|t mixer 0.05
intuitive idea that a more
connected graph requires 0.00 -
more entanglement for a I N R AN 48 ST aaFFFE e 1§"ﬁj~'\
rapid convergence to the \ Mu |t|-q ubits mixer
solution.

FIG. 6. Probability of operators picked by the original QAOA, ADAPT-QAOA with the single-qubit mixer and ADAPT-QAOA
with multi-qubit pool for the Max-Cut problem on regular graphs with n==6 vertices with degree D=3 (a)(b) and D=5 (c)(d)
with random edge weights sampled from a uniform distribution U (0, 1). The blue bars show the probability of each particular
operator used for ansatz, and green bars show the probability of the original mixer, sum over all single-qubit gates and sum
over all entangling gates used in ansatz. The results from 20 instances of random edge weights.

2005.10258
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e ADAPT-QAOA provides a
systematic way to both improve
performance and reduce the

number of parameters and
CNOTs.

FIG. 2. Resource comparison of the standard QAOA,
ADAPT-QAOA with the single-qubit mixer pool, and
ADAPT-QAOA with the multi-qubit mixer pool for the Max-
Cut problem on regular graphs with n=6 vertices and random
edge weights. Panels (a) and (b) show the comparison for
graphs of degree D=3 and D=5, respectively. For all cases
except the standard QAOA applied to D = 5 graphs, we
count the number of parameters and CNOTs needed to reach
an energy error of 6E = 1073, As standard QAOA for D =5
graphs never reaches this error threshold, we instead count the
CNOT gates and parameters at the end of the simulation (15
layers). The dark (light) red bars show variational parameter
(CNOT gate) counts. The error bars show variances obtained
by sampling over 20 different instances of edge weights.



Why ADAPT-QAOA performs better?

« Considering that the standard QAOA ansatz has a structure
dictated by the adiabatic theorem, a possible explanation is related
to Shortcuts to adiabaticity (STA).

« STA (counter-diabatic or transitionless driving) was introduced by
Demirplak and Rice and later, independently, by Berry.

* If we want to drive a system such that it remains in the
Instantaneous ground state at all times, then by adding a certain
term H., to the Hamiltonian, we can achieve this without paying the

price of a slow evolution.

 Although the instantaneous eigenstates of the original Hamiltonian
only solve the time-dependent Schrodinger equation in the
adiabatic limit, they become exact solutions when the Hamiltonian
IS updated to include H,.

* The advantage of STA is that the evolution can be achieved non-
adiabatically.
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Shortcuts to Adiabaticity
(transitionless driving protocols)

i, |y) = HO®) |y) | > i0,1) = (H— 04y | )
) — @) =Uly) Hep = 04y
H — H=U'HU A,=iU0,U
io, — id,—0A, Ag=UA,U"

 Suppose that we consider a unitary transformation U(6(¢)) to move the

Hamiltonian H(6(¢)) from the initial basis to its instantaneous eigenbasis, where
H(O) = UT(0) H(O) U(O) is diagonal at all times.

« The Schrodinger equation in the instantaneous eigenbasis is
i | ) = (H—-60A,) ), where A, = iUT A, U is the adiabatic gauge potential in the
rotated frame. It is evident that the term —QAQ drives transitions between the

energy levels of the original Hamiltonian H. Therefore, one can add the
counterdiabatic term H,,, = A, to H(9), with A, = UA, U", to eliminate such
transitions in the rotated frame. This is the core of transitionless driving protocols.
« Ref. [40] proposes an approximate gauge potential:
p

AP :iZak[HﬂeH]zk—l (X Y a1 = [ X [X Y]k
k=1



Connection between ADAPT-QAOA and STA

» Apply the above formalism using the
Hamiltonian

t AN
H=?HC+<1—?)§Xi,and3et

6 = t. T is the duration of the evolution
from the initial state |y,.¢) = | + )®"
to the ground state of the cost
Hamiltonian H...

* |In all cases, the mixer operator at the
first layer is also an element of the set

O cp-
- Going to higher order in the H -,

approximation increases the probability
of finding the mixers in the set O,

« ADAPT-QAOA finds the appropriate
rotation axes in Hilbert space for faster
convergence to the solution, and that
these axes may in some sense be
universal across all possible choices of
H(t) that interpolate between the initial
and target states. This suggests that
STA can be used as a tool to construct
operator pools for ADAPT-QAOA.

1.0 A
0.8 A
0.6 7 @ 1st order
o 2nd order
3rd order
0.4 - == 4th order
= 5th order
@ 6th order
0.2 7 7th order
8th order
0.0 A : : :
1 2 3 4 5
Layer (p)
FIG. 3. Probability P of the operator at layer p of the

ADAPT-QAOA ansatz to be among the Pauli strings with
the largest coefficient in Hop averaged over 32 graphs with
n = 6, D = 3. The different curves correspond to different
orders of the approximation.



Adaptive Derivative Assembled Problem
Tailored QAOA (ADAPT-QAOA)

QAOA Adaptive QAOA
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Questions?

« Paper contains an interesting discussion on
how to exploit non-adiabatic path.

» Paper contains evidence that ADAPT-QAOA is
related to STA but not rigorous proof.

« Paper uses mixers with two Pauli matrices.
What about 4, 6 or more?

* Non-Abelian shortcuts to adiabaticity on
quantum simulation?

* There is an example code implemented in
TensorFlowQuantum.
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 Training variational quantum algorithms is NP-hard
 https://arxiv.org/pdf/2101.07267.pdf

Training variational quantum algorithms is NP-hard

Lennart Bittel* and Martin Kliesch'
Heinrich Heine University Dusseldorf, Germany

Variational quantum algorithms are proposed to solve relevant computational problems on near
term quantum devices. Popular versions are variational quantum eigensolvers and quantum ap-
proximate optimization algorithms that solve ground state problems from quantum chemistry and
binary optimization problems, respectively. They are based on the idea of using a classical computer
to train a parameterized quantum circuit.

We show that the corresponding classical optimization problems are NP-hard. Moreover, the
hardness is robust in the sense that, for every polynomial time algorithm, there are instances for
which the relative error resulting from the classical optimization problem can be arbitrarily large
assuming P # NP. Even for classically tractable systems composed of only logarithmically many
qubits or free fermions, we show the optimization to be NP-hard. This elucidates that the classical
optimization is intrinsically hard and does not merely inherit the hardness from the ground state
problem.

Our analysis shows that the training landscape can have many far from optimal persistent local
minima. This means that gradient and higher order descent algorithms will generally converge to
far from optimal solutions.


https://arxiv.org/pdf/2101.07267.pdf

Feedback-based ALgorithm Quantum
Optimization (FALQON)



Feedback-based ALgorithm Quantum
Optimization (FALQON)

« 2103.08619, https://pennylane.ai/gml/demos/tutorial_falgon.html
« Consider a quantum system whose dynamics is governed by

i |(t)) = (Hy+HaB (1) (1))
* Goalis to minimize: (H,) = (¥ (t)|Hy | (t))

H,: drift Hamiltonian (Problem H) p(t) : time — dependent control function

H,: control Hamiltonian
.« One can minimize (Hp> by designing /() such that

DO (6) () <0, VE>0

it
i~

EMD |H, |y () = i{w(®) | (H, + H,p@)H, | w()) — iy () | H,(H, + H,p@®) [y (D))
= (w@) | i[Hy H,) |y (D) (1) = A@) f(1)


https://pennylane.ai/qml/demos/tutorial_falqon.html

Feedback-based ALgorithm Quantum
Optimization (FALQON)

d
WO H, ly®) = )| i[Hy By lw(®) f0) = AW (1)

« We can choose any f(1).

« Consider f(t) = — wf(t,A(z)) forw > 0O, where f(z, A(?)) is any
continuous function with f(#,0) = 0 and A(¥)f(¢, A(?)) > O for all A(¢) # O.

- Take w = 1 and f(z, A(?)) = A(¢) such that (1) = — A(¢) for simplicity.

. Consider alternating (rather than concurrent) applications of Hp and H,

leading to a time evolution:
° U=U;(B)U, - Uy(B U,

Up — o iH,AL k=1,2, ---,¢ P, = Plkt — Ar)
Ud (ﬁk) — e—iﬁkHdAt T = 2At — ﬁ((k — I)At)

- For small At, this unitary evolution yields Trotterized approximation to
the continuous time evolution of the system.



Feedback-based ALgorithm Quantum
Optimization (FALQON)

d
During the time evolution when Hp Is applied, E<Hp> = 0, but eigenstate of

Hp accumulates phase changes. (Hp is time-independent.)

d
For the time evolution when H ; is applied, we recover E<Hp> = A@)p(1)

In this setting, it is always possible to choose Af small enough such that
d
E(y/(t) |H,| w(t)) <0.If Atis chosen to be too large, the inequality will be

violated.

FALQON is a constructive, optimization free procedure for assigning values
to each [, according to a feedback law.

By design, the quality of the solution to the combinatorial optimization
problem improves monotonically with respect to depth of the circuit, .



Feedback-based ALgorithm Quantum

Optimization (FALQON)

fr=0 @) ) [ sreok

Step 0 o (b)
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Figure 1. (a) The procedure for implementing FALQON. The initial step is to seed the procedure by setting f1 = 0. The
qubits are then initialized in the state [1o), and a single FALQON layer is implemented to prepare |1)1) = Uq4(B1)Up|tbo). The
qubits are then measured to estimate A1, whose result is fed back to set 82 = — A1, up to sampling error. For subsequent steps
k=2,--- ¢, the same procedure is repeated, as shown in (b): the qubits are initialized as |¢o), after which k layers are applied
to obtain |1x) = Ua(Bk)Up - - - Ua(B1)Up|tho), and then the qubits are measured to estimate Ay, and the result is fed back to set
the value of Bx+1. This procedure causes (Hp) to decrease layer-by-layer as per (1 |Hp|1) > (Wo|Hplth2) > -+ > (| Hp|)e),
as shown in (c), such that the quality of the solution to the combinatorial optimization problem monotonically improves with
circuit depth. The protocol can be terminated when the value of (H,) converges or a threshold number of layers ¢ is reached.
Then, after the final step, Z basis measurements on |1¢) can be used to determine a best candidate solution to the combinatorial
optimization problem of interest, by repeatedly sampling from the probability distribution over bit strings induced by |¢,) and
selecting the outcome associated with the best solution.




FALQON vs QAOA

Circuits used in QAOA has the same alternative structure as those in
FALQON with additional parameters y = (y;, -+, 7,) that enter into U, such

that Upaos = Ud(ﬂf)Up(Vf)"'Ud(ﬁ1)Up(}’1)-

Solution to the original combinatorial optimization is found by minimizing
(w(;_/’,ﬂ)al lw (7, f)) over 2¢ parameters, using classical optimization.

(1w, B)) = Ugaon | wo))

FALQON minimizes (Hp) over a sequence of quantum circuit layers, guided
by qubit measurement-based feed back without classical optimization.

FALQON for MaxCut problem

1 n
MaxCut: H,=— 3, —(1-2Z)andH,= ) X,
(i-))EE j=1
i[Hy, H)] = Z Y,Z;+ZY; where X;,Y; and Z; are Pauli's matrices.
(i,))EE



FALQON for MaxCut problem

Approximation ration:
FA = <Hp>/<Hp>min

The largest known approximation

ratio r, = 0.932 by algorithm of
Goemans and Williamson.

approximation ratio (dashed curves)
and the success probability of
measuring the degenerate ground
state (solid curves)

18
20

0 200 400 600 800 1000
(C) Layer

Pictorial representation of -
MaxCut on a 3-regular _
graph with 8 vertices. n = the number of vertices



(d) 10 15 20
The mean number of layers needed to
achieve the reference values of r, = 0.932
(dashed curve) and ¢ = 0.25 (solid curve)
is shown; error bars report the associated
standard deviation.

TA = <Hp>/<Hp>min = approximation ratio
¢ = Z | <(wlqo.) |> = the success probability of

measuring the (potentially degenerate) ground
state(s) { [ gy},

\_

FALQON for MaxCut problem

0.04 |
+ _
A 0.03

0.02 ¢

(e) 10 )

15 20

The critical At values for different

problem sizes are plotted

The only free parameter is time step At,
which is tuned to be as large as possible.

Pictorial
representation
of MaxCut on a
3-regular graph
with 8 vertices.




Ising formulations of many NP problems
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N-Queens problem

constant | logarithmic |linear | N-log-N |quadratic| cubic | exponential
O(n log

n| O@1) | Odogn) |O(n) ) omn?) | omd) 02"
1 1 1 1 1 1 1 2
2 1 1 2 2 4 8 4
4 1 2 4 8 16 64 16
8 1 3 8 24 64 512 256
16 1 = 16 64 256| 4.096 65536
32 1 5 32 160 1,024 | 32,7684.,294.967.296
64 1 6| 64 384  4,069(262,144 1.84x10!°

Fig. 4. An 5 X 5-matrix for the 5-Queen problem and an example of the

(O | k| O] O

(O | O | O K

oSl r|O O | O

=l el NeoBN k=

ol OO | O

solution.




N-Queens problem

n—1 n—2 n—1
Ey(X)=(1-)Y ;) sz+2z 37 w41

i=0 1=0 g=1+1
X0,01%0,1|%0,2|*0,3|X0,4 01,0100
X1,0(%1,1|%1,2|¥1,3[X1,4 071010 11]0
X2,01X2,1|%X2,2|%2,3|X2,4 1{0(0]0]0
X3,0(%X3,1(X3,2(X3,3X3,4 0011700
X4,0(X4,1|X4,2|X4,3X4,4 0(010]0(1

Fig. 4. An 5 X 5-matrix for the 5-Queen problem and an example of the
solution.



Distance-based classifier



Quantum Machine Learning

« Artificial Intelligence: Statistical prediction
« Machine Learning: Learn from data
* Quantum Machine Learning: Learn from data with quantum algorithms

— Subdiscipline of quantum computing and quantum information
science

« CC: classical data being processed
classically

« QC: how machine learning can help with
gquantum computing

« CQ: classical data fed into quantum
computer for analysis (Qquantum machine
learning)

* QQ: quantum data being processed by

quantum computer (ex: Quantum

C - classical, Q - quantum SimUIatiOn)

data processing device

data generating system




Distance-based classifier

« Adistance-based classifier with a quantum interference
circuit: arXiv:1703:10793 (supervised binary classification)

(X1 Unlabelled data .
A C|asi1 / training data set
* * K D=1{% by eee (¥
feature 2 E)g* {(xp)ﬁ), (-x27y2)9 ’ (XMayM)}
Class 2 m=12, - M
. = the number of data
> (X)) _
N = the number of features
feature 1

%X, € RY: unlabelled data

— Find the label ¥ € {—1,1}



Classical Kernel Method

« Kernel methods: kNN (k-nearest neighborhood), KDE (kernel density
estimation), SVM (support vector machine), Gaussian processes

— Nearest neighborhood method: a new input data is given the

same label as the data point closest to it — k-nearest
neighborhood (KNN)

— Closeness = distance measure

. . = - 2
— (ex) Euclidean distance |X — X, |
$ = sign Z y (1 _ b |x _3 |2> * include all data but weigh
" o influence of each data toward the
M decision by the weight k(X, X,,)
y = sign Wy Y K, X )]

| m=1
/ \ Kernel

weight Label =1 for X,



Euclidean Cosine Hamming
©
£ 1{0|1|1]0]|0
!
o 111]1|0f0]|0
o
Manhattan Minkowski Chebyshev
.4 .: P=00 : . i
p=2 i i
v | |
e p=1 . &
Jaccard Haversine Serensen-Dice

Intersection

Intersection




\Wasserstein distance
(Kantorovich—Rubinstein metric)

« A distance function defined between probability
distributions on a given metric space M (named after
“Vaserstein" (Russian: BacepwtenH) )

 If Pis an empirical measure with samples
X, ,X,and Qis an empirical measure with

samples Y, --- , Y, the p-Wasserstein distance is a
simple function of the order statistics:

1/p
1 n

Wo(P,Q) = =) X5 —-YylP| -
n =



Classical Kernel Method

« Kernel methods: kNN (k-nearest neighborhood), KDE (kernel density
estimation), SVM (support vector machine), Gaussian processes

— Nearest neighborhood method: a new input data is given the

same label as the data point closest to it — k-nearest
neighborhood (KNN)

— Closeness = distance measure

. . = - 2
— (ex) Euclidean distance |X — X, |
$ = sign Z y (1 _ b |x _3 |2> * include all data but weigh
" o influence of each data toward the
M decision by the weight k(X, X,,)
y = sign Wy Y K, X )]

| m=1
/ \ Kernel

weight Label =1 for X,



Distance-based classifier

» Choose w,, = 1 for all equally important data

K(},xm) =1 -—— |§ ek Close data (small distance) are

4M " weighted more importantly.
(1) Encode input data (features) into the amplitude of a quantum system
(amplitude encoding). For classical vector X € RY, (N = 2"*) Assume
T

x'x=Xx-x=1 (normalized to 1) N = 2" : number of features

N-1 /" i:indexin the computational basis
W) = Z x;:|7) Dimension of Hilbert space ~ O(log N)

=0
—= ancilla qubit is entangled

ﬁ with third register

1 M
(2) initial state: | D) = —— »" |m |0>|wx>+|1>|wx>)|ym>
2M -

4 [\
data index

unlabelled labeled

M = # of data data label of x,,
data class qubit




Distance-based classifier

ancilla qubit is entangled

ﬁ with third register

|0>|wx>+|1>|wx IR

/N

labeled label of x,,
data class qubit

1 M
(2) initial state: |D) = 2 | m)
2M m=1
data index unlabelled
M = # of data data
N—1

lw, ) = Z Xy, | ) encoding of m-th training data (labeled)

i=0
N-1

) = ) %) encoding of new data (unlabeled)

i=0

|O>’ lfymz_l
| V) = e
|1>, lfym__l_l

| D) contains all training data as well as M copies of new inputs.



Distance-based classifier
(100+11))

—(1-11))

&%

(3) Apply Hadamard gate on the ancilla (second) qubit. 10) —

1 M
Dy = —= D Im) (10 1y + 1D 1w ) ) v 1) =

l \/m m=1 7
D) = T 3 1 (10) gy + 1) 1)) )

M—-1
W ) = Iy £l ) = ) (Fxxi) i)
i=0
(4) Conditional measurement selecting the branch with ancilla state |0).
Likely to succeed if the collective Euclidean distance b/w X and training data

set is small. For standard data, p > 0.5.

1 > o
Probability is P = — Z % +%, |7

1 M N-1

Z 2 |m) (% 4 x8,) 1) [3,0)

m=1 =0

|D") =
Mp



Distance-based classifier

(5) Probability of measuring the class qubit |y,,) = |0)
M N-1

: Y+ xl) i
T %gmww )18 [3,)

D) =

1 i - ) 1 i . ,
P(y=0) = — |X+X,|"=1—-—— X —X,|
/ 4Mp V=0, m=1 4Mp V=0, m=1

Class 1 using normalization condition

— choosing the class with the higher probability gives result of kernel method.
The # of measurement needed to estimate P(y = 0) to error € with a reasonably
high confidence interval grows with O(e ™).

raw data standarisation normalisation
4 . XO
o 1 .
P *‘ =° (\ \X,,Axl « arXiv:1703:10793
2 “.M“ § } used Iris data
Q0 e class -1 n "
A class 1 -2 NS “ n‘ -1
0 2 4 6 -2 -1 0 1 2 -1 0 1
feature 1

https://www.quantum-inspire.com/kbase/jupyter-classifier-part1/


https://arxiv.org/pdf/1703.10793.pdf
https://arxiv.org/pdf/1703.10793.pdf

Grover’s search algorithm



Grover’s search algorithm

Grover’s algorithm involves “amplitude amplification” -
— G. Brassard, P. Hoyer 1997, Lov Grover 1998
— QFT is used for Shor’s and Simon’s algorithms

Example: Find a name in a phone directory (ordered list)

— Go to the midpoint of the list, see which half contains the name. Repeat
the same — bisection method takes log, /N operations until one of left.

If we are given an unordered list, we will have to check all entries one a
time. On average, this would take N/2 operations

_For N = 10°, log, N ~ 20 and N/2 ~ 5 x 10°.

Grover’s algorithm (unstructured search): determines the special value
T

with p = 1 (close to 1) by calling subroutine only Z N times. —

guadratic speed up compared with a classical computer.
— (cf) exponential speed up is expected in Shor’s algorithm.



Grover’s algorithm: Black Box (Oracle)

« Consider n-bit integers.

1] » 1] 7

« “a’is a special number, and the goal is to find “a’.

« Define a subroutine which output 1 if input value x is equal to a, and
output O otherwise. flay=1, f)=0 forx+#a

Example: a=01001

Ulx), ®|y) = [x), ® |y D f(x),
”? \ .

Y qubits\‘ one qubit

a = xyx:3%,x1%9 = 01001




Grover’s algorithm: Black Box (Oracle)

a = x,X3%,x1x9 = 01001 fla) =1
1 x()) f(x)=0, if x #a
0 /% (3) X-gates on the right flip
1 back to the original input.

0 X))

1 X3)

0 Xy)

|y @ f(x))
(1) X-gates on the left flip qubits (2) Five-fold-controlled NOT
X1, X, and x, — target qubit is acts to flip the target qubit y,

flipped only if x4x3x,x,x0 = 01001 only if all control bits are 1.



Grover’s algorithm: Black Box (Oracle)

a = x,X3%,x1x9 = 01001

fl@) =1
Xo) fx)=0, if x £ a
Xy)
) Useful to initialize |y) = |1) and
? apply H before U.
X3) « The output qubit is
& H|1>=%(|O>—|1>)
|y @ f(x))

if fx)=0, [0@f(x)—-[1®f(x)=10)—-11)
fO=1,  [0®f)-1&fx)=1)-10)=~(10)—|1))

Target qubit changes the sign, depending on the function value.

U(10 @ HI1) ) = (=D |x) @ H|1)

Output remains the same.



Grover’'s search algorithm

U( |x) @ H| 1)) = (-1)/W|x) ® H|1) U and Q are linear operators.
fi
Define : Q|x>=(_1)f(x)|x>={ |X>, or x #a
—|a), for x =a
For a general state, |y) = Z C, |x), C = (aly)

W) =Qlw) =), Clx) = C,la) = ) C,|x) —2C,|a) = |w) — 2| a)(aly)

X#a X

(aly’) =(al|ly) —2(a|ly) = —(aly) — Suppose |x) satisfies (x|a) =0 forx #a

(a, v ={a,|y) Define such |x) as |a;) with(a|a;) =0
a a A
A > A a-a, =0
: L L
/l—a(v-a) v-a=-Vv-a

>

3‘&_L=7-&l

reflection around the direction perpendicular to a



Grover’'s search algorithm

« Consider uniform superposition of all possible basis states.

|wp) = H®"|0) = —2|x> N = 2n (alay) =
(ala) =1
|V/o>_—|a>+ Ial)—s1n00|a)+cosﬁolal) (a la,) =1
la,) = %) |a,) is the normalized uniform superposition
1
VN -1 #a =0 of all basis states perpendicular to | a)

<a|y/0)—L—s1n00 (a, |yy) = N1 = cos 4
|a) \/N L1% N 0

1
N
very small for a large N

. Probability of |y) beingin |a) = |{(a|yy)|* = sin?@, =

_ 2,

' - Grover's algorithm: iteratively rotate |yy,) (very
close to |al) initially) to the direction close to

> la) | a) axis so that measurement returns a high

— probability = amplitude amplification




Grover’'s search algorithm

A - Reflection about |a,)

lw') = O lyg) = lw) —2|a){alwy)

lyo) .« O reflects |yy) about |a, ) axis

O|x) =|x) forx #a, Ola;)=|a,)

> |aJ_> 0|a>=—|a> |:> ﬂlpsla> to _|a>

lyp) = sinf,y|a) + cosGyla,)
ly) = Oy
Oy = O(sin90|a) +cos«90|aL)>

= —sinfy|a) +cosby|a;)



Grover’'s search algorithm
|a)
lyy) = SO |yp) - Reflection about |yy) (initial state)

|§) — &) =S19) =2]wp){w| &) — | §)
17 (wol @) = 2w lwo)(wo 1 @) — (wol @) = (ol )

— component along |y,) does not change.

» |a,) (oLl @ = 2¢woL lvo)wol @) — (wor | @) = — (wpr | @)

. — component perpendicular to |1//0) changes the sign.
A |y) =0y

G =S50 O: reflection of |yy,) about |a, )
S: reflection of | ') = O |yy) about initial state |yy)
G: Grover operator rotates the initial state |y) by 26, counterclockwise
(toward the direction of |a) axis)
Effect of 1st Grover iteration: rotate the initial state |yy) by 26, counterclockwise.

| ;) making angle 6, to |a,) axis, 6, = 6,+ 26,



Grover’'s search algorithm

W) = 056, |a,) +sin6),| a)

m =50 m
| W) | W) O] 1//m> rotates about |Cll> by angle 29m

lw,,) SO |y, rotates by angle 2(6,, + 6,) counterclockwise.

0., =0 +20, 0, =C2m+1)6,

m

e (aly,) = sin, = sin|(2m + 1),

- Optimal number of Grover iteration: 6, = 7/2

220, =Cm+1)0,=Cm+1) sin—l(L>
2 T VN
For a large N, m = Z\/N

« When 8, = /2, measurement gives a with high

probability.
10)®" pen — - —/M7§ . For any value of 6, such that ) <0,~ \/_ < 1
...... N
1) > ° “ VN < <3ﬂ N, G Igorithm ret
I — — - — m < —+/ N, Grover algorithm returns
< > | a) with probability > 1/2.

0 (\/N ) times



Grover’'s search algorithm

|a)
|a) |a) A
A A | l//1> =50 | V/O>
|l//0> | l/’o)
> |a)) » |a))
ly") = O |yy) A y) = 0|y
Amplitude Amplitude Amplitude
e R T 1. T 1<
L Items
L\ Ttem: |\ Items
0 7 0 / >
) N N 0 w) N



Grover’'s search algorithm

0)®” ®n — - — A
10) 7 G G M « Optimal number of Grover iteration: 6,, = 7/2
IIIIII ﬂ 1
11) > = On (2m+1)6, (mﬂ)sm <\/N>
< > For a large N, m = Z\/N

- When 8, = /2, measurement gives a with high probability.

3 3 : :
. For any value of 8, such that % <6< Tﬂ — g\/ﬁ <m< ?ﬂ\/ﬁ Grover algorithm returns | a) with

probability > 1/2.
T
. Probability decreases for m > Z\/N

« Operational count of the Grover algorithm = 0(\/N) — quadratic speed up compared with O(N)
count on a classical computer.

« Quantum advantage: superposition and N = 2" values of f(x) evaluated in parallel
« Operation count of O(1)?
- Measurement returns only one (x, f(x)) value

« Requires additional operations — 0(\/N)



https://arxiv.org/pdf/1703.10535.pdf
ARTICLE

Complete 3-Qubit Grover search on a
programmable quantum computer

C. Figgatt 1 D. Maslovm, K.A. Landsman', N.M. Linke', S. Debnath! & C. Monroe'?3

The Grover quantum search algorithm is a hallmark application of a quantum computer with
a well-known speedup over classical searches of an unsorted database. Here, we report
results for a complete three-qubit Grover search algorithm using the scalable quantum
computing technology of trapped atomic ions, with better-than-classical performance. Two
methods of state marking are used for the oracles: a phase-flip method employed by other

experimental demonstrations, and a Boolean method requiring an ancilla qubit that is directly
equivalent to the state marking scheme required to perform a classical search. We also report
the deterministic implementation of a Toffoli-4 gate, which is used along with Toffoli-3 gates
to construct the algorithms; these gates have process fidelities of 70.5% and 89.6%,

Amplification

,.llllllll - A

respectively.
/,llllllll ouce| ABSO008-
N-1 N-1

- N-1
> M) + 2, > |b) @A+, Im)+@A-%) Y |b)
x=0 b=0,b+m b=0,b+m

Repeat O (VN) times
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Editors’ Suggestion

Quantum amplitude-amplification operators

Hyeokjea Kwon® and Joonwoo Bae
School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea

M (Received 21 July 2021; revised 17 November 2021; accepted 3 December 2021; published 27 December 2021)

In this work, we show the characterization of quantum iterations that would generally construct quantum
amplitude-amplification algorithms with a quadratic speedup, namely, quantum amplitude-amplification opera-
tors (QAAOs). Exact quantum search algorithms that find a target with certainty and with a quadratic speedup
can be composed of sequential applications of QAAOs: existing quantum amplitude-amplification algorithms
thus turn out to be sequences of QAAOs. We show that an optimal and exact quantum amplitude-amplification
algorithm corresponds to the Grover algorithm together with a single iteration of QAAO. We then realize
three-qubit QA AOs with current quantum technologies via cloud-based quantum computing services, IBMQ and
IonQ. Finally, our results show that the fixed-point quantum search algorithms known so far are not a sequence
of QAAOQs; for example, the amplitude of a target state may decrease during quantum iterations.

https://arxiv.org/pdf/2105.09559.pdf
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FIG. 1. (a) The Grover iteration corresponds to consecutive rotations in the space spanned by a target state |t) and its complement |¢-).
(b) The probability of finding a target state is plotted in the case of eight qubits. The probability is monotonically increasing. (c¢) The path of
an evolving state in the sphere is shown by Grover iterations from an initial to target states.
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Probability of finding a target
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FIG. 4. Quantum amplitude amplification is performed in the case of eight qubits. The x axis shows the number of oracle uses, and the y
axis shows the probability of finding a target state. (a) The 7 /3 algorithm is plotted [19]. The amplitude increases all the time until 10* oracle
calls, without a quantum speedup. (b) A fixed-point quantum search with optimal query complexity is plotted [20]. The amplitude of the target
state decreases in the meanwhile, and the oracle is called 45 times. (¢) QAAOQOs are randomly generated and concatenated so that the amplitude
keeps increasing until it reaches 1 after the oracle calls 50 times.
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Extension to more than one special value

«  What if three are M solutions, a;,, 1 =1,2, -, M
1

 Superposition of all special states: lay=— ) |x) (ala) =1
\/M x€{a;} <a | ClJ_> =
« Uniform superposition of all other states: |a,) = Z | x) {a,|a) =1
N=M g
" M N-M
+ Initial state:  |yp) =1 /= Ja) +1/——1ay) (v L) = 1
N N
. , M
|a> =Sln90|a>+C0890|aJ_> Sln90=<a|l/jo>= W
A
Y& o)
N 10 V n |N
' . MKN,Ox— > m=—4/—
2 4V M
> |ay)
N-M



Quantum Counting

« What if we had no prior knowledge of M?

- Grover operator G rotates vectors in |a) — | a, ) plane by angle 26,

, M
sin @, = N

G- (cos 20, —sin 290> 216,

: —>  elgenvalues e
sin 26, cos 20, 5

—  Phase estimation

—>  Quantum algorithm can tell us whether
a special value exists at all, i.e., M=0.



Shor’s algorithm



Modular Exponentiation

« Taking powers of a number modulo some other number.

0 _4 , .

2"mod 7 =1 mod?7, The period of order of the modular exponential =r = 3
2! mod 7 =2 mod 7,

2° mod 7 = 4 mod 7, J(x) =2" (mod 7)

23 mod 7=8 mod 7= 1 mod 7,

24m0d7:16m0d7:2m0d7,
2 mod 7 =32 mod 7 =4 mod 7,
26m0d7:64m0d7:1m0d7,
2" mod 7 = 128 mod 7 = 2 mod 7,
2% mod 7 = 256 mod 7 =4 mod 7,
2° mod 7 =512 mod 7 = 1 mod 7,

f(x+r)=2"" (mod 7)
= 2" 2" (mod 7)
= 2* (mod 7) = f(x)



Modular Exponentiation

3% mod 10 = 1 mod 10,
3! mod 10 = 3 mod 10,
32 mod 10 =9 mod 10, f(x) = 3* (mod 10)
33 mod 10 = 27 mod 10 = 7 mod 10,

3* mod 10 = 81 mod 10 = 1 mod 10,

3% mod 10 = 243 mod 10 = 3 mod 10,

3% mod 10 = 729 mod 10 = 9 mod 10,

37 mod 10 = 2187 mod 10 = 7 mod 10,

3% mod 10 = 6561 mod 10 = 1 mod 10,

The period of order of the modular exponential =r =4

» Period finding or order finding plays an important role in number theory.

* Note the period r must be less than N, and so the challenge is to find the
period for large N.



Single Modular Exponent

* Finding a single modular exponent is fast using the repeated squaring method.
For example, say we want to find 91*° (mod 131).

* we express the exponent in binary:

43 _ 1010112 9143 mod 131 = 911'32+0-16+1-8+0~4+1~2+1-1 mod 131

_ 1-32 0-16 1-8 0-4 1-2 1-1

—1-3240-16+1-84+0-4+1-24+1-1. - (9132)1(9116)0(918)1(914)0(912>1(911)1 mod 131

91" mod 131 = 91 mod 131,

2 . .

917 mod 131 = 8281 mod 131 = 28 mod 131, e Although calculating a single modular
4 _ 2\2 _ 2 _ _ . . .

91* mod 131 = (92%)% mod 131 = 28% mod 131 = 784 mod 131 = 129 mod 131, exponential using the previous

91% mod 131 = (92*)? mod 131 = 129? mod 131 = 16641 mod 131 = 4 mod 131, :
6 - ) repeated squares method is fast,

91"° mod 131 = (92°)” mod 131 =4 mod 131 = 16 mod 131, findi h od s sl b

9132 mod 131 = (92'°)> mod 131 = 16% mod 131 =256 mod 131 = 125 mod 131. nding t. € period 18 SIow because,

when N is large, we may need to

91% mod 131 = (125)!(16)°(4)! (129)°(28)! (91)! mod 131 calculate many individual modular
—125-4-28-91 mod 131 exponentials before a pattern forms.
= 1274000 mod 131 There i1s no known efficient algorithm
=25 mod 131. for period finding.



Shor’s algorithm:
Period finding to factor an integer

- Example: take two large primes, p and q. Form the product N = pg. Goal is

to find the two factors p and g, when only N is given. — classically hard
problem.

* For application in cryptography, p and q have around 600 digits (2000 bits)

(1) Choose a random integer a with no factor in common with V.

(Euclid algorithm can determine efficiently whether /N and a have a
common factor or not)

If they have a common factor (unlikely), we have found a factor of NV and
problem is solved.

(2) Compute f(x) = a* (mod N)
One can always find r such that a” = 1 mod N for a and N, which are
relatively primes (coprime). (may not be efficient, though.)



Euclid’'s algorithm

« An efficient method for computing the greatest common
divisor (GCD) of two integers (numbers).

« Suppose a > b and a = gb + r, where q is a quotient and r
IS a remainder.

 The remainder theorem says gcd (a, b) = ged (b, r).
 Repeat until the remainder becomes 0.

gcd(a,b) = ged (b, r) = ged (1, 1)
a=qgb+r, b=qr+r
a=72, b=20, 72=2*30 + 12

b=20, r=12, 20=1*12+8
r=12, r'=8, gcd(12,8)=4

gcd(72, 20) = ged(2+30+12, 20) = ged(12, 20)



Period finding to factor an integer

(2) Compute f(x) = a* (mod N)
One can always find  such that a”" = 1 mod N for a and N, which are
relatively primes. Then the function repeats
f(x+r)=a™ =a* (mod N) = f(x), where r is the period (or order)
of the function.

Take N = pg = 91. (p=13 and q=7)
Take a = 4. No common factor with N=91. — f(x) = 4" (mod 91)

: a*=T74%x4=296=3x%x91+23=23
: a*=23xX4=914+1=1 (mod 91)

x=1, a*=4

x=2, a*=16

x=3, a* = 64 a=4
x=4, a*=64x4=256=2%x914+74="74 :> r==6
x=35

x=06



80 | | | |

70 |- -
60 |- _
50 |- -

40 |- —

4 (mod 91)

30 |~ —

20 —

10 |- —

The function f(x) = 4% (mod 91 ). The period is seen by inspection to equal 6.



70 |~ —

60 [~ —

40 —

4 (mod 91)

30 |~ —

10 —

The function f(x) = 19* (mod 91 ). The period is seen by inspection to equal 12.



Period finding to factor an integer
fx+r)=a™ =a* (mod N) = f(x)
Two conditions: f(x) = a* (mod N)

(1) r must be even, so /2 and a’”’? are integers. a"=1mod N
ad=1— @?=-D@?+1)=0

(2) a”” = 1and @ + 1 are not divisible by N but their product

(@ = 1)(a”? + 1) is divisible by N

soa”?+1=c-panda”—-1=c"q

p=geda” +1,N) g = gcd(a”? —1,N) N =pg =91. (p=13 and q=7)
= ged(65 ,91) = ged(63 ,91) a2 = 452 — 43 — 64
— ¢cd(26,65) — ¢cd(28.63) 4
= gcd(13,26) = gcd(7,28) 6

= gcd(0,13) = gcd(0,7)



Factoring and RSA encryption

* Factoring is at the heart of RSA (Rivest-Shamir-Adleman)

> (oo )

encryption.

(1) Bob picks two large prime numbers, p and q.

(2) Send to Alice their product NV = pg (on the public channel) not p and q

separately.

-N: O(100) digit ~ a few thousands bits
Cannot be factored on a classical computer
- (ex) N is 400 digits (1000 bits)

1
InN  In;o(400)

0.001

- Try to pick a number in ©(100) ~ ©®(1000) — may get a prime number

- can efficiently test if a number of prime or not,

- but no effective algorithm to do prime factorization of a composite number

-

~

Probability of picking a

&

prime number of N
digits at random
~ 1/In(N)




Factoring and RSA encryption

(3) send a large “encoding number”, ¢ which has no factors in common with
(p—1)(g—1) - gcd(c,(p—1)(g—1)) =1 — coprime, relatively prime.
- probability that two random integers have no common factors is greater
than 1/2.

- not difficult to find c.

-Bob knows p, g, (p — 1)(g — 1), therefore can determine d such that
cd=1mod (p—1)(g—1)

- algorithm to compute d is extension of Euclid’s algorithm and efficient.

- the private key d is unique.

- Alice (and anyone on public) knows N and ¢ (notp, g, d).
- The private key (known only to Bob) is p and q (and hence d).



Factoring and RSA encryption

(3) a = original message that Alice wants to send.

Alice computes b = a“ (mod N) = the encoded message,
(b is a large number) and send it to Bob (on the public channel).

(4) Bob computes a = b (mod N) = a“¢ (mod N)
(can crack the encryption if d is known.) cd=1mod (p—1)g-1)

ex)yp=7,q=13, N=91
(p—1)(g—1)=6X%x12 ="72. Take c=11, no common factor with 72.
cd=11X59=649 =9x 72+ 1 (mod 72) — d=59.

Arandom message: a = 51 withc =11, d =59, N =91
Encoded message: b = a¢ (mod N) = 51" (mod 91) = 25
Decoded message: »% (mod N)=257=51 - a



Example: classical factoring algorithm

Classical algorithm: try to factor N=15.

(1) Pick any number y less than 15: y=13
(2) Calculate f(n) = y" (mod 15) and find the period (order) r of f(n)

n=1: f()=13'=13 13 (mod 15)
n=2: f2)=13*=169=15x11+4 4 (mod 15)
n=3: fB)=133=(15x114+4)x13=4%x13=52=15x3+7 7 (mod 15)
n=4: f@=13*"=7x13=91=15x6+1 1 (mod 15)
Period: y'=1(mod N),  y™ =y*(mod N), Jfr+x)=fx) — r=4

(3) Period is even: ¥ =2s. y" =1 (mod N)andy* =1 (mod N) — (¥ —1)(y*+ 1) =0 mod 15)
— (=1)»*+1)=kN — gcd(y* £ 1, N) will give facotrs of N.

132—-1 =168, gecd(168,15) =gcd(15x 11+ 3,15) = ged(3,15) =3 168 x 170 = 1904 x 3 x 5
132+1 =170, gcd(170,15) = ged(15x 11+ 5,15) = ged(5,15) =5

We assumed y°* + 1 # 0 (mod N). If y* = — 1 (mod N), algorithm fails. Pick a different y.

Problem of factoring is the problem of finding even period
E> r = 2s for which y* + 1 is not equal to O (mod N)



Shor’s algorithm

Efficient factoring algorithm — security

1st step in Shor’s factoring algorithm is to reduce the problem of
factoring an integer N to the problem of order finding.

Assume N is odd.
Suppose we find a solution to x> = 1 (mod N) where x # 1, x # N+ 1.

(x—1)x+1) =0 (mod N)

— N must have a common factor with x + 1 or with x — 1.
—Can not be N, since x # 1 (ignore trivial solution), x # N = 1
— A factor of N is either gcd(x + 1, N) or gcd(x — 1, N)

— Use Euclid algorithm to find a gcd.

Therefore, If we can find x such that
x>=1 (mod N) (x # 1, x £ N+ 1) then we can factor N.



Euclid’'s algorithm

« Suppose a > b and a = gb + r, where q is a quotient and r
IS a remainder.

 The remainder theorem says gcd (a, b) = gcd (b, r).
* Repeat until the remainder becomes 0

gcd(a,b) = ged (b, r) = ged (v, 1)

a=qgb+r, b=qr+r



Shor’s algorithm

If we can find x such that x> =1 (mod N) (x # 1, x # N £ 1) then
we can factor N.

Pickarandomy, 1 <y<N-1
—If gcd(c,d) # 1, we found a factor.

—If gcd(c,d) = 1, no common positive factors.
» Yy and N are coprimes or relatively prime or strangers.
» y Is coprime with N.

Probability that two integers m and n picked at random are relatively

6
primes = P((m,n) = 1) = [{2)] ™' = — = 0.60792---
T
Probability that three integers k, m and n picked at random are
relatively primes = P((k,m,n) = 1) = [((3)|~! = 0.83190---
If gcd(y,N)=1,y and N are coprime.
The order of y is the smallest integer such that y" = 1 (mod N)



Order and Modular Exponentiation

The order (r) of y is the smallest integer such that y" = 1 (mod N) for
two relatively prime y and N.

The group of numbers coprime to N forms a cyclic group (7).

Every element can be written as g’ (mod N) for a generator g.

If ris even, x = y”/2 and x? = y" =1 (mod N), since N is odd.

If the probability of a random coprime number y having an even order is
high, we see that we have reduced the factoring problem to the problem
of finding the order of a number. (See Nielsen and Chuang, Quantum
Computation and Quantum Information for details).

N=5, The group of numbers coprime to N forms a group, {1, 2, 3, 4}



Order and Modular Exponentiation

Modular exponentiation

— For a modular exponentiation function y = f(x) = a* (mod N), the
order of the modular exponentiation (the order of @ mod N) is the
smallest positive integer r such that a” = 1 (mod N).

a = kN + 1
a' = kNa +a
a!' = a (mod N)

a = a* (mod N)

—The ris the period of the function: f(x + r) = f(x)
How do we find the order of a?

— Calculate modular exponential function f(x) for many values of x in
parallel, and use QFT to detect the period in the sequence of function
values.



Order Finding (Period Finding)
0=2" 10\®K _{ ok IQFTl_m

source qubits

M
U
N = 2" R
target qubits | 0)=" _/M%
| W) ly) |y,) lws) )

— NK .
Begin with two registers: Q=2 for source qubits

N =2" for target qubits
(1) Both registers are initialized to | y) = 10)®% ® |0>®n

(2) Apply Hadamard to the source qubits:  H®X|x) = 2 (=17 |y)
2 y=0

Superposition of all Q = 2K states

1
ly) = H®X|0) = | v)
| \/Esz“



Order Finding (Period Finding)
0=2"  10)®K _fyex | QFT (7

source qubits

M
U
N=2" ®
target qubits [0)=" —/Mﬁ
| w) ly) |y,) lws) )

1 S
(2) Apply Hadamard to the source qubits:  H®X|x) = Z (=D | y)

K
1
lyy) = H®X |0y =—— > |y)
1 \/EKg

2 y=0

Superposition of all Q = 2X states

0-1

1
Equivalently apply QFT: lg) — QFT|q) = 0 Z eXP(

il ) |g")

q'=0

1S
Hadamard = multi — dimensional DFT 10) — QFT|0) = 0 D 1a)
q'=0



Order Finding (Period Finding)
0=2"  10)®K _,ex | QFT (7

source qubits

M
U
N=2" ®
target qubits [0)=" _/M%
| w) lyy) 2, lws) )

(3) Apply a quantum gate U, that implements the modular exponentiation

g — f(g) =a? (mod N) for a randomly chosen a

f(g) has r as its smallest period: ~ f(g +71) = f(q) a" =1 (mod N)
a™ =1 (mod N)
f(q) is distincton [0, 1,2,,---, ¥ — 1] otherwise it would have a smaller period.

[ I
) = Uly) = Uy |[—= X, 1) ®10)| =—= ¥ |) ® |a? (mod N))
\/Q g=0 \/QCI:O \qf-/

There should be r different function values.



« X —> f(x) is not suitable becausef(x) is not unitary in general.

- (Y — y®f() — Ly f() Bfx) =, y)

s(we)=mene | u [
| y) — — |y @ f(x))
|O> Uy )
10) —
) =— (10 1O +1D®1£(1)) = T, —=12) & )
V2 01 V2

0-1
) — OFTI)) =7 3 exp(ZHL) 10)

q=0




Order Finding (Period Finding)
0=2"  10)®K _,ex | QFT (7

source qubits M

N = e ]0)®” A

target qubits My

. lyy) |y,) lws) L)

(4) make a measurement on the second register. — must obtain a value which
has to be one of r-distinct values of f(g) —> f(qy) — all superposed states
of the 1st register inconsistent with the measured value must disappear.

— for simplicity, assume O = mr — there are m-different values of g which

have the same value of f(g) — exactly m = Q/r states of register 1 will
contribute to the measured state of register 2.

P

, — Periodic superposition of states in register 1
[J 7+ 40) ® 1f(90))  with period r (which is what we want to measure).

m ._
v =0 —— how do we measure r?

1 &
|W3> =

~



Order Finding (Period Finding)
0=2"  10)®K _,ex | QFT [ 7

source qubits

M
N=2" n ]
target qubits | O> KM7§
2, 1) |¥) lv3)  lya)
A .
(5) To measure r, use superposition before measurement! lvs) :ﬁ Z:; i+ do0) ® 1/ (@0)
\/7 _ 1 a=jr+q (a — q, is a multiple of r)
Define: g@)=qV 2 +/m oot Consider
0 otherwise lys) = ). gl@la)  source
a=0 qubits only.

1 ' 27ti(jr+q0)c
— OFT - z' Z +
lyy) = QFT |ys) 7o 4 4 g(jr + qp) 6XP< 0 )IC)

= % ; [ZJ: g(jr + qp) exp( Zﬂi(er)c )] exp( ZEZOC ) |c)




Order Finding (Period Finding)

U
| 0)®" — A
M o 1 _
| o) [ y1) lvo)  lws) ) 0 othervise
1 . 2mi(jr)c 2migyc
= — +
| ys) Vo Z;, [; g(jr + qo) eXp< 0 )] eXP( 0 )Ic) »
If ~ IS not an integer, the sum goes to zero: Z g(jr + qp) exp< ﬂl(jr)c) =
0—-1 1

L k must be an integer, exp[2rzi(r—c>] =1. Z gUr +qo) = mx \/_ v
0 0 |
¥ M non-zero terms

=3 L) 10§ Loy
c 4 k=0




Order Finding (Period Finding)
0 o7

|0)®" — A

M
| ¥0) Y1) lvo)  lws) )
r—1 .
(6) We measure register 1. ly,) = Z 1 eXp( 2ﬂlq0k> |kg)
=0 r r r
Measurement gives a value of c = kQ/r .k
for a random k between O and r — 1. — We know Q,¢ — 0 ==

- If gcd(k, r) = 1, k and r have no common factor.

The ratio ¢/Q as an irreducible fraction and can read off values of k and .
K is chosen randomly by measurement.

For a large r, the probability that gcd(k, r) = 1 is greater than 1/log(7).
By repeating O(logr) < O(log N) times, one can amplify the success
probability of finding r.



Order Finding (Period Finding)

(7) Using order finding to factor a large number N

We have the order r of a* (mod N).

Check if 7 is even and "> (mod N) # — 1

- y=ad",y’=1(mod N) - y>—1=(y+ 1)(y—1) is divisible by N.
N has a common factor with y + 1 ory — 1.

\o must be one of gceds, gcd(N,y = 1)
Use Euclid’s algorithm for gcd(y, x).

Let us assume x,y : integers, x >y, and z = gcd(x, y).
— Xx,yandx —y,x — 2y, -+ are multiple of z.
— the remainder r = x — ky < y is also a multiple of z.
— Ifr =0, z =y — problem solved.
z = ged(x, y) = ged(y, ) = ged(ry, rp) = ged(ry, ) =« = ged(7ry,, 7p41)

ri, Iy, +++ are the successive remainders r; = r,_; — k;.
The last non-zero remainder is 7 .



Shor’s factoring algorithm

. If N is even, return the factor 2 (check for other small prime factors
suchas 3,5 ...)

. Check whether N = a” fora > 1, b > 2. If yes, return the factor
a.

. Randomly choose a between 1 and N — 1. If z = gcd(a,N) > 1,
return the factor z.

. Use the order finding algorithm to find the order of a (mod N).
i.e., rsuchthata” = 1 (mod N).

. Ifrisevenand a’”” # — 1 (mod N), then evaluate

gcd(a’”/2 + 1,N). If one of these is a non-trivial factor (other than

1), return that value as a factor. If not, go back to step 3 and
repeat.



Shor’s factoring algorithm

 To factor an integer N, Shor's algorithm runs in polynomial time,

meaning the time taken is polynomial in log /N, the size of the
integer given as input. Specifically, it takes quantum gates of order

O ((log N)z(log log N)(logloglog N)) .

 This is significantly faster than the most efficient known classical
factoring algorithm, the general number field sieve, which works in

sub-exponential time: O <e 1.9(log N)'"(log log N)2/3>



Example: classical factoring algorithm

Classical algorithm: try to factor N=15.

(1) Pick any number y less than 15: y=13. We want y and N are relatively primes.
(2) Calculate f(n) = y" (mod 15) and find the period (order) r of f(n)

n=1: f()=13'=13 13 (mod 15)
n=2: f2)=13*=169=15x11+4 4 (mod 15)
n=3: fB)=133=(15x114+4)x13=4%x13=52=15x3+7 7 (mod 15)
n=4: f@=13*"=7x13=91=15x6+1 1 (mod 15)
Period: y'=1(mod N), y™*=y*(mod N), Jr+xn=fx) — r=4

(3) Periodis even: ¥ =2s. y =1 (mod N)andy** =1 (mod N) — (' — 1)(y*+ 1) =0 (mod 15)
— (=1)»*+1)=kN — gcd(y* £ 1, N) will give facotrs of N.

132—-1 =168, gecd(168,15) =gcd(15x 11+ 3,15) = ged(3,15) =3 168 x 170 = 1904 x 3 x 5
132+1 =170, gcd(170,15) = ged(15x 11+ 5,15) = ged(5,15) =5

We assumed y°* + 1 # 0 (mod N). If y* = — 1 (mod N), algorithm fails. Pick a different y.

E> Problem of factoring is the problem of finding even period r = 2s
for which y* + 1 is not equal to O (mod N)



Example: Shor’s factoring algorithm

The idea of Shor’s algorithm

1. Evaluate all values of periodic function y"* (mod N) simultaneously.

2. Adjust the probability amplitude to get a value of the period r with high probability.

(In some cases, 1/2 is good enough. The finite FT can transform cyclic behavior of the periodic
function into the enhanced amplitude of some states.)

(1) Choose the number of qubits s0 2" > N. n =4, 2* > N = 15.

Pick y such that gcd(y, N) = 1. Pick y=13.

(2) Initialize two quantum registers of n=4 qubits to | 0) state.

|l w) = 10000) ® |0000) = |0)®* ® |0)®*

0"
|0>®n
| wo) ly1)

B QFT
U

ly) lvs)  lw)

-7

M

(3) Randomize 1st register. Make the superposition of states with all possible four-qubit basis states.

|0) = | 0000)
|1) = [0001)
12) = [0010)

13) = [0011)

1
[0000) — ——— (]0000) + [0001) + - + | 1111)) =

V16

|4) = 0100)
|5) = 10101)
|6) = [0110)
|7) = |0111)

|8) = | 1000)
19) = [1001)
110) = | 1010)
|11) = [ 1011)

112) = | 1011)
|13) = | 1100)
|14) = | 1101)
115) = | 1111)



Example: Shor’s factoring algorithm

(4) Compute the function f(k) = 13% (mod 15) = y* (mod N) on the second register.
1 15
lyy) = ——

V16 (5 V16
k 0 1 2 3 4 5 6 7 8 9 10 11 12
fky 1 13 4 7 1 13 4 7 1 13 4 71 1
1
) =——(10@ 1)+ 1) ®13) +[2) @ 4)+13) @ |7)
V16
HHBI1)+15)®113)+16)® [4) +17) ®17)
H18)@11)+19)®113) +[10) ® [4) + 1)) ®17)
H12) QD) +113)®[13) +14) @ [4) + 15 @ 7))

Y 0@ 1) =——(10 @ 1£O) +11) ® (1) + -+ 115) ® 1f(15))

13 14 15
13 4 7
Computed in

one operation

(5) Perform measurement on 2nd register. Superposition |y,) will collapse and four terms survive.

|w3>=\/116(|2>®|4>+|6>®|4>+|10>®|4>+|14>®|4>)

Suppose we get |4) = |0100). 10)® _ﬁ_

U

|0>®n

| wo) lvy)

2,

(A

M

lws)

QFT

lwy)




Example: Shor’s factoring algorithm

15 . S 2riu?
(4) Perform QFT: 1» — Tzep<2,ilgk>|u> 12) — \f_1 >, exp( =) 1w
L iu
|0)®K U | QFT /f 16) — Tzexp<2”166>lu>
Qn | 1 & 27iul0
|0) A 10 — — ¥ enp() 1
| wo) ly1) ly) lvs)  lyy)

14y — — Z <2mu14> 1)

/ / 1
|'7”4> — Z |I/l> 2riu2/16 + 62mu6/16 + 62ﬂ1u10/16 + 62ﬂ1u14/16] — Z |M>Au
8 u=0

2____1

Probability pf getting results |u) after 1st register is measured: P, = ‘ §A“ Py=P,=Py3 =P, =
We obtain states, |0), |4),|8), | 12) with equal probability. ue
Probabilities are non-zero only if 16 divides ur where r is the period. N

E> Results of Shor’s algorithm is one of states | 0), |4), | 8), | 12) with equal
probability, and the period satisfies ur = 16 k.




Example: Shor’s factoring algorithm

Results of Shor’s algorithm is one of states | 0), |4), | 8), | 12) with equal
probability, and the period satisfies ur = 16 k.

What is the probability to get the correct period from the first try?

|u)y = 0) Does not give any information. Rerun algorithm.
|uy = 14) 4r =16k. Lowestk = 1. Period is r = 4
|u) =[8) 8r = 16k. r =2 incorrect. Rerun algorithm.

|u) = 112) 12r=16k. k=3. r=4

Algorithm has 1/2 probability of success from the 1st run.

« Generalization: Shor’s original paper contained
* Quantum factoring algorithm

« Algorithm for the discrete logarithm problem: generalization of Shor’s
algorithm has been obtained for problems falling in the general class of
hidden subgroup problems.



Basic Group Theory

Group: a set G with an associative binary operation e satisfying

- For any two elements g, and g, € G, g, * g, € G (closure)

« de€&€ Gsuchthateeg = gee = gfor Vg € G (identity)

- dg7' € Gsuchthatg™leg=ge g™l =efor Vg € G (inverse)

e g1°(gr*g3) = (g4 * g (associativity)
(Z,, + (mod n)) ={0,1,2, ---,n — 1} forms a group under addition modulo n.
Set of k-bit string, ZS forms a group under bitwise addition modulo 2.

For a prime p, {1,2, ---,n — 1} forms a group Z;f under multiplication modulo p.

U(n): all unitary operators on an n-dimensional vector space V.

Order = # of elements = | G|

Finite group if | G| < 00. Otherwise G is an infinite group.

The order of an element g = the size of the subgroup of G that it generates.
« The order of an element g must divide the order of the group.

A set of generators of a group G is a subset of G such that all elements of G can be written
as a finite product of the generators and their inverse.



Basic Group Theory

A set of generators of a group is independent, if no generator can be written as a product
of the other generators.

A group is finitely generated if a finite group of generators exists.
If a group can be generated by a single element, it is cyclic.

The centralizer Z(H ) of a subgroup H of G is the set of elements of G that commute with
all elements of H: Z(H) = {g € G|gh = hg for all h € H}.

For H < G, Z(H) is a subgroup of G.
If g8 = g, * g, Gis Abelian or commutative.
Every finite Abelian group is isomorphic to a product of one or more cyclic groups, Z,..
If n = pq and p and g are relatively prime, Z, = Z, X Z , Z, is isomorphicto Z, X Z,,.
Any Abelian group A has the unique decomposition (up to ordering of factors) into cyclic
groups of prime powerorder: A 2 Z X Z X+ XZ.

. |A| = Hcl- (prime factorization) where ¢; = pl.si and p; are distinct primes

i

Product group G X H with operations e and o = {(g, h) | g € G, h € H} with
(81, 11) * (82, 1) = (&1 &2, 1y ° ).



Discrete Logarithm Problem

All standard public key encryption system and digital signature schemes are
based on either factoring or discrete logarithm problem.

Z;f: group of integers {1, 2, -+, p — 1} under multiplication modulo p.
. b: generator of Z;k (any b relatively prime to p — 1 will work)

« The discrete logarithm of y € Z;f with respect to base b is the element
X € Z such that b* =y (mod p).

Discrete logarithm problem: Given a prime p, a base b € Z;f and an
arbitrary element y € Z7%, find an x € Z such that b* =y (mod p)

« Find the discrete logarithm of y € Z;f with respect to base b such that
b* =y (mod p)
« For alarge p, this problem is computationally difficult to solve.

« Itis a special case of Abelian hidden subgroup problem.
« Can be generalized to arbitrary finite cyclic groups.



Hidden Subgroup Problem

« Hidden subgroup problem: Let G be a group. Suppose a subgroup
H < G is implicitly defined by a function f on G in that f is constant and
distinct on every coset of H. Find a set of generators of H.

« Aim is to find an algorithm that computes a set of generators for H in
O((log| G |)*) steps for some integer k.

« Finite Abelian hidden subgroup problem: Let G be a finite Abelian group
with cyclic decomposition G = Z,, X -+ X Z,, . Suppose G contains a

subgroup H < G that is implicitly defined by a function f on G that is
constant and distinct on every coset of H. Find a set of generators.

- Period finding as a hidden subgroup problem: f'is a periodic function on
Z \ with period r that divides /V. The subgroup H < Z,, generated by r

is the hidden subgroup. Once a generator & for H has been found, the
period 7 can be found by taking the greatest common divisor of 7 and N.

* H is a subgroup of G. The left coset is definedas gH = {gh | h € H, for all g € G}



Hidden Subgroup Problem

* The discrete logarithm problem as a hidden subgroup problem

. Fora givengroup G = Z;f where p is a prime and base b € G and
an arbitrary y € G, find x € G such thaty = b* (mod p).

Consider f: GXG — G where f(g, h) = b8 y".

The set of elements satisfying f(g, #) = 1 is the hidden subgroup
H of G X G, consisting of tuples of the form (mx, m).

From any generator of H, the element (x, 1) can be computed.

Therefore solving the hidden subgroup problem yields x, which is
the solution of the discrete logarithm problem.



Quantum Phase Estimation and
Finding Eigenvalues



Quantum Phase Estimation and
Finding Eigenvalues

Good example of phase kickback and use of QFT
Unitary operator U: Ulu) =e?|u), 0<¢ <2z

How to find eigenvalue”? = How to measure the phase?
How to find ¢ to a given level of precision?

Find the best n-bit estimate of the phase ¢

Given a unitary matrix U and one of its eigenvectors |u), find or
estimate its eigenvalue.

U |u) = ()| u) = % | u)



Quantum Circuit for QPE
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Quantum Circuit for QPE
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Quantum Circuit for QPE

(100 + €27 1D)) (10) + €27 11) ) (10) + e 1)) (10) + € 11) ) @ )

lwy) =

Z eV | y) @ | u) Phase kick-back: phase factor e'?Y has been

\/En r \/, propagated back from the second eigenstate
register to the first control register

QFT | Cl) — eZﬂiak/2” |k> > 2ria _ l¢ > ¢ — 2]Z'<ﬂ + 5)
V2 i 2n 2"

2ra : cf L : : a=da, 14,2ty

‘> is the best n-bit binary approximation of ¢ .
I &
Flj) k)
-1 [ P 2 j=0
QFT ™ |y) = 2 Z e I x) <2m’>
x=0 w = CXp\ -
| W3> — QFT — Z Z 2ﬂz(a—x)y/2" 27xidy | X> R | l/t>
x=0 y=0

Operate only n control register.



Quantum Circuit for QPE
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Operate only n control register.
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2) 1§85 £ 0 Measuring 1st register and getting the state |x) = | a) is the best n-bit

4
estimate of ¢b. The corresponding probability is P, = | C,|* > — ~ 0.405
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_2«  Quantum Circuit for QPE
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Quantum Circuit for QPE

2710 Length of minor arc = 0 = 276

»
L

Length of a cord from 1tor=|1 — r|
length of minor arc 27
A0 ; g =% o0 1=+ <215
1 1 length of cord |1 —r|
Py = . L-r| 1 (462" P4 0405
P = 22n | 1—r —22n \ 276 o2 '

« We will get the correct answer with probability greater than a constant.

. Probability of getting incorrect outcome can be calculated using |6| >

n+1
. length of minor arc 27o T
D 11-r*"] <2 = < =
length of cord |1 —r] 2
“N\0 , 12 i
y P(y) = 1 [1-7 < 1 2 B 1
Y220 o T2 \35) T 22ey

. |l=r] > 45
c 1

length of minor arc < half circumference

N-bit estimate of phase ¢ is obtained with a high probability.
Need to repeat the calculation multiple times.

Increasing n will increase the probability of success (not obvious but true).
Increasing n (# of qubits) will improve the precision of the phase estimate.

length of cord

diameter

4c?

7R
S R
2R

/2
2



Classical
Solution

Since we are promised that |v) is an eigenvector of U, and its eigenvalue takes the
form ¢, then we know that multiplying |v) by U will result in |v) multiplied by e®,
1.€.,

Ulv) = e ).

If |v) is an N-dimensional vector and U is an N x N matrix, we can write out this
equation as

U11 U12 U1N Vi Vi
Uyi Uy ... Upn V2 o | 2
L =¢ .
Uni Uny ... Uny VN VN
Multiplying out the left-hand side,
Ui +Upva+---+Unvn Vi
Uyivi +Uxpvy +---+Unvn o | 2
. =e
Univi +Unava + -+ +Unnvn VN

We can use any row to find ¢'®. For example, using the first row,
Uvi+Upvy+---+Unyvy = eievl.
Thus the eigenvalue is

o0 _ Uppvi+Upva +---+Unvn
V1 '

This takes N multiplications, N — 1 additions, and one division, for a total of 2N =
O(N) elementary arithmetic operations.



QPE

* More precisely, the algorithm returns an
approximation for the phase, with high probability

within additive error €, using O(log(1/€)) qubits
(without counting the ones used to encode the

eigenvector state) and ©(1/¢) controlled-U
operations.






Support Vector Machine

« SVM is a linear classifier that can be viewed as an extension of the
perceptron (Rosenblatt 1958). The perceptron guarantees that we can find
a hyperplane, if it exists. The SVM finds the maximum margin separating
hyperplane.

. Setup: Define a linear classifier, 1(X) = sign(w - X + b) and assume a
binary classification with labels {+1, — 1}.

 Typically, if a data set is linearly separable, there are infinitely many
separating hyperplanes. A natural question is:

* Q: What is the best separating hyperplane?

« SVM answer: The one that maximizes the distance to the closed data
points from both classes.




Margin
. Margin: A hyperplane is defined through W , b as a set of points such

that H = {X|W - X + b = 0}. Define the margin y as the distance
from the hyperplane to the closest point across both classes.

N A
 Distance of a point x to the hyperplane H?
)—EP — .;C) —d

0=w F+b=W-G-d)+b=W -G —aw)+b
W-X+b ,
Sa=-———r > |d|=
w - w
Margin of H = y(w,b) = min b y(pw,pb) =y(w,b), VB #0
xeD w

Scale invariance



* Hyperplane is scale-invariant so we can choose

Max Margin Classifier

We can formulate our search for the maximum margin separating hyperplane
as a constrained optimization problem. The objective is to maximize the
margin under the constraints that all data points must lie on the correct side
of the hyperplane:

max y(w,b) such that Vi y(w - x;+b) >0 y(w,b) = min | — |
Ww,b ‘ ‘ xXeD |w |
Maximize the margin Separating hyperplanes
1 — - — -
max min | W - X+ b| such that Vi y(w -x;+b) >0

—
wb |wW| xebD

W,bsuchthat W - X + b = 1. The problem
becomes a quadratic optimization problem.

. —_— —
mm | w-w
w

|2 such that Vi y(w - X; + b) > 1




Support Vectors

« For optimal W, b, some training points will have tight constraints,

« Such training points are called support
vectors.

« Support vectors are special because they are
the training points that define the maximum
margin of the hyperplane to the data set and
they therefore determine the shape of the
hyperplane. If you were to move one of them
and retrain the SVM, the resulting hyperplane
would change. The opposite is the case for
non-support vectors (provided you don't
move them too much, or they would turn into
support vectors themselves). This will
become particularly important in the dual
formulation for Kernel-SVMs




Support Vector Machine with soft constraints

n
L=min |W W[+ C) & suchthatViy(W-5+b)>1-¢& and Vi& >0
w,b i=1
n
= L = min |W~W|2+C2 max [1 —y(W - x+b), O]
w.b i=1
- Kernel can be defined as K; = k(X;, X;) = ¢ (X;) - ¢ (X;), where ¢ represents
feature vector: X € RY — ¢(¥) € R? “Feature extraction”

» Support vectors satisfy: | | | ¢2'
V(W pX)+b)=1 e e
|

4]




Kernel Support Vector Machine

» Then the Support Vector Machine with soft constraints has the dual form:

_Here w = 2 a.y.¢p(X;) and h(X) = sign < 2 o yk(X;, X) + b>

Ky=kG%) = §G) - 4E)

min | W - W|* such that Vi y(w - %+ b) > 1
w

h(X) =sign(w - X+ b) -« Linear models for classification
« Support Vector Machines

* Quantum Support Vector Machines
* Quantum Kernel Methods



