Day 3

« Comment on use of quantum algorithm for DM detection
« Grover’s algorithm

 Distance based classifier

« Data reuploading

« PennylLane example for combinatorial problem
—QAOA
— FALQON

— https://drive.google.com/file/d/
1SopdB1k7GUQydhrMZPBFftkaPJsT9XcRT/view?usp=sharing



https://drive.google.com/file/d/1SopdB1k7GUQydhrMZPBFfkaPJsT9XcRT/view?usp=sharing
https://drive.google.com/file/d/1SopdB1k7GUQydhrMZPBFfkaPJsT9XcRT/view?usp=sharing

Application in Dark Matter Physics

» Detection of hidden photon dark matter using the
direct excitation of transmon qubits

— https://arxiv.org/pdf/2212.03884
* Quantum Enhancement in Dark Matter Detection
with Quantum Computation
— https://arxiv.org/pdf/2311.10413
» Search for QCD axion dark matter with transmon
gubits and quantum circuit
— https://arxiv.org/pdf/2407.19755
* Quantum entanglement of ions for light dark matter
detection
— https://arxiv.org/pdf/2311.11632



https://arxiv.org/pdf/2212.03884
https://arxiv.org/pdf/2311.10413
https://arxiv.org/pdf/2407.19755
https://arxiv.org/pdf/2311.11632

» Detection of hidden photon dark matter using
the direct excitation of transmon qubits

— https://arxiv.org/pdf/2212.03884



https://arxiv.org/pdf/2212.03884

Slides taken from T. Moroi’s talk (March 2024)

Transmon qubit: Capacitor + Josephson junction (JJ)

fCJosephson Junction)\

Superconductor

125
115

I(Dm#(l)

+Q Arg{Cooper Pair)= 0,
= K>
-Q
Superconductor I
_ Arg{Cooper Pair)= 0y ) 10>

W

_ 1
20

1 C

2
R 9 Y
J cosf ~ 9 (26)2

H, 9> — JcosO with 0 =05 — 0,4

Transmon qubit has discrete energy levels
= ]0) and |1) can be used as |g) and |e), respectively

= Transmon qubits are used in today’s quantum computers



Transmon qubit couples to external electric field

+Q
Capacitor { d g (&) - (ext)

Charge operator in the transmon limit: C'J > (2¢)*

Q= 502/ (lo)el +1e)ol)

lg) <> |e) transition occurs if DM field generates electric field

e Hidden photon

e Axion (if external magnetic field exists)



Case of hidden photon X, (in mass-eigenstate basis)

1 1 )
L3 =X X" 4 SmA X XP + e Py e (AL + X,)

e: kinetic-mixing parameter

Oscillating hidden photon can play the role of DM

L , 1 . -
X ~ Xy sin(mxt+ «) with ppy = §m%(X2

X = hidden photon field around the Earth
Hidden photon DM induces etfective electric field

—_ J—

EX) = —eX = —EWMiy cos(mxt + «)



Hamiltonian for transmon qubit + hidden photon system

H = wle)(e| — 2ncos(mxt + a)(le){g] + |g){e| )

nza%fE@Nﬁiﬁ:%dVCmmM H = Ho+ AH
(e|At]g)

Schrodinger equation

F0) = Hu®) = o) = Upu(t) [4(0)

Resonance limit w = mx (for nt < 1)

Ve(t)) ve(0)) _ L de" gt (1hg(0)
(%( )) = Upu(t) (%(0)) - (iemnt 1 ) (%(0))

() = bg(t)]g) + e~ e (t)]e)

N~



lg) — |e) transition probability (assuming |(0)) = |g))

‘we(t)‘z = 2

. w # my (off-resonance)

n*t? ' w = myx (on-resonance)
~ 1w —mx)”

Excitation probability for w = mx:

e \2/ mx C d 2/ T
Poe =03 (571) (55,07) (51p7) (ig0,mm)
10 10 1V ) \01pF ) \100 pm /) \100 pis

T = coherence time

Excitation probability can be sizable

= Transmon qubit as a DM detector

:



Search strategy

e For fixed w, repeat the measurement cycle (reset, wait, and
readout) as many time as possible

e Scan the qubit frequency w

Time spent for each frequency

- ~ 10 sec _
(Resettog)) _ Nrep 3~ 10° . gA o
lWait until t = | Il I_g) | L))l Il It_irge -"2 ~ 0 =My
Readout ) ) ) -

Reset to Ig) Readout
(Wy=1e): Signal of DM | ~20ns ~ 100 ns

J I tirﬂe w

Time evolution (with Upm)
T~ 100 us




Discovery reach with 1 year frequency scan (1 < f < 10 GHz)

Frequency (GHz)
10°

10-°
e d =100 um
10-10
10-11 [ O — 01 pF
w 10712 ° Q _ 106
10-13
Lo-14 e Error rate / qubit = 0.1 %

Hidden Photon Mass (eV)

= Using qubit, we may probe parameter region unexplored

= We hope to use qubit for the detection of other DMs



 Quantum Enhancement in Dark Matter
Detection with Quantum Computation

— https://arxiv.org/pdf/2311.10413



https://arxiv.org/pdf/2311.10413

Upm induces pure phase rotation of its eigenstates

1

Eg for a =0: Upy ~ (.5 Zf) with 0=nT
1

= Upm|E) = e™|L) with |£)=—(|g) £ e))

7

We can design quantum operations to enhance the signal

= Quantum enhanced parameter estimation
|Giovannetti, Lloyd, Maccone ("04)]



One measurement cycle for the signal enhancement
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One measurement cycle for the signal enhancement

Ancilla
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One measurement cycle for the signal enhancement

A
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One measurement cycle for the signal enhancement
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One measurement cycle for the signal enhancement

Ancilla

Sensors <

r
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= Ancilla qubit can be excited: Py ~ sin® Ngd =~ N25



Grover’s search algorithm
(Amplitude amplification)



Grover’s search algorithm

Grover’s algorithm involves “amplitude amplification” -
— G. Brassard, P. Hoyer 1997, Lov Grover 1998
— QFT is used for Shor’s and Simon’s algorithms

Example: Find a name in a phone directory (ordered list)

— Go to the midpoint of the list, see which half contains the name. Repeat
the same — bisection method takes log, /N operations until one of left.

If we are given an unordered list, we will have to check all entries one a
time. On average, this would take N/2 operations

_For N = 10°, log, N ~ 20 and N/2 ~ 5 x 10°.

Grover’s algorithm (unstructured search): determines the special value
T

with p = 1 (close to 1) by calling subroutine only Z N times. —

guadratic speed up compared with a classical computer.
— (cf) exponential speed up is expected in Shor’s algorithm.



Grover’s algorithm: Black Box (Oracle)

« Consider n-bit integers.

1] » 1] 7

« “a’is a special number, and the goal is to find “a’.

« Define a subroutine which output 1 if input value x is equal to a, and
output O otherwise. fl@=1, fx)=0 forx+a

Example: a=01001

Ulx), ®|y) = [x), ® |y D f(x),
”? \ .

Y qubits\ one qubit

a = xyx:3%,x1%9 = 01001




Grover’s algorithm: Black Box (Oracle)

a = x,X3%,x1x9 = 01001 fla) =1
1 x()) f(x)=0, if x #a
0 /% (3) X-gates on the right flip
1 back to the original input.

0 X))

1 X3)

0 Xy)

|y @ f(x))
(1) X-gates on the left flip qubits (2) Five-fold-controlled NOT
X1, X, and x, — target qubit is acts to flip the target qubit y,

flipped only if x4x3x,x,x0 = 01001 only if all control bits are 1.



Grover’s algorithm: Black Box (Oracle)

a = x,X3%,x1x9 = 01001

fla=1
Xo) fx) =0, if x £ a
X1)
) Useful to initialize |y) = | 1) and
? apply H before U.
X3) « The output qubit is
& H|1>=%(|O>—|1>)
|y @ f(x))

if fx)=0, [0@f(x)—-[1&f(x)=10)—-11)
fO=1,  [0®f)-11&f)=1)-10)=~(10)—|1))

Target qubit changes the sign, depending on the function value.

U(1% @ HI1) ) = (=1 |x) @ H|1)

Output remains the same.



Grover’'s search algorithm

U( |x) @ H| 1)) = (-1)/W|x) ® H|1) U and Q are linear operators.
fi
Define : Q|x>=(_1)f(x)|x>={ |X>, or x #a
—|a), for x =a
For a general state, |y) = Z C, |x), C = (aly)

W) =Qlw) =), Clx) = C,la) = ) C,|x) —2C,|a) = |w) — 2| a)(aly)

X#a X

(aly’) =(al|ly) —2(a|ly) = —(aly) — Suppose |x) satisfies (x|a) =0 forx #a

(a, v ={a,|y) Define such |x) as |a;) with(a|a;) =0
a a A
A > A a-a, =0
: L L
/l—a(v-a) v-a=-Vv-a

>

3‘&_L=7-&l

reflection around the direction perpendicular to a



Grover’'s search algorithm

« Consider uniform superposition of all possible basis states.

|wp) = H®"|0) = —2|x> N = 2n (alay) =
(ala) =1
|V/o>_—|a>+ Ial)—s1n00|a)+cosﬁolal) (a la,) =1
la,) = %) |a,) is the normalized uniform superposition
1
VN -1 #a =0 of all basis states perpendicular to | a)

<a|y/0)—L—s1n00 (a, |yy) = N1 = cos 4
|a) \/N L1% N 0

1
N
very small for a large N

. Probability of |y) beingin |a) = |{(a|yy)|* = sin?@, =

_ 2,

' - Grover's algorithm: iteratively rotate |yy,) (very
close to |al) initially) to the direction close to

> la) | a) axis so that measurement returns a high

— probability = amplitude amplification




Grover’'s search algorithm

A - Reflection about |a,)

lw') = O lyg) = lw) —2|a){alwy)

lyo) .« O reflects |yy) about |a, ) axis

O|x) =|x) forx #a, Ola;)=|a,)

> |aJ_> 0|a>=—|a> |:> ﬂlpsla> to _|a>

lyp) = sinf,y|a) + cosGyla,)
ly) = Oy
Oy = O(sin90|a) +cos«90|aL)>

= —sinfy|a) +cosby|a;)



Grover’'s search algorithm
|a)
lyy) = SO |yp) - Reflection about |yy) (initial state)

|§) — &) =S19) =2]wp){w| &) — | §)
17 (wol @) = 2w lwo)(wo 1 @) — (wol @) = (ol )

— component along |y,) does not change.

» |a,) (oLl @ = 2¢woL lvo)wol @) — (wor | @) = — (wpr | @)

. — component perpendicular to |1//0) changes the sign.
A |y) =0y

G =S50 O: reflection of |yy,) about |a, )
S: reflection of | ') = O |yy) about initial state |yy)
G: Grover operator rotates the initial state |y) by 26, counterclockwise
(toward the direction of |a) axis)
Effect of 1st Grover iteration: rotate the initial state |yy) by 26, counterclockwise.

| ;) making angle 6, to |a,) axis, 6, = 6,+ 26,



Grover’'s search algorithm

W) = 056, |a,) +sin6),| a)

m =50 m
| W) | W) O] 1//m> rotates about |Cll> by angle 29m

lw,,) SO |y, rotates by angle 2(6,, + 6,) counterclockwise.

0., =0 +20, 0, =C2m+1)6,

m

e (aly,) = sin, = sin|(2m + 1),

- Optimal number of Grover iteration: 6, = 7/2

220, =Cm+1)0,=Cm+1) sin—l(L>
2 T VN
For a large N, m = Z\/N

« When 8, = /2, measurement gives a with high

probability.
10)®" pen — - —/M7§ . For any value of 6, such that ) <0,~ \/_ < 1
...... N
1) > ° “ VN < <3ﬂ N, G Igorithm ret
I — — - — m < —+/ N, Grover algorithm returns
< > | a) with probability > 1/2.

0 (\/N ) times



Grover’'s search algorithm

|a)
|a) |a) A
A A | l//1> =50 | V/O>
|l//0> | l/’o)
> |a)) » |a))
ly") = O |yy) A y) = 0|y
Amplitude Amplitude Amplitude
e R T 1. T 1<
L Items
L\ Ttem: |\ Items
0 7 0 / >
) N N 0 w) N



Grover’'s search algorithm

0)®” ®n — - — A
10) 7 G G M « Optimal number of Grover iteration: 6,, = 7/2
IIIIII ﬂ 1
11) > = On (2m+1)6, (mﬂ)sm <\/N>
< > For a large N, m = Z\/N

- When 8, = /2, measurement gives a with high probability.

3 3 : :
. For any value of 8, such that % <6< Tﬂ — g\/ﬁ <m< ?ﬂ\/ﬁ Grover algorithm returns | a) with

probability > 1/2.
T
. Probability decreases for m > Z\/N

« Operational count of the Grover algorithm = 0(\/N) — quadratic speed up compared with O(N)
count on a classical computer.

« Quantum advantage: superposition and N = 2" values of f(x) evaluated in parallel
« Operation count of O(1)?
- Measurement returns only one (x, f(x)) value

« Requires additional operations — 0(\/N)



https://arxiv.org/pdf/1703.10535.pdf
ARTICLE

Complete 3-Qubit Grover search on a
programmable quantum computer

C. Figgatt 1 D. Maslovm, K.A. Landsman', N.M. Linke', S. Debnath! & C. Monroe'?3

The Grover quantum search algorithm is a hallmark application of a quantum computer with
a well-known speedup over classical searches of an unsorted database. Here, we report
results for a complete three-qubit Grover search algorithm using the scalable quantum
computing technology of trapped atomic ions, with better-than-classical performance. Two
methods of state marking are used for the oracles: a phase-flip method employed by other

experimental demonstrations, and a Boolean method requiring an ancilla qubit that is directly
equivalent to the state marking scheme required to perform a classical search. We also report
the deterministic implementation of a Toffoli-4 gate, which is used along with Toffoli-3 gates
to construct the algorithms; these gates have process fidelities of 70.5% and 89.6%,

Amplification

,.llllllll - A

respectively.
/,llllllll ouce| ABSO008-
N-1 N-1

- N-1
> M) + 2, > |b) @A+, Im)+@A-%) Y |b)
x=0 b=0,b+m b=0,b+m

Repeat O (VN) times




PHYSICAL REVIEW A 104, 062438 (2021)

Editors’ Suggestion

Quantum amplitude-amplification operators

Hyeokjea Kwon® and Joonwoo Bae
School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea

M (Received 21 July 2021; revised 17 November 2021; accepted 3 December 2021; published 27 December 2021)

In this work, we show the characterization of quantum iterations that would generally construct quantum
amplitude-amplification algorithms with a quadratic speedup, namely, quantum amplitude-amplification opera-
tors (QAAOs). Exact quantum search algorithms that find a target with certainty and with a quadratic speedup
can be composed of sequential applications of QAAOs: existing quantum amplitude-amplification algorithms
thus turn out to be sequences of QAAOs. We show that an optimal and exact quantum amplitude-amplification
algorithm corresponds to the Grover algorithm together with a single iteration of QAAO. We then realize
three-qubit QA AOs with current quantum technologies via cloud-based quantum computing services, IBMQ and
IonQ. Finally, our results show that the fixed-point quantum search algorithms known so far are not a sequence
of QAAOQs; for example, the amplitude of a target state may decrease during quantum iterations.

https://arxiv.org/pdf/2105.09559.pdf
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FIG. 1. (a) The Grover iteration corresponds to consecutive rotations in the space spanned by a target state |t) and its complement |¢-).
(b) The probability of finding a target state is plotted in the case of eight qubits. The probability is monotonically increasing. (c¢) The path of
an evolving state in the sphere is shown by Grover iterations from an initial to target states.

https://arxiv.org/pdf/2105.09559.pdf



Probability of finding a target
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FIG. 4. Quantum amplitude amplification is performed in the case of eight qubits. The x axis shows the number of oracle uses, and the y
axis shows the probability of finding a target state. (a) The 7 /3 algorithm is plotted [19]. The amplitude increases all the time until 10* oracle
calls, without a quantum speedup. (b) A fixed-point quantum search with optimal query complexity is plotted [20]. The amplitude of the target
state decreases in the meanwhile, and the oracle is called 45 times. (¢) QAAOQOs are randomly generated and concatenated so that the amplitude
keeps increasing until it reaches 1 after the oracle calls 50 times.

https://arxiv.org/pdf/2105.09559.pdf



Extension to more than one special value

«  What if three are M solutions, a;,, 1 =1,2, -, M
1

 Superposition of all special states: lay=— ) |x) (ala) =1
\/M x€{a;} <a | ClJ_> =
« Uniform superposition of all other states: |a,) = Z | x) {a,|a) =1
N=M g
" M N-M
+ Initial state:  |yp) =1 /= Ja) +1/——1ay) (v L) = 1
N N
. , M
|a> =Sln90|a>+C0890|aJ_> Sln90=<a|l/jo>= W
A
Y& o)
N 10 V n |N
' . MKN,Ox— > m=—4/—
2 4V M
> |ay)
N-M



Quantum Counting

« What if we had no prior knowledge of M?

- Grover operator G rotates vectors in |a) — | a, ) plane by angle 26,

, M
sin @, = N

G- (cos 20, —sin 290> 216,

: —>  elgenvalues e
sin 26, cos 20, 5

—  Phase estimation

—>  Quantum algorithm can tell us whether
a special value exists at all, i.e., M=0.



Distance-based classifier



Quantum Machine Learning

« Artificial Intelligence: Statistical prediction
« Machine Learning: Learn from data
* Quantum Machine Learning: Learn from data with quantum algorithms

— Subdiscipline of quantum computing and quantum information
science

« CC: classical data being processed
classically

« QC: how machine learning can help with
gquantum computing

« CQ: classical data fed into quantum
computer for analysis (Qquantum machine
learning)

* QQ: quantum data being processed by

quantum computer (ex: Quantum

C - classical, Q - quantum SimUIatiOn)

data processing device

data generating system




Quantum Algorithms and Data Embedding

Classical Algorithm Quantum Algorithm
Dataset D Dataset D
Input x Input x
Il iyl Quantum System
Input encoding State preparation
Processing Unitary evolution
Read out Measurement

Output y Output y



Quantum Algorithms and Data Embedding

Classical data

-------------------------------------------
. .
. ‘e

Requirement

--------------------------------------
.* .,
o L3

Quantum state

=[x) ®|x) ® - ® |x,)

2n
lw) =) xli)
i=1

Basis : X € {0,1}®" :
Encoding X = (X, Xy, o x,) € {0,1)
X e R¥
x, € R
Amplitude onsom . n
Encoding A V= L2

Alj € R ]= ’”.,21’1’1 g

B - R

i A;‘:Aji
x € [0,27)
AT=A

A € RZ”XZ
Time-evolution R
Encoding X €
: 212
Hamiltonian : A E I
Encoding
A € RZ"XZ

......
-------------------------------------------

.....
-------------------------------------

00000
------------------------------------------------



Binary encoding into basis states

basis vector coefficient {0,1}

/

Represent numbers as binaries, each binary . Tz_lb 1
digit requires a qubit = "ok

binary fraction er
data vector sign quantum state

0.1 —/0\0001...
x =(0.1,-0.6,1.00 — —-0.6 —{1[1001... — |00001 11001 01111)
1.0 > 0/1111....

« Binary fraction = expression in power of 1/2

_ _ . e e J
In decimal form:  0.j,j,4q = jip = b T 52 ot 2m_n;+1

J = 02"+ 20+ j32° + 2% + 27 + 27 + 2t + g2
/ % =2 + 5,22 + 322 + 2t +j20 + j 27+ 272 4 23

J1J2J3Jads -JeJ7Js binary fraction: O . j¢ j7 /g



Angle/Rotation encoding

When used on an n-qubit circuit, this feature map of angle encoding can take

up to n numerical inputs x1, .. , xn. The action of its circuit consists in the

application of a rotation gate on each qubit j parametrised by the value x;. In

this feature map, we are using the x;values as angles in the rotations, hence

the name of the encoding.
Example

x normalised [0,2pi)

0) Rx(x;) 0) Ry(x1)

0) — Rx(x2) — 0) — Ry(x2)

|O> RX(xn) |O> Ry (xn)

'

as Rz|0> doesnt do anything

0) H Rz(x1)
0) — H Rz(x2)
|O> H RZ(xn)




Distance-based classifier

« Adistance-based classifier with a quantum interference
circuit: arXiv:1703:10793 (supervised binary classification)

(X1 Unlabelled data .
A C|asi1 / training data set
* * K D=1{% by eee (¥
feature 2 E)g* {(xp)ﬁ), (-x27y2)9 ’ (XMayM)}
Class 2 m=12, - M
. = the number of data
> (X)) _
N = the number of features
feature 1

%X, € RY: unlabelled data

— Find the label ¥ € {—1,1}



Classical Kernel Method

« Kernel methods: kNN (k-nearest neighborhood), KDE (kernel density
estimation), SVM (support vector machine), Gaussian processes

— Nearest neighborhood method: a new input data is given the

same label as the data point closest to it — k-nearest
neighborhood (KNN)

— Closeness = distance measure

. . = - 2
— (ex) Euclidean distance |X — X, |
$ = sign Z y (1 _ b |x _3 |2> * include all data but weigh
" o influence of each data toward the
M decision by the weight k(X, X,,)
y = sign Wy Y K, X )]

| m=1
/ \ Kernel

weight Label =1 for X,



Euclidean Cosine Hamming
©
£ 1{0|1|1]0]|0
!
o 111]1|0f0]|0
o
Manhattan Minkowski Chebyshev
.4 .: P=00 : . i
p=2 i i
v | |
e p=1 . &
Jaccard Haversine Serensen-Dice

Intersection

Intersection




\Wasserstein distance
(Kantorovich—Rubinstein metric)

« A distance function defined between probability
distributions on a given metric space M (named after
“Vaserstein" (Russian: BacepwtenH) )

 If Pis an empirical measure with samples
X, ,X,and Qis an empirical measure with

samples Y, --- , Y, the p-Wasserstein distance is a
simple function of the order statistics:

1/p
1 n

Wo(P,Q) = =) X5 —-YylP| -
n =



Classical Kernel Method

« Kernel methods: kNN (k-nearest neighborhood), KDE (kernel density
estimation), SVM (support vector machine), Gaussian processes

— Nearest neighborhood method: a new input data is given the

same label as the data point closest to it — k-nearest
neighborhood (KNN)

— Closeness = distance measure

. . = - 2
— (ex) Euclidean distance |X — X, |
$ = sign Z y (1 _ b |x _3 |2> * include all data but weigh
" o influence of each data toward the
M decision by the weight k(X, X,,)
y = sign Wy Y K, X )]

| m=1
/ \ Kernel

weight Label =1 for X,



Distance-based classifier

» Choose w,, = 1 for all equally important data

K(},xm) =1 -—— |§ ek Close data (small distance) are

4M " weighted more importantly.
(1) Encode input data (features) into the amplitude of a quantum system
(amplitude encoding). For classical vector X € RY, (N = 2"*) Assume
T

x'x=Xx-x=1 (normalized to 1) N = 2" : number of features

N-1 /" i:indexin the computational basis
W) = Z x;:|7) Dimension of Hilbert space ~ O(log N)

=0
—= ancilla qubit is entangled

ﬁ with third register

1 M
(2) initial state: | D) = —— »" |m |0>|wx>+|1>|wx>)|ym>
2M -

4 [\
data index

unlabelled labeled

M = # of data data label of x,,
data class qubit




Distance-based classifier

ancilla qubit is entangled

ﬁ with third register

|0>|wx>+|1>|wx IR

/N

labeled label of x,,
data class qubit

1 M
(2) initial state: |D) = 2 | m)
2M m=1
data index unlabelled
M = # of data data
N—1

lw, ) = Z Xy, | ) encoding of m-th training data (labeled)

i=0
N-1

) = ) %) encoding of new data (unlabeled)

i=0

|O>’ lfymz_l
| V) = e
|1>, lfym__l_l

| D) contains all training data as well as M copies of new input.



Distance-based classifier
(100+11))

—(1-11))

&%

(3) Apply Hadamard gate on the ancilla (second) qubit. 10) —

1 M
Dy = —= D Im) (10 1y + 1D 1w ) ) v 1) =

l \/m m=1 7
D) = T 3 1 (10) gy + 1) 1)) )

M—-1
W ) = Iy £l ) = ) (Fxxi) i)
i=0
(4) Conditional measurement selecting the branch with ancilla state |0).
Likely to succeed if the collective Euclidean distance b/w X and training data

set is small. For standard data, p > 0.5.

1 > o
Probability is P = — Z % +%, |7

1 M N-1

Z 2 |m) (% 4 x8,) 1) [3,0)

m=1 =0

|D") =
Mp



Distance-based classifier

(5) Probability of measuring the class qubit |y,,) = |0)
M N-1

: Y+ xl) i
T %gmww )18 [3,)

D) =

1 i - ) 1 i . ,
P(y=0) = — |X+X,|"=1—-—— X —X,|
/ 4Mp V=0, m=1 4Mp V=0, m=1

Class 1 using normalization condition

— choosing the class with the higher probability gives result of kernel method.
The # of measurement needed to estimate P(y = 0) to error € with a reasonably
high confidence interval grows with O(e ™).

raw data standarisation normalisation
4 . XO
o 1 .
P *‘ =° (\ \X,,Axl « arXiv:1703:10793
2 “.M“ § } used Iris data
Q0 e class -1 n "
A class 1 -2 NS “ n‘ -1
0 2 4 6 -2 -1 0 1 2 -1 0 1
feature 1

https://www.quantum-inspire.com/kbase/jupyter-classifier-part1/


https://arxiv.org/pdf/1703.10793.pdf
https://arxiv.org/pdf/1703.10793.pdf

The data set

Iris flower data set

consider only first two
features of two samples

R. A. Fisher
(1 936) Iris setosa Iris versicolor Iris virginica

(Sepal length & width, petal length & width)

https://en.wikipedia.org/wiki/lIris_flower_data_set



Data re-uploading for a universal quantum classifier

1907.02085



Data re-uploading for a universal quantum classifier
1907.02085

Processing > v (P(P

10)—

(a) Neural network (b) Quantum classifier

» Universal approximation theorem

- We can approximate a function F(X) with f(X, 0), where X is an input feature
and 5 is a learnable parameter. )

. The cost function (ex. MSE) to be minimized is 2 | F(X)) — f(x,, NE

i=1



Single qubit classifier using data re-uploading

- Consider the three dimensional data, X. (can be generalized.) 1907.02085
- Date can be re-uploaded using unitary transformation U(X) rotating the qubit.
» The single-qubit classifier has the following structure: ) = U(CE 7)|0)

U($,%) = L(N).... L(1) L(i) = U(¢:)U(Z) ¢ = (1, o )
U, T) = U(dpn)U(T)...U(1)U(T) U, dy, ) € SUQ)
L(1) L(N)
== — - == — 1 - = = - == — 1 L(i):U<§i+wiof)
0) HU (%) U(gpy) =+ HU(Z) U(on) 1A
L — _ _ ——— _| L — — _ = _J

Hadamard product of W; and X:

(a) Original scheme

= = 1,.1 2,.2 3,.3
=== — 7 = — — —
0) :U<¢1,f>:—---—:U<¢N,:E’> — A L(z'):U(égk>+w§k>of<’f))---U(§§”+w§1>o:f<1>)
= ==

(b) Compressed scheme

—,

U(¢) = Uy, da, bg) = 92721170 ¢ids0= OF () = (97



Multi-qubit using data re-uploading

0) — L1(1) ( L1(2) [H L1 (3) |— - - — La(N) [
0) —— La(1) 4 L2(2) H L2(3) —{L2(N) |—
(a) Ansatz with no entanglement
— T 1 [——— 1
0) — 1 L1(1) I[Ll@) I---IM(N) i
| I | | |
0) —H La(1) Ly(2) Ly(N) =
T == e

(b) Ansatz with entanglement

0) — L1(1) HL1(2) H La@B) = L1i(N) |~
0) —— L2(1)  L2(2) /q L2(3) =+ - — L2(N) —
0) —— L3(1) — L3(2) — L3(3) - — L3(N) —
0) —— La(1) H La(2) A Ls(3) =+ — La(N) |~
(a) Ansatz with no entanglement
[— [— 1 r———
0) —1La(1) ILl(Z) —*rmILl(N) i
| [ | | |
0) —:—Lz(l) ” L(2) IJ— | Ly(N) Jl—
0) —{Za() o[ L@ o1 4 L) -
‘O) —:— L4(1) I[ L4(2) —o—:— cee I[ L4(N) —:—
T = _ _ |

(b) Ansatz with entanglement



Single qubit classifier: measurements

- The quantum circuit characterized by a series of processing angle {60;} and
weights {w} delivers a final state |y). 1) = U(p, T)|0)

» The critical point in the quantum measurement is to find an optimal way to
associate outputs from the observations to target classes.

» This is easily established for a dichotomic classification, where one of two
classes A and B have to be assigned to the final measurement of the single
qubit.

* In such a case it is possible to measure the output probabilities P(0) for |0)
and P(1) for|1). A given pattern could be classified into the A class if
P(0) > P(1) and into B otherwise.

» We may refine this criterium by introducing a bias. That is, the pattern is
classified as A if P(0) > 1, and as B otherwise. The 4 is chosen to optimize the
success of classification on a training set.

» The assignment of classes to the output reading of a single qubit becomes an
involved issue when many classes are present.

* For example, one possible strategy consists on comparing the probability
P(0) to four sectors with three thresholds: 0 < 4, <4, £ 43 < 1. Then, the

value of P(0) will fall into one of them, and classification is issued.
1907.02085



Single qubit classifier: cost function

« Afidelity cost function: (fidelity is a measure of similarity of two things.)

« We want to force the quantum state (data state) |1//(5, w,x)) to be as near
as possible to one particular state (label state) on the Bloch sphere.

* The angular distance between the label state and the data state can be
measured with the relative fidelity between the two states.

« Goal is to maximize the average fidelity Easy choice: |0) and | 1)
asy choice: an

. A . 2
. ;(]?(Q,W) = Z (1 — ‘(y?sh//(e, w,X )‘ > where |, is the correct label state
u=1
of the data points. (M = total number of training data) 1907.02085

0 [0)

1) 1) 1)

Before training After training With testing data
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Example: 4 classes

X
-0.51 . ] 5
_1'2_1.0 -05 00 05 10 -1.0 -05 o.':o.: :o..'; : .1-:.0 Layers No Ent. Ent.
* * 1 0.73 | 0.56 —

2 0.79 0.77 0.78
3 0.79 0.76 0.75
4 0.84 0.80 0.80
D
6
8

0.87 0.84 0.31
0.90 0.38 0.36
0.89 0.85 0.89
10 0.91 0.86 0.90

(c) 4 layers (d) 10 layers

1907.02085



Example: 3 classes

1.0 1.0

0.5 0.5

> 0.0 > 0.0

-0.5 -0.5
-1.0 -1.0 i

-1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0

X

(d) 4 layers

(b) 2 layers

1.0
0.5
> 0.0
-0.5
-1.0 ‘ -1.0 , , . X?ﬂ
-10 -05 00 05 10 -10 -05 00 05 10 -
x x Qubits 1 2
e) b5 layers f) 6 layers 8 layers h) 10 layers
(©) 5 lay (f) 6 lay () 8lay ) Y Layers No Ent. Ent.

1 0.34 0.51 -

0.57 0.63 0.59
0.80 0.68 0.65
0.84 0.78 0.89
0.92 0.86 0.82
0.93 0.91 0.93
0.90 0.89 0.90
0.90 0.91 0.92

o O O i W N

1907.02085

—_
@)




Single qubit classifier: example

Problem Classical classifiers | Quantum classifier 1607 02085
NN SVC X7 X f |

Circle 0.96 0.97 0.96 0.97
3 circles 0.88 0.66 0.91 0.91
Hypersphere 0.98 0.95 0.91 0.98
Annulus 0.96 0.77 0.93 0.97
Non-Convex 0.99 0.77 0.96 0.98
Binary annulus | 0.94 0.79 0.95 0.97
Sphere 0.97 0.95 0.93 0.96
Squares 0.98 0.96 0.99 0.95
Wavy Lines 0.95 0.82 0.93 0.94

Comparison between single-qubit quantum classifier and two well-known classical
classification techniques: a neural network (NN) with a single hidden layer composed
of 100 neurons and a support vector classifier (SVC), both with the default parameters
as defined in scikit-learn python package. This table shows the best success rate, being
1 the perfect classification, obtained after running ten times the NN and SVC
algorithms and the best results obtained with single-qubit classifiers up to 10 layers.






The effect of data encoding on the expressive power
of variational quantum machine learning models

« VQA as a Fourier series

— layer 1 — — layer 2 — — layer L —
o T T T =
& ||8@) |§|18@ - |X|[SE@| |3 !
o | T
0) L1

wr trainable
CII /\/ |—|\/\ circuit block
[ \\V — A\ N\
C, —
data encoding
ws circuit block
Cq —

f@(x) — <O‘ UT(CE,H)MU($,9) ’O>

2008.08605 Uz) = WEDS@)yWE) . w@ S (z)yw



Quantum Algorithms

Algorithms, Tools, Tricks
Quantum Search Period Finding Linear Algebra Simulating
Grover (Shor) (HHL) Physics

Amplltude Phase

Amplification Estimation
Phase Quantum Fourier
Kickback Transform

Inspired by: https://cnls.lanl.gov/~baertschi/slides/Slides-QCA.pdf

Hamiltonian
simulation




The exponential Speed-Up



The exponential Speed-Up



Inner product

Let |y), |¢) € C? be two N = 2" dimensional vectors. How to compute the
magnitude of the inner product | (¢ |y) %7 lw) = (yy, - wy)

Classical () = (&1, -, D)
— N = 2" multiplications and additions Al
o 3 (Blw) =) dry,
— Decompose multiplications and additions as NAND gates P
Quantum

— Run the following circuits with 27 4+ 1 qubits and n + 2 gates

—Prob(0) — Prob(1) = | (¢ [y} | 10y H Fo-o—o{ HHA

80

e

’ /R ——

20 XK
e

‘ I ) { ——*

: O : ' %

Probability (% of 1024 shots)




Proof: Inner product

|a) ® |b) = |a)| D)

N

|w)

1
Hlx)=——(1|0 —1D)*|1
| x) \/5(|>+( )*I 1))

) H(|0>|a>|b>)=%<|0>+|1>)|a>|b> -

(2) SWAPH(|0)|a)|b)) =%SWAP(IO>+|1>)Ia>Ib> =L2(|0>|a>|b>+|1>|b>|a>)

W) = HSWAPH (]0)]a) | b)) =i2H<|0>|a>|b>+|1>|b>|a>)

(3)
1 |
=5|0>(|a>|b> + | b) | a)) +5| 1)(1ay|b) —|b)|a))
|
sum of the “unswapped” and the “swapped” difference
1 1
(4) PO)= (0@ DIy > == —=I(alb)|’
- —>  P()-PO) = [{alB)I
2 2
P =[(0RD)|y)] =5+5|(a|b)|



Measuring Overlap of Quantum States

 Prepare two qubits registers: |a) @ |b) = |a)|b) and want to
compute |{a|b) |2

|. Swap test

(1) add ancilla qubit: 10) [a)|D)

(2) apply Hadamard gate to ancilla: L( 10) + | 1>> |a) | b)

(3) apply swap operator on two registers
|a) and | b) conditioned on the L( 10) @) |B) + | 1)) |a>>
ancilla being in state 1: V2

(4) apply Hadamard gate to ancilla:
)= (100+11)10)15) +2 (IO)—|1)>|b)|a)

W =510e <|a>|b>+l|b>|a>) +I1) @ <|a>|b>l|b>|a>)

sum of the “unswapped” and the “swapped” difference



Measuring Overlap of Quantum States

|. Swap test

(5) Py = Plast qubit = 0) = —((al (b1 + (b1l }-(1a)15) + B) 1))
1

— |{a|by|>=2P,— 1

— (a]7a2a'"7aN) S RN

Assume |G| = 1= |b|

—1<d-b<1
] ] ]
la) = <$al, mﬁaN’$>
py = (L L,
|b) = <$ 1$ N$>

= (b by, -, by) € RY —

aTb =2,/2P,— 1 — 1

1 if {a|b 0, P, =
5+—|<a|b>| a]b)=0. Fo
if (alb)y =1, Py=
— |a) — {a|b)|> = |a"b|’
| D) sign ambiguity?
1 11
1 1
2 2 2

POE [5,1]

2
1

-+ aNbN ‘

1 2
+E)

alb e [-1,1]



Measuring Overlap of Quantum States

ll. Hadamard test

(1) Prepare initial state:  |v) = L( 10) [a) + | 1>|b>>

NG
— similar to 7(0{, f) for the representation of |a) and | b) rather than a @ S
2
1 1
(2) apply Hadamard: ) = 5|0>< ) + |b>) +5( ) — |b>)
lll. Inversion test |la) = A|0) |b) = B|0)

Run the circuit BTA | 0)

Probability of observing the final quantum state in the initial state |0)
2
=[01BA10)|" = [(bla) P

For many operators, U = U or U"(0) = U(-06)



The First Wave of Quantum
Machine Learning?

week ending

PRL 103, 150502 (2009) PHYSICAL REVIEW LETTERS 9 OCTOBER 2009
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Quantum Algorithm for Linear Systems of Equations

Aram W. Harrow,! Avinatan Hassidim,? and Seth Lloyd3

1Department of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom
2Research Laboratory for Electronics, MIT, Cambridge, Massachusetts 02139, USA

3Research Laboratory for Electronics and Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, USA
(Received 5 July 2009; published 7 October 2009)

Solving linear systems of equations is a common pr0b1e1=n that arises both on its own and as a subroutine
in more complex problemsgiven a matrix A and a vector b, find a vector X such that AX = b’.|We consider
the case where one does not need to know the solution x itself, but rather an approximation of the
expectation value of some operator associated with X, e.g., X' MX for some matrix M. In this case, when A
is sparse, N X N and has condition number «, the fastest known classical algorithms can find X and
estimate ¥ MX in time scaling roughly as N./«x. Here, we exhibit a quantum algorithm for estimating
xT MX whose|runtime is a polynomial of log(NV) pnd k. Indeed, for small values of « [i.e., poly log(N)], we
prove (using some common complexity-theoretic assumptions) that any classical algorithm for this
problem generically requires exponentially more time than our quantum algorithm.

Ax = b Complexity of inversion of a regular matrix=O(N°)
X = Complexity of inversion of a sparse matrix=O(V)



Harrow-Hassidim-Lloyd Algorithm

* An algorithm that solves exponentially large linear system in polynomial
time. Given a matrix A € RV and a vector b € R”, find x € R such
that Ax = b.

. Letus assume N = M and A is invertible = x = A~!'b — problem is

reduced to inverting A. 1
x <« |x) o ) = A7 |b)
b py TTAD = 4-11)|

« Additional assumptions
. A is hermitian (and squared and invertible), AT = A.

For eigenvalues 0 < 1) < 4, < - <Ay < I, min|4| > a > 0and max |4 < 1.
J J
- Algorithm has access to many copies of | b).

Can implement unitary transformation e'A for any value of f such that
0 <t < polylog N.

some polynomial in log(N) = (log N )* = logk N



Harrow-Hassidim-Lloyd Algorithm

b ——1 Quantum Phase
l > Estimation of Inver.se QPE
|O>®f [ = oA circuit
R
|0) (A
M
(0) (1) (2) (3)

|u;) = |j): eigenvectors of A with eigenvalues 0 <a <4, <1, < - <Ay <1
{|u;)} forms orthonormal basis, (i|j) = §;

Vo ,. b g ] Lo
A= ALGL U=e?=3 eblj)jl and A7 = 3 —1 /)
j | Y

J J

|b) = Z b;|j) with Z |bj|2 =1 (Algorithm has access to many copies of | b).)
J=1 J



Quantum Circuit for QPE

|0) H E - +/M7§—
52 : : :
28 10) = H = ® : A
5 0 I 5 [
= ¢ | [ QFT" |:
10) H ; o ; -i-/f—
o sk i H
) Lo Ho?] - - -

m eigenstate
registers
~

(0) (1) (2)

(3) Ulu) = e |u)

o) = [ —(10+1D)®" @) U¥u) = () |u) = 9% | u)
j=0 2
1 cu? 1 2
—(10+11)) ® lu) » —=(1081w+v7 1) e )
7 V2
|

:—<|O>+ei¢2j|1)> ® |u)

\/5



Harrow-Hassidim-Lloyd Algorithm

n qubits\
— ] Quantum Phase
1) Estimation of Inverse ?PE
£ qubits — | 0)®* U= ¢4 circui
R
1 qubit _~ 19 /Mﬂ —
ancilla
@nclia) o) (1) @ 0
lwo) = 1) ® 10)®” ® |0) QPE = H + conditional U? + QFTT U = %74
Target qubits
1 k
1b) ® [0)® L |b)®f(|0)+|l>>®f cu HCU2 <2 b; |1>)®?(|0>+|1>)
n —~—
= Z b; H cu? 1)) @ —(10)+|1))® Control qubits
21 (10+m)
= Zb 1) ®—<|o> + 1) @ (10 + 1)) @ - @ (10) + [ 1)e>2”)
J 1 \/2_

— b~|j)®— e2ﬂi/1jy|y> QF_T;I ......



Harrow-Hassidim-Lloyd Algorithm

2miy(a—x)12¢ _
e =0,

n qubits\
|b) —— Quantum Phase
Estimation of Inverse ?PE
£ qubits — | 0)Y®’ U= ¢4 circui
1 qubit _~ 19 /Mﬂ -
(ancilla )
(0) (1) (2) (3)
Y
QPE = H + conditional U + QFT' P e =2
2}//; 1 2;/‘7 Il \ 2{ 1 A
\ I X ow T N A& 1 1 & ,
...... — Z b|]> QR —— Z eZnij |y> RN Z b. Z Z eZmy(/lj—x/Z ) |]> ® |x>
/=1 ] V2 S j=1 : = V20 V27 5
\ 20-1
=Xshely o 1
il N -bit string = £" qubits approximation of 4; Y o

lv1) = QPE|yg) = ) b 1j) ® |4) ® 0)

J=1

R lwy=) bl @l
j=1

2
i) ® [‘/1—3‘—%|o>+%|1>

20—1

1 .
QFT—I |y> — ﬁ Z e—2mxy/2f |x>
x=0

] 0<a<min|4] <max|4] <1




Harrow-Hassidim-Lloyd Algorithm

n qubits\
by ——— Quantum Phase
l > Estimatio.n of Inver.se E[QPE
f qu|tS—> |O>®f U = elA Circul
R
1 qubit _~ 0 s
ancilla
@ncila) ) (1) @) @)
R —n b.li A 1 a—zo 11 O<a<min|id| <max|4]| <1
— |w2>—j221j|]>®|,->®[ -7 10+ 10)] @ < min| %] < max || <
-1 n 2
DL 1) =Y 510 @102 @ [/1-Z10+<1)]  “uncomputing’
j=1 J J

® |0) + ®|1)

n (,¥2 '
lys) = [Z bj‘/l—ﬁm@a |0)®
j=1 J

PO = | ij%|j>®|o>®f”2=z \@%\2:2 \bjﬁ%fzz ‘bj‘2|a|2=|a|2>0
J J J J J J J

0<a<min|4| <max|4] <1

L a
Z, b —1j) ® |0)®”
, A
j=1 J



Harrow-Hassidim-Lloyd Algorithm
P<|1>>=H;bj%|j>®|0>®fu —Z\b— —Z\b\ H >2\b\ af =lal >0

O<a §m1n|/1J| <max|4] <1
- If we measure |0), repeat the measurement.
. 1
. How many times do we repeat? — 0(—2> — amplitude application
a

1
— O(—

) calls of the algorithm for having a probability of success p ~ 1.
a

- Post-measurement state conditioned on | 1) =— Z b, — |]) X [0)® ®|1)

\/_

b.
2 [ X109 @)
J

. a
n 2 \/l_? Jj
|w3>=[2bj,/1—%|j>®|0>®f ® 0)
j=1 J a
=% (A7'b)) x]10)®" @ |1)
A3 52 el0|
=, | x)




HHL Algorithm: revisit assumptions

. Whatif A € RV<M 9 Ax=b AeRMM xeR" peRV

- <() A) RVEMX(NM) any solution ¥ to A% = b will be such that
AT0 % = (x,0,---0)7 satisfies Ax = b.

* Bounds on eigenvalues

- A
. Why can we assume 4., (A) < 1?7 If not, work with A = Y and
. b max
(@A)

« What about 4. (A) > a > 0?7 This condition is known as “Ais a well-
conditioned matrix” — usually needed in classical algorithms to avoid issues
with non-convertible matrix because 4. is zero or very close to zero,

. d
w(t)) = e | yw(0)) and iE lw(?)) = A|w(?)) need to simulate dynamics of

Hamiltonian.
« Can we efficiently implement e " for a range of 7.
« If A is sparse, i.e., each row of A contains at most s << N entries, each entry
can be captured in O(s) time.



HHL Algorithm: 4 qubit example

A—( 1 —1/3) |b)—(1)
213 1 ~\o/ n,=1tostore |b)and |x) Alx) =|b)
2 1 /1
A = 3 ) = %(J n, = 2 to store binary approximation of eigenvalues
4
Ay = — |u,) = L( 1) n = 1 auxiliary (ancilla) qubit for conditional rotation
3 \/5 —1
At
. QPE will output an n, bit (2 bit) binary approximation to 2—
T

3 At 1 At 1
If we set r = 27—, QPE will give 2-bit binary approximationto — = —and — = —,
8 2 4 2r 2

which are |01) and | 10), respectively.
-01=0-2""4+1-272=1/4 [01) = 14))
c10=1-2714+0-272=1/2 [11) = [4,)

|b>:ibj|uj>_ i =\/_<|u1)+|u2>> =|b>=ibj|j>
j=1 j=1



HHL Algorithm: 4 qubit example

nqubits\
—1Q Ph _
L e fmation ot Inverse QPE n=1
f qu|tS—> |O>®f U = eiA i Circui f =9 = n,
1 qubit /|O> /Mﬂ_
@ncilla) oy (1) ) 3)
1 2 1 /1
@ lw=1ye 0 elo = (wrm) A3 )= (1)
_ _ : _4 _ L
(1) |w1>—QPE|w0>—]Z,bjlf>®lﬂj>®|0> f =3 '”2“@(_1)
1
=—(lu)) ®01) + |u,) ® | 10) ) ® | 0) -
\/§< : 2 ) by 7 b,

L At 1 _Ahr 1

Al el

8~ 27 4 2z 2
/

Iw2>=%lu1>|01>_\/1—(%)2|0>+<14>|1>+]+7|uz>llo>l\/ - (555 2100 + (1/2)|1>]

| [ T | | T |
|l//2>:$|”1>|01> _ 1_Z|O>+5|1>+] +$|uz>|10>[ 1—E|0>+Z|1>+]

(2) conditional rotation with a =




HHL Algorithm: 4 qubit example

n quitS\ |b) ——{ Quantum Phase
Estimation of Inverse QPE n=1
£ qubits —» | 0)®’ U= e circuit i
1 qubit _~ |0) A /Mﬂ_
(ancilla ) 0) ) 2 -

1 | I I I i T .
(2) |l//2>=$|ul>|01> _\/1—Z|0>+5|1>_ +$|”2>|10> _Vl_ElOH_le)_

| T T | 1 .
(3) |W3>=QPET|W2>=ﬁ|u1>|00> 1_Z|O>+5|1> +——u,)|00) 1_1_6|O>+Z|1>

V2
(4) on outcome 1 when measuring the ancilla qubit, the state is
1 1 1 1 1 1
511000310+l 00511 (S lm)+ 22l 10011
\V/5/32 \V/5/32 [l

(5) how to compute the norm of | x) — probability of measuring 1 in the ancilla qubit
1

SR v R el |




Quantum Error Correction

» quant-ph/9705052, Stabilizer codes and quantum error correction, Caltech PhD
thesis by D. Gottesman

 https://github.com/qiskit-community/qgiskit-community-tutorials/blob/master/
awards/teach_me_quantum_2018/intro2qc/10.Quantum error correction.ipynb



Simple Classical (Bitflip) Error Correction

Classically error correction is not necessary
— Hardware for one bit is huge on an atomic scale

— State 0 and 1 are so different that the probability of an
unwanted flip is tiny.

Error correction is needed for transmitting signal over long
distance where it attenuates and can be corrupted by noise.

Suppose we send one bit through a channel.

Use redundancy: |0) — |000)
1) — |111>\_* called codewords

Apply majority rule:  {000,001,010,100} — 0
{111,110,101,011} — 1

Flip probability is p:  p?+ 301 - pp?=3p?>=2p3 <p, if p<1/2



Quantum Error Correction

QEC is essential and QC requires error correction

— Physical system for a single qubit is small (often on an
atomic scale) so any small external interference can disrupt
the quantum system

Measurement destroys quantum information
— Checking for error is problematic.

— Monitoring means measuring which would alter quantum
states

More general types of error can occur
_ (ex) phase error: %(|0>+|1>) — Loy + e 1y)

NG
Errors are continuous

— Unlike all or nothing bit flip errors for classical bits, errors on
qubits can grow continuously out of the uncorrupted state.



Bit Flip Error Correction

* |f the error rate is low, we hope to correct them by tailing the
number of qubits as the classical case.

x) x)  al0)y+p|1)
0) %_‘_ x) 0) }a|000)+ﬂ|111)

0) () x) 0) ()

al0y+ p|1) — «a|000)+ | 111) is not a clone of the input state

(a]0) +B11))®* = a’|000) + a*4(|001) + |010) + | 100))

+af*(|110) + | 101) + |011)) + 7| 111)



Bit Flip Error Correction

« Assume that no more than one qubit is flipped (reasonable
approximation if the error rate is small)

al0) + 4| 1) xy  lw)=al000)+p|111)
10) ‘ é o, 1w)=all00)+5101) =Xily) qubit 1 fipped
_d; o lys) =al010)+41101) = X,|y) qubit 2 flipped

" X |ys) =al001) + B[ 110) = X;|y) qubit 3 flipped

— four states are called “syndromes”

« Classically to determine if one of the bits is flipped, we just have
to look at them. However quantum mechanically, if we measure

ly), we get |000) with probability |« |* and | 111) with | 8|
which destroys the coherent superposition.

* Need to couple the codeword qubits to ancilla qubits and measure
those, which does not destroy the coherent superposition.



Bit Flip Error Correction

0 : [ == |»
|0) - : | X X : |v)
I =X ——e o
or,:.\ : :
) &2 =X | — pes
Or’:::\ 1 :
3 —I:~X ': : o :@—

) = 2| 000) + B| 111)

|ly) : codeword | 000)
codeword | 111)

lyq) : codeword | 100)

codeword |011)

ly,) : codeword |010)
codeword | 101)

|ys) © codeword |001)
codeword |110) —

2

correction

no ancilla flipped - x=0=y

both ancillas flipped - x=0=y

x flipped, y not flipped - x=1,y=0

x flipped, y flipped twice - x=1,y=0
x and y flipped once - x=1=y

x and y flipped once - x=1=y

x not flipped, y flipped — x =0,y =1

x flipped twice, y flipped - x =0,y =1

lw)



Bit Flip Error Correction

0 : [l —=—
0) g Bl g B3 A=
0 : ;
10) — | X X : |v)
o g
or,-, ! ,
lw) 2 = X — ® ® ;@— |w)
or,.l. ! !
3 =X ¢ X
lw) = a|000) + [ 111) correction
Syndromes Bit flipped | x | y
ly) = a|000) + f|111) None 0 0
lw1) = @] 100) + B 011) 1 110
lyp) = @|010) + B 101) 2 1 | 1
) = a|001) + 4| 110) 0| 1




Bit Flip Error Correction
X_| Z% %) Svndromes Bit fliobed | x

10)

Pl

10)

—
‘I'\
\

'y> lw) = a]000) + | 111) | Nome | o
b 1v) = al100) + plo11)

or::\ ' ' 1 1
7t X et e l :@_ ly,) = a|010) + B 101) 2 1
or = 1 ' =
s e ) e lys) = a|001) + | 110) 3 0
~ 1 1
correction

ly) = | 000) + S| 111)

XY gate on qubit 1, only if x=1 and y=0 — correcting |y)
x=1,y=1

X" gate on qubit 2, only if x=1 and y=1 — correcting |y)
x=1,y=1

X gate on qubit 3, only if x=0 and y=0 — correcting |1//3)
x=1,y=1




Bit Flip Error Correction

' ' correction
0
O 1 1 . |
10) : 1 X X | : y)
| —i X ——e
or,-:., ! ,
) 2 —{ X — +——o , v)
or,.-. ! :
3 — X — —
X gate on qubit 1, only if x=1 and y=0 — correcting | ;)
ly) = a|000) + p[111) | | |
X" gate on qubit 2, only if x=1 and y=1 — correcting |y)
X gate on qubit 3, only if x=0 and y=0 — correcting 1/13)

« What if errors in quantum circuits can arise continuously from

zero? (Assume the error rate is small)

ly) — [1+(€1X1+€2X2+€3X3)] | w) e, €C, ||l x1



Stabilizer Formalism

« Useful method for error correction of arbitrary error.

- Consider two Hermitian operators, Z,Z, and Z,Z;

Zi2 = by 212y, = 2,2, (2122)2 = by (2223)2 = by
— A?’=1, — eigenvalues == 1 Ax = Ax A2x = 125 = x 12 =1
— [Z£,2,,2,Z5]1=0 Z,Z, and Z,Z5 have the same eigenvectors .
Syndromes 22y | ZyZy | X | Y
| w) = @] 000) + | 111) 1 1 0] 0 L2y =(=1)
lwy) = a|100) + £[011) = X, [y) -1 1 1 0 Z,Z, = (—1)
lyy) = a|010) + | 101) =X, |y) | -1 1 1 1
lys) = a|001) + S| 110) = X5 |w) 1 - 0| 1

- Syndromes are eigenvectors of Z,Z, and Z,Z;.

» Stabilizers are operators whose eigenvalues distinguish the different syndromes.



Properties of Stabilizers and Syndromes

Syndromes are eigenvectors of Z,Z, and Z,Z;.

Stabilizers are operators whose eigenvalues distinguish the different
syndromes.

Eigenvalues of a stabilizer in a syndrome is +1 or -1.
Eigenvalues of all stabilizers are +1 in the uncorrupted syndrome | ).

Operators for the stabilizers are built out of the single qubit operators Z
and X..

Syndromes with a single qubit error are obtained by acting on the
uncorrupted syndrome with X, Y; and Z; operators.

For a general stabilizer A, and a syndrome state |y;) = Bs|y), A,
either commutes or anti-commutes with Bﬂ.

_Bﬁ involves a single Pauli’s operator (X, Y or Z).

— A, involves a product of Pauli's operators (X’s, and Z’s b/c Y = iXZ).



Properties of Stabilizers and Syndromes

If [A,, Bsl =0, A, |y = + 1]yy) and eigenvalue of the stabilizer
A, in state |yy) is +1.

~Aglwg) = AuBslw) = BsA, lyw) = Bslw) = |yy)
If{Aa’Bﬂ} =0, Aa|l//ﬂ> = —1|l//ﬂ>
—Aa|Wﬁ> =AaBﬂ|l//> = —BﬁAa|l//> = —Bﬁh//) = = |l//ﬁ>

Syndromes must be eigenvectors of all stabilizers — stabilizers must
commute each other

How to determine efficiently if a stabilizer commutes or anti-commutes
with the operator which generates a corrupted syndrome out of the
uncorrupted syndrome?

For the case of 3-qubit bit-flip code, stabilizers are Z,Z, and Z,Z;.

Operators which generate the corrupted syndromes from the
uncorrupted syndrome: X;, X, and Xj.



Properties of Stabilizers and Syndromes

How to determine efficiently if a stabilizer commutes or anti-
commutes with the operator which generates a corrupted syndrome
out of the uncorrupted syndrome?

For the case of 3-qubit bit-flip code, stabilizers are Z,Z, and Z,Z;.

Operators which generate the corrupted syndromes from the
uncorrupted syndrome: X, X, and Xj.

— X; commutes with Z,Z, «— [X,, Z,Z;] = 0. . no sites in
common — Z,Z,|yy) =+ 1|yy)

— X, has one common site with Z,Z,.
— XoZ2oZy = — 2, X072y = — Z,75X,
= {X0,2,23} =0 = Z,Z3|yp) = — [y)



Stabilizer Formalism

* In the stabilizer formalism, we need to construct a set of Hermitian
operators (stabilizers) which satisfy the following properties

—They square to 1 (so eigenvalues are £1).

— They mutually commute (so they have the same eigenvectors).
— The syndromes are eigenstates.

— The uncorrupted syndrome has eigenvalue +1 for all stabilizers.

—The set of =1 eigenvalues of the stabilizers uniquely specifies the
syndrome.

— Whether the eigenvalue is +1 or -1 is easily determined from the
commutation properties of the stabilizer with respect to the
operator which generate the corruption in the syndrome.



Stabilizer Formalism: Circuits

 Circuit which will measure the eigenvalues of stabilizers and hence
determine which syndromes have occurred.

» control '

U=U" 10) : :
Ulys) =+ |y

) — 1LY -
lv) =a, |y,) +a_|y) ' ' target |

[P0) 1) 1) |3)
| o) =10) & ly) = a, | Oy) + a_|Oy)

—= {10y + Ty | + =] 10p0) + 1 1y0)

= 0 1
1) = \/E(l Y+11) ® |y) = 2

\/5

) = |0w+>+|h/f+>>+%(l0w>—llw>>

o

|3) = o, | Oy, ) +a_| 1y_)



Stabilizer Formalism: Circuits

- If a measurement of the upper qubit gives | 0) (with probability
o, %), the lower qubit will be in state lyw,).

- If a measurement of the upper qubit gives | 1) (with probability
|a_|?), the lower qubit will be in state ly).

« .’. control bit tells us which eigenstates of U the target qubit is in.

» control '

' target

|¢o> [$1) 1) |¢3

_ HzZRA R e =
HZH =X




Bitflip code for 3 qubits

ly) = a]000) + S| 111)

LS/ kS

10)
0)



Bitflip code for 3 qubits
|_X

] — X}
or.--

10)
10)

2 _|“ K

|w)

._¢

or .-.

l' \‘

3 — X /!
A .

) = ] 000) + f] 111) "

hS/kS

0)
10)



Phase Flip

« With some probability p, the relative phase of |0) and | 1) is flipped.

Phase ly) =al0)+p|1) — al0)-/F[1)

Flip (Z) — Z(;) = (_;) in Z-basis (computational basis)
Bit Flip |y) =al0)+p[1) — a|l)+p]0) X10)=11)

B == T

« Phase flip error model can be turned into the bit-flip error model by
transforming to the = basis (X basis).

1 1
|+>=$(|0>+|1>) |—>=$(|0>—|1>)
Transformation is Hadamard: H|0)=|+) H|+)=10)

Hl1)=|-=) H[-)=]1)



Phase Flip

* In the X-basis, roles of X and Z are interchanged.

o X0 =) P Z]+)=]-) .
Bit-fli Phase-flip
P oxiy=100 0 ZI-)=1+)
Z|0) =0 L X[ +) =+ o
Phase-flip 10)=10) +r=1+) Bit-flip
ZI)=—11) i X|=-)=—]-)
In computational basis :
(Z-basis) In X-basis

« Stabilizers to detect phase errors involve X-operations as opposed to those
used to detect bit-flip errors which involve Z-operators.

al0)+4]1) X aloy+pl1)
0) T X 10) — [H]-

0 —D X 0) [ x
a|000) + | 111) al++4)+p]———)
Circuit to encode 3-qubit bit-flip code acting Encoding circuit for

on a linear combination of |0) and | 1) the 3-qubit phase flip



Spin Correlation Measurements and
Bell's Inequality



Correlations in Spin-Singlet States

Consider a two-electron system in a spin-singlet state, that is, with a total
spin of zero.

|spin singlet) = (%) (|z+;2—) — |z2—;2+)),
If one of the components is shown to be in the spin-up state, the other is
necessarily in the spin-down state, and vice versa.

This correlation can persist even if the two particles are well separated and
have ceased to interact provided that as they fly apart, there is no change in
their spin states.

This is certainly the case for a J = 0 system disintegrating spontaneously
into two spin 1/2 particles with no relative orbital angular momentum,
because angular momentum conservation must hold in the disintegration /
decay process. A good example is the decay of eta:

n—u’+u

Proton-proton scattering at a very low energy can lead to 1SO
— No orbital angular momentum, spin-singlet state.



Correlations in Spin-Singlet States

Consider a system of two spin 1/2 particles moving in opposite
direction.

B - Particle 2 /\ i i S A
! ! v Particle 1

Observer A specializes in measuring Sz of particle 1, while
observer B specializes in measuring Sz of particle 2.

If A finds S.to be positive for particle 1,
what does A predict about B's measurement?

what does B measure for Sz?



Correlations in Spin-Singlet States

* Pick one ball out of a bag of
a black ball and a white
ball.

 When we pick one ball,
there is 50%-50% chance if
getting black or white. If the
1st ball is black, then we
predict with certainty that
the second ball must be
white.




Correlations in Spin-Singlet States

[\

« Quantum case is more

complicated, because
observers may choose to
measure S.in place of S..

« Sx and Sz eigenstates ae

related via:



Correlations in Spin-Singlet States

1 1
spin singlet) = | — | (|z2+;2—) — |Z—;2+)), spin singlet) = [ — | (|X—; X+) — |X+;X—)).
spin singlet) = (2 ) (hs2-) — fpsa)). [spinsinglen) = (< ) (R=354) ~ [i3-)

 If Adetermines S,of particle 1 to be positive, what does B measure for Sx?

* |f Achooses to measure S, and determines S, of particle 1 to be
positive, then B will measure S, of particle 2 to be

 |If Amakes no measurement, what can B say about Sx measurement?




Spin Correlation Measurements

Spin component Spin component
measured by A A’sresult measured by B B’s result

« The outcome of B’s

measurement appears to

. i : . depend on what kind of

. N ; _ measurement A decides to

x -~ z + perform: an S,measurement,
z + X - an S.measurement, or no

> i > - measurement.

Z + X +

X — x + « A and B can be miles apart

z - z i with no possibility of

- B ’ N communications or mutual

X n ; _ iInteractions.




Einstein’s Locality Principle

Einstein’s locality principle: “But on one supposition we should, in my
opinion, absolutely hold fast: The real factual situation of the system S.is
independent of what is done with the system S,, which is spatially
separated from the former.” - A. Einstein, B. Podolsky, and N. Rosen,
1935 - EPR paradox

Some have argued that the difficulties encountered here are inherent in
the probabilistic interpretations of quantum mechanics and that the
dynamic behavior at the microscopic level appears probabilistic only
because some yet unknown parameters, so-called hidden variables, have
not been specified.

Still 1964, people thought that such theorists would give no prediction
other than usual QM prediction that would be verified experimentally. The
whole debate belonged to the realm of metaphysics....

Bell pointed out that alternative theories based on Einstein’s locality
principle actually predict a testable inequality relation among the
observables of spin-correlation experiments that disagrees with the
predictions of quantum mechanics.



Bell's Inequality with a simple spin 1/2
model by Wigner (alternative theories)

It is impossible to determine S,and S.simultaneously.

When we have a large number of spin 1/2 particles, we assign a certain
fraction of them to have the following property.

If S, 1s measured, we obtain a plus sign with certainty.
If S, 1s measured, we obtain a minus sign with certainty.

A particle satisfying this property is said to belong to type (z"+,x™-).
we can not simultaneously measure S.and S,to be + and —, respectively.
When we measure S,, we do not measure S,, and vice versa.

We are assigning definite values of spin components in more than one
direction with the understanding that only one or the other of the
components can actually be measured. Even though this approach is
fundamentally different from that of quantum mechanics, the quantum-
mechanical predictions for S.and S,measurements performed on the
spin-up (S.+) state are reproduced provided there are as many particles
belonging to type (z"+,x"+) as to type (z'+ , x— ) .



Spin-Singlet States
(alternative theories)

* There must be a perfect matching between particle 1 and
particle 2 to ensure zero total angular momentum: if particle 1
is of type (z"+,x"—), then particle 2 must belong to type
(z"-,x"+), and so forth, with equal populations, 25% each.

particle 1 particle2 < |f observer A decides to measure S, of
(2+,%—) < (2—,%+),  particle 1, then he or she necessarily
obtains a plus sign regardless of whether

(2+,%+) & (2—,%-), B decides to measure S,or S,.

(2—,%+) < (2+,5—), ° Itisinthis sense that Einstein’s locality
principle is incorporated in this model: A's

(2—,%—) & (2+,%+), result is predetermined independently of
B’s choice as to what to measure.



Spin-Singlet States
alternative theories)

Consider three ung vectors, a, b and c (in general, not mutually orthogonal).

One particle belongs to some definite type, say (a"—,b"+,¢™+), which means
that if S-a is measured, we obtain a minus sign with certainty; if S - b is
measured, we obtain a plus sign with certainty; if S - ¢ is measured, we
obtain a plus sign with certainty.

There must be a perfect matching in the sense that the other particle
necessarily belongs to type (a™+,b —,c"-) to ensure zero total angular
momentum.

These eight possibilities are mutually exclusive and disjoint.

Population Particle 1 Particle 2 « Suppose that observer A
N, (a+.b+.e+) (A—,b—, o) finds S,- a to be plus and
N, (a+,b+,e) (a—,b—,&+) observer B f_inds S, b to be
N; (a+,b—,e+) (4—,b+,e—) plus a!so. It is clear from |
N, (a+,b—, &) (4—,b+,e+) Table in thg left that the pair
Ns (a—, b+, &) (a+,b—,e) belong to either type 3 or
Ne (a—,b+,e-) (4+,b—,e4) typg 4, so fthe numb.er of |
N- (a—,b—,é+) (a4, b+,e—) p_artlc_le pairs folr WhI.Ch this
N (a—,b—,¢—) (a+,b+,e+4) situation is realized is N3+N4



Bell's Inequality from Einstein’s
locality principle (alternative theories)

* Let P(a™+; b™+) be the probability that, in a random selection, observer A measures
S,- ato be + and observer B measures S,-b to be +, and so on.

N3+ Ny < (N +Ng)+ (N3 +Nq). | > P(a+;b+) < Pa+;e+) + P(+; b+).
R . N3 +N.

P(at;e+) = (N;j]év ) Pleribe) = (N;]év ) plakshe) = ;l_g % J
Population Particle 1 Particle 2 A]z > ()

N, (a+,b+,e+) (a—,b—,¢—)

N, (a+,b+,e—) (a—,b—,&+)

N3 (a+,b—,¢+) (a—,b+,e—)

WA (a+,b—, &) (a—,b+,e+)

Ns (a—,b+,e+) (a+,b—,¢—)

Ne (a—,b+,e—) (a+,b—,e+)

Ny (ﬁ_af)_’é+) (ﬁ+,f)+,é—)

Ny (a—,b—,¢—) (a+,b+,¢+)



Quantum Mechanics and Bell’s Inequality

* |n quantum mechanics we do not talk about a certain fraction
of particle pairs, belonging to a particular type. Instead, we
characterize all spin-singlet systems by the same ket.

* P(@+;b+):
a-direction A —Afinds S,-a to be positive; because of the 100%
| % direction (opposite sign) correlation we discussed earlier,
| e B’s measurement of S,- a will yield a minus sign
N—=2 with certainty.
i ’;ﬂ —To calculate P(a™+;b"+) we must consider a new
) :,//,/’/,/’ quantization axis b that makes an angle 6., with a,
e the probability that the S,- b measurement yields
| + when particle 2 is known to be in an eigenket of
| S, a with negative eigenvalue is given by
I
I

2
—0 0
= cos? [ ZJab ) = gin? [ 22
2 2

P(a+;b+) = (l) sin’ (%> where 1/2 is from the probability
of initially obtaining S,-a with +.

(S2)
// Yl - - -
g ‘(Sz'b+|52'5—>




Quantum Mechanics and Bell’s Inequality
P(a+;b+) < P(a+;&+) +P(e+; b+). :{> sin’ (%) < sin® (%) + sin’? (%)

For simplicity let us choose a, b, and c to lie in a plane, and let
c bisect the two directions defined by a and b: 6., =26, 6..=60.,=0

Tt

Inequality is violated for 0<6 < 5

Note that we can not use the spin-correlation measurement to transmit
any useful information between two macroscopically separated points.

Superluminal communications are impossible.



Bell's Inequality Revisited

* N(A, not B) = number of objects which have parameters A but not B.
N(A, not B, C) + N(notA, B, notC) =0
Add: N(A, not B, not C) + N(A, B, not C)

N(A, not B, C) + N(not A, B, not C)
+ N(A, not B, not C) + N(A, B, not C) = N(A, not B, not C) + N(A, B, not C)

N(A, not B) + N(B, not C) = N(A, not C)

 We assumed that parameters exist whether they are measured or not. i.e.,
either B or not B is true for every member.

A: spin-up along a, B: spin-up along b, C: spin-up along c

Consider spin1/2 system:
Not B for particle 1 = spin-down along b for particle 1 = spin-up along b for particle 2



Bell's Inequality Revisited

A: spin-up along a, B: spin-up along b, C: spin-up along c
Consider spin1/2 system:
Not B for particle 1 = spin-down along b for particle 1 = spin-up along b for particle 2

N(A, not B) + N(B, not C) = N(A, not C)
NG + ,b+) + N(b + ,6+) > N@ +, é+)

PG+ ,b+)+ P(b+,64) > PG+ ,6+)

Assumption
* Logic is valid.
« Electrons have spin in a given direction, even if we do not measure it —
there is a reality separate from its observation —Hidden variables exist.

« No information can travel faster than the speed of light — Locality —
Hidden variables are local.



Bell's Inequality Revisited

« Assumptions

1.
2.

Logic is valid.

Electrons have spin in a given direction, even if we do not measure it
— there is a reality separate from its observation —Hidden variables
exist.

No information can travel faster than the speed of light — Locality —
Hidden variables are local.

* Are we sure about the assumptions?

1.

3.

It has been suspected since long before Bell that Quantum
Mechanics is in conflict with classical logic. Deductive logic has
proved that logic is incomplete (1931, Kurt Godel), Self-reference:
“This statement is false.”

. What if there is no reality separate from its observation? “The path of

the electron comes into existence3 only when we observe it” -
Heisenberg for the double slit. Ontology of QM?

Non-locality? Quantum teleportation, quantum entanglement.



Bell's Inequality and experimental tests

« QM prediction is not compatible with Bell’s inequality.

« Experimental tests showing violation of Bell inequalities have
been performed for pairs of two-outcome measurements using
photons, ions, superconducting systems and nitrogen vacancy
centers, and in pairs of three-outcome measurements using
photons.

* Proposals have also been made to test Bell inequalities in e+e-
collisions and positronium decays. Recently it has been proposed

to make such tests in entangled t + t decays, in the Higgs decay
to WW, and in systems of BO-BObarmesons at the LHC.



Testing Bell inequalities at the LHC with
top-quark pairs

* The quantum state of a two spin-1/2 pair, as the one formed by a
top-quark pair system, can be expressed by the density matrix:

1
p = 1{1®1—|— g Ai(o; @ 1) + g Bi(1®o0j)+ E Cij(o; ® 0j)
i ] i
Polarization A4:i= Tr[p(0; ®1)] Correlation

I . C@ = Tr 0; K 0,

In the CM reference frame of the top-quark pair system as produced at a pp collider, the two
spin-1/2 quarks fly apart in opposite directions. One can then extract the probability P(14; —)
of finding the spin of one quark in the state 1, with the projection of the spin along the axis
determined by the unit vector n pointing in the up direction. Similarly, one can consider double
probabilities, like P(14; s ), of finding the projection of the spin of the quark along the unit vector
n pointing in the up state, while the companion antiquark has the projection of its spin along the
direction of a different unit vector m pointing in the down state.

In classical physics, these probabilities involve averages over suitable distributions of variables
and obey the following (generalized) Bell inequality [34]:

P(T”fn;Tﬁz) o P(Tﬁl;Tﬂ4) + P(TﬂB;TﬁQ) + P(Tﬁs; Tﬁ4) < P(Tﬁg; _> + P(_; wa) ) (2)
Generalized Bell’s inequality or Clauser-Horne-Shimony-Holt (CHSH) inequality for spin-1/2
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Generalized Bell’s inequality or Clauser-Horne-Shimony-Holt (CHSH) inequality for spin-1/2

P(Tar; Tas) — P(Tars Tag) + P(Tas; Tas) + P(Tas; Tas) S P(Tass =) +P(—=5Thy) ,  (2)

where ni, N9, N3 and ng are four different three-dimensional unit vectors determining four spatial
directions along which the spins of the quark and antiquark can be measured. In quantum me-
chanics the same probabilities are computed as expectation of suitable spin-observable operators
(Eq. (1)), so that the previous inequality reduces to the following constraint

i C (g = ) + g - C (o + 1) | <2, (3)

involving only the spin correlation matrix C;; and not the polarization coefficients A; and B;.

consider the matrix C' and its transpose C'?" and form the
symmetric, positive, 3 x 3 matrix M = CTC whose three
eigenvalues my, mo, m3 can be ordered by decreasing
magnitude: m1 > mo > mg3. The two-spin state density
matrix p in (1) violates the inequality (3), or equivalently
(2), if and only if the sum of the two greatest eigenvalues
of M is strictly larger than 1, that is

m1+mo > 1. (4)
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