
Day 3
• Comment on use of quantum algorithm for DM detection 
• Grover’s algorithm 
• Distance based classifier 
• Data reuploading 

• PennyLane example for combinatorial problem  
– QAOA 
– FALQON 
– https://drive.google.com/file/d/

1SopdB1k7GUQydhrMZPBFfkaPJsT9XcRT/view?usp=sharing

https://drive.google.com/file/d/1SopdB1k7GUQydhrMZPBFfkaPJsT9XcRT/view?usp=sharing
https://drive.google.com/file/d/1SopdB1k7GUQydhrMZPBFfkaPJsT9XcRT/view?usp=sharing


Application in Dark Matter Physics

• Detection of hidden photon dark matter using the 
direct excitation of transmon qubits  
– https://arxiv.org/pdf/2212.03884 

• Quantum Enhancement in Dark Matter Detection 
with Quantum Computation 
– https://arxiv.org/pdf/2311.10413 

• Search for QCD axion dark matter with transmon 
qubits and quantum circuit 
– https://arxiv.org/pdf/2407.19755 

• Quantum entanglement of ions for light dark matter 
detection 
– https://arxiv.org/pdf/2311.11632

https://arxiv.org/pdf/2212.03884
https://arxiv.org/pdf/2311.10413
https://arxiv.org/pdf/2407.19755
https://arxiv.org/pdf/2311.11632


• Detection of hidden photon dark matter using 
the direct excitation of transmon qubits  
– https://arxiv.org/pdf/2212.03884

https://arxiv.org/pdf/2212.03884


Slides taken from T. Moroi’s talk (March 2024)

Transmon qubit: Capacitor + Josephson junction (JJ)

Josephson Junction

JJ

Superconductor
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θ̇2 − J cos θ with θ = θB − θA

Transmon qubit has discrete energy levels

⇒ |0⟩ and |1⟩ can be used as |g⟩ and |e⟩, respectively

⇒ Transmon qubits are used in today’s quantum computers



Transmon qubit couples to external electric field

⇔ Hint = QdE(ext)
Q

Q
Ed
(ext)Capacitor

Charge operator in the transmon limit: CJ ≫ (2e)2

Q ≃ C

2e
θ̇ ≃

√
Cω

2

(
|g⟩⟨e|+ |e⟩⟨g|

)

|g⟩ ↔ |e⟩ transition occurs if DM field generates electric field

• Hidden photon

• Axion (if external magnetic field exists)

• · · ·



Case of hidden photon Xµ (in mass-eigenstate basis)

L ∋ −1

4
XµνX

µν +
1

2
m2

XXµX
µ + e ψ̄eγ

µψe (A
(EM)
µ + ϵXµ)

ϵ: kinetic-mixing parameter

Oscillating hidden photon can play the role of DM

X⃗ ≃ X̄n⃗X sin(mXt+ α) with ρDM =
1

2
m2

XX̄2

Hidden photon DM induces effective electric field

E⃗(X) = −ϵ ˙⃗
X = −Ē(X)n⃗X cos(mXt+ α)

Ē(X) = ϵ
√
2ρDM

hidden photon field around the Earth⃗X =



Hamiltonian for transmon qubit + hidden photon system

H = ω|e⟩⟨e|− 2η cos(mXt+ α)
(
|e⟩⟨g|+ |g⟩⟨e|

)

η ≃ 1

2
√
2
dĒ(X)

√
Cω =

1

2
ϵd
√

CωρDM

Schrödinger equation

i
d

dt
|ψ(t)⟩ = H|ψ(t)⟩ ⇒ |ψ(t)⟩ = UDM(t) |ψ(0)⟩

Resonance limit ω = mX (for ηt ≪ 1)
(
ψg(t)

ψe(t)

)
= UDM(t)

(
ψg(0)

ψe(0)

)
≃
(

1 ie−iαηt

ieiαηt 1

)(
ψg(0)

ψe(0)

)

|ψ(t)⟩ ≡ ψg(t)|g⟩+ e−iωt ψe(t)|e⟩

2

A transmon qubit is modeled as a closed circuit loop
consisting of a capacitor element and a non-linear induc-
tance realized by a Josephson junction or a SQUID. The
Hamiltonian for the system is described by

H0 =
1

2
CV

2
� J cos ✓̂, (1)

where ✓̂ is the phase di↵erence across the Josephson junc-
tion, and C is the capacitance. J is positive-valued. This
is constant when a Josephson junction is considered as
the inductance element, while it is tunable for a SQUID
through the magnetic flux bias applied. The voltage dif-
ference V between the Josephson junction is related to ✓̂

as

V = (2e)�1 ˙̂
✓, (2)

where e is the electric charge of the electron. The conju-
gate momentum of ✓̂, denoted as n̂, is introduced for the
canonical quantization, namely

n̂ ⌘ Z
˙̂
✓, (3)

with

Z ⌘ (2e)�2
C. (4)

Notice that n̂ = CV/2e can be regarded as the total
charge in units of 2e, and ✓̂ and n̂ satisfy the commutation
relation [✓̂, n̂] = i. The Hamiltonian is then written as

H0 =
1

2Z
n̂
2
� J cos ✓̂ =

1

2C
(2en̂)2 � J cos ✓̂. (5)

The energy levels of this system are unequally spaced; the
ground and the first excited states, denoted as |gi and |ei,
respectively, are used for the transmon qubit. The exci-
tation energy from |gi to |ei is denoted as !. Then, the
Hamiltonian of the system is reduced to approximately

H0 = !|eihe|. (6)

For convenience of the later discussion, we also define

â ⌘
1

p
2!Z

⇣
n̂� i!Z ✓̂

⌘
, â

†
⌘

1
p
2!Z

⇣
n̂+ i!Z ✓̂

⌘
,

(7)

which satisfies [â, â†] = 1. These correspond to the anni-
hilation and creation operators when approximating the
potential as a parabolic one, where J and ! are related
as J ' Z!

2.
If there exists the hidden photon DM, an e↵ective elec-

tric field is induced by the hidden photon oscillation. In
the mass-eigenstate basis, the interaction terms of the
electron field  e with the electromagnetic (EM) photon
Aµ and hidden photon Xµ are given by

Lint = e ̄e�
µ (Aµ + ✏Xµ) e, (8)

where ✏ is the kinetic-mixing parameter. Assuming that
the DM consists only of the oscillating hidden photon,
we denote the hidden photon field around the Earth as

~X = X̄~nX cosmXt, (9)

where mX is the hidden photon mass, X̄ is the amplitude
of the oscillation and ~nX is the unit vector pointing to
the direction of ~X. The amplitude is related to the local
density of the DM as

⇢DM =
1

2
m

2
XX̄

2
. (10)

The e↵ective electric field which a qubit would sense is
given by

~E
(e↵) = ~E

(EM) + ~E
(X)

, (11)

where ~E
(X) is the field induced by the DM, and ~E

(EM) is
the reactive ordinary electric field induced by the metallic
package surrounding the qubit that senses ~E

(X) (see the
Appendix for the detailed discussion). Using Eqs. (9)
and (10) one obtains:

~E
(X) = �✏ ~̇X = Ē

(X)
~nX sinmXt, (12)

with

Ē
(X)

⌘ ✏mXX̄ = ✏
p

2⇢DM. (13)

Hereafter, we consider the case that ~E
(EM) and ~E

(X)

have the same time dependence; this is the case in par-
ticular when considering a qubit located in a cavity-like
metallic package. We parameterize the total e↵ective
electric field as

~E
(e↵) = Ē

(e↵)
~nE sinmXt, (14)

where ~nE is the unit vector pointing to the direction of
~E
(e↵). The “package coe�cient”  is introduced:

 ⌘
Ē

(e↵)

Ē(X)
, (15)

which is typically O(1) or larger if the package size is
& m

�1
X (see the Appendix for the details).

With the e↵ective electric field, the voltage di↵erence
of the capacitor becomes V + dĒ

(e↵) cos⇥ sinmXt, with
⇥ being the angle between ~nE and the normal vector
of the conductor plate. Concentrating on the terms up
to the linear order in ✏, the Hamiltonian is modified as
H = H0 +�H such that

�H = CV dĒ
(e↵) cos⇥ sinmXt = 2⌘ sinmXt(â+ â

†),
(16)

where d is the e↵ective distance between two conductor
plates, and

⌘ ⌘
1

2
p
2
dĒ

(e↵)
p

C! cos⇥ =
1

2
✏d

p
C!⇢DM cos⇥.

(17)
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Calculating the matrix elements hg|�H|ei and
he|�H|gi presuming that the excited state is well approx-
imated as |ei ' â

†
|gi, the following e↵ective Hamiltonian

expression is obtained:

H = !|eihe|+ 2⌘ sinmXt(|eihg|+ |gihe|), (18)

describing the interaction between the transmon qubit
and the hidden photon DM.

Time evolution of the qubit: Now we show that the DM-

induced field Ē
(e↵) causes the Rabi oscillation of the

qubit, a coherent drive between |gi and |ei. For a qubit
state

| (t)i =  g(t)|gi+ e
�i!t

 e(t)|ei, (19)

the time evolution is given by

i
d

dt
| (t)i = H| (t)i, (20)

namely,

i
d

dt

✓
 g

 e

◆
=

✓
0 �i⌘(e�i(!�mX)t

� e
�i(!+mX)t)

i⌘(ei(!�mX)t
� e

i(!+mX)t) 0

◆✓
 g

 e

◆
. (21)

Suppose that the qubit frequency is tuned to be equal
to the hidden photon mass, i.e., ! = mX . Neglecting
the fast oscillating component (rotation wave approxi-
mation), the evolution equation reduces to

i
d

dt

✓
 g

 e

◆
'

✓
0 �i⌘

i⌘ 0

◆✓
 g

 e

◆
. (22)

Assuming that the qubit is initially at the ground state,
i.e.,  g(0) = 1 and  e(0) = 0, we obtain

 g(t) ' cos ⌘t,  e(t) ' sin ⌘t. (23)

The transition probability from the ground state to the
excited state is pge(t) = | e(t)|2 ' sin2 ⌘t, corresponding
to a Rabi oscillation at a frequency of ⌘.

Note that the discussion above is valid only within the
coherence time of the system ⌧ , i.e., t < ⌧ . The co-
herence time can be defined for the DM and the qubit
individually (⌧X and ⌧q, respectively). The former is es-
timated to be ⌧X ⇠ 2⇡/mXv

2
X with vX ⇠ 10�3 being the

hidden photon velocity. For the latter, the longitudinal
coherence time T1 is relevant here since the dephasing is
highly suppressed in the transmon limit (JZ � 1) [35].
A T1 of ⇠ 100 µs is commonly achieved in the recent ex-
periments [36–38]. The coherence time for the system is
dictated by the shorter one, i.e., ⌧ ' min(⌧X , ⌧q), which
is usually given by that of the qubit. Hereafter, we pa-
rameterize ⌧ ⌘ 2⇡Q/!, with Q being the quality factor.

Assuming that ⌧ ⌧ ⌘
�1, the transition probability

from |gi to |ei within the coherence time is evaluated
as

p⇤ ⌘ pge(⌧) ' (⌘⌧)2. (24)

Numerically, the transition probability is given by

pge(⌧) ' 0.12⇥ 
2 cos2⇥

⇣
✏

10�11

⌘2✓ f

1 GHz

◆

⇥

✓
⌧

100 µs

◆2✓
C

0.1 pF

◆✓
d

100 µm

◆2

⇥

 
⇢DM

0.45 GeV/cm3

!
, (25)

where f ⌘ !/2⇡, which is related to the hidden photon
mass as

f ' 0.24 GHz⇥

✓
mX

1 µeV

◆
(26)

when ! = mX .
Note that the scheme is agnostic to the concept of

“detection volume” since the excitation rate solely de-
pends on the local electric field around the qubits. At
the high-frequency regime this is a distinct advantage
over the cavity-based haloscope experiments where the
signal power is suppressed by ⇠ 1/f3 due to the dwin-
dling resonant radius.
Two methods are possible for detecting the excitation;

for searching large ✏ yielding substantially high excita-
tion rate (p⇤ > O(10%)) the characteristic Rabi modu-
lation can be measured that can be easily di↵erentiated
from the noise; for smaller ✏, the repetitive counting ex-
periments (further discussed in the following section) is
powerful despite the higher dark counts, allowing one to
probe p⇤ as low as 10�4.

Experimental setup and the measurement protocol: A
typical setup for transmon measurements [39] is adopted
in the search. The transmon is assumed to be in the
X-mon [40] or the conventional dumbbell [41] architec-
ture, which is either packaged with a Coplanar Waveg-
uide (CPW) resonator on a chip surrounded by a metal-
lic shield or housed in a microwave cavity [42] for the



|g⟩ → |e⟩ transition probability (assuming |ψ(0)⟩ = |g⟩)

|ψe(t)|2 ≃

{
η2t2 : ω = mX (on-resonance)
∼ η2(ω −mX)−2 : ω ̸= mX (off-resonance)

Excitation probability for ω = mX :

Pge ≃ 0.3×
( ϵ

10−11

)2( mX

10µeV

)( C

0.1 pF

)( d

100µm

)2( τ

100µs

)2

τ = coherence time

Excitation probability can be sizable

⇒ Transmon qubit as a DM detector



Search strategy

• For fixed ω, repeat the measurement cycle (reset, wait, and
readout) as many time as possible

• Scan the qubit frequency ω

Time spent for each frequency
~ 10 sec

Reset to |g 
~ 20 ns

Readout
~ 100 ns

Time evolution (with U    )
τ ~ 100 μs

time

DM

N     ~ 10rep
5

time

#
 o

f 
si

g
n

a
l

ω

ω = mX
Wait until t = τ

gReset to

Readout

ψ e= : Signal of DM



Discovery reach with 1 year frequency scan (1 ≤ f ≤ 10 GHz)

• d = 100 µm

• C = 0.1 pF

• Q = 106

• Error rate / qubit = 0.1 %

⇒ Using qubit, we may probe parameter region unexplored

⇒ We hope to use qubit for the detection of other DMs



• Quantum Enhancement in Dark Matter 
Detection with Quantum Computation 
– https://arxiv.org/pdf/2311.10413

https://arxiv.org/pdf/2311.10413


E⃗(X) coherently acts on Nq qubits:

E⃗(X) = −Ē(X)n⃗X cos(mXt+ α)

UDM induces pure phase rotation of its eigenstates

E.g. for α = 0: UDM ≃
(
1 iδ

iδ 1

)
with δ ≡ ητ

⇒ UDM|±⟩ = e±iδ|±⟩ with |±⟩ ≡ 1√
2

(
|g⟩± |e⟩

)

⇒ U⊗Nq

DM |+⟩⊗Nq = eiNqδ|+⟩⊗Nq

We can design quantum operations to enhance the signal
⇒ Quantum enhanced parameter estimation

[Giovannetti, Lloyd, Maccone (’04)]



One measurement cycle for the signal enhancement

CZ0 +
H

g +
H

H

Z Z

CZ

UDM

g +
H Z ZUDM

g +
H Z ZUDM

Ancilla

Sensors

t0

|Ψ(t0)⟩ = |+⟩ ⊗ |+⟩⊗Nq =
1√
2
|0⟩ ⊗ |+⟩⊗Nq +

1√
2
|1⟩ ⊗ |+⟩⊗Nq



One measurement cycle for the signal enhancement

CZ0 +
H

g +
H

H

Z Z

CZ

UDM

g +
H Z ZUDM

g +
H Z ZUDM

Ancilla

Sensors

t1

|Ψ(t1)⟩ =
1√
2
|0⟩ ⊗ |+⟩⊗Nq +

1√
2
|1⟩ ⊗ |−⟩⊗Nq

Basic unitary operations (quantum gates)

• Z gate

Z = |g⟩⟨g|− |e⟩⟨e| ⇒ |+⟩ Z−→ |−⟩ with |±⟩ ≡ 1√
2

(
|g⟩± |e⟩

)

• Hadamard gate

H = |+⟩⟨g|+ |−⟩⟨e| ⇒ |g⟩ H−→ |+⟩, |e⟩ H−→ |−⟩

• Controlled Z gate

CZ = |0⟩⟨0|⊗ 1+ |1⟩⟨1|⊗ Z

⇒ 1√
2

(
|0⟩+ |1⟩

)
⊗ |+⟩ CZ−−→ 1√

2
|0⟩ ⊗ |+⟩+ 1√

2
|1⟩ ⊗ |−⟩



One measurement cycle for the signal enhancement

CZ0 +
H

g +
H

H

Z Z

CZ

UDM

g +
H Z ZUDM

g +
H Z ZUDM

Ancilla

Sensors

t2

|Ψ(t2)⟩ =
1√
2
eiNqδ|0⟩ ⊗ |+⟩⊗Nq +

1√
2
e−iNqδ|1⟩ ⊗ |−⟩⊗Nq



One measurement cycle for the signal enhancement

CZ0 +
H

g +
H

H

Z Z

CZ

UDM

g +
H Z ZUDM

g +
H Z ZUDM

Ancilla

Sensors

t3

|Ψ(t3)⟩ =
1√
2
eiNqδ|0⟩ ⊗ |+⟩⊗Nq +

1√
2
e−iNqδ|1⟩ ⊗ |+⟩⊗Nq

=
(
cos Nqδ |+⟩+ i sin Nqδ |−⟩

)
⊗ |+⟩⊗Nq



One measurement cycle for the signal enhancement

CZ0 +
H

g +
H

H

Z Z

CZ

UDM

g +
H Z ZUDM

g +
H Z ZUDM

Ancilla

Sensors

t f

|Ψ(tf)⟩ =
(
cos Nqδ |0⟩+ i sin Nqδ |1⟩

)
⊗ |+⟩⊗Nq

⇒ Ancilla qubit can be excited: P0→1 ≃ sin2Nqδ ≃ N2
qδ

2



Grover’s search algorithm 
(Amplitude amplification)



Grover’s search algorithm
• Grover’s algorithm involves “amplitude amplification” 

– G. Brassard, P. Hoyer 1997, Lov Grover 1998 
– QFT is used for Shor’s and Simon’s algorithms 

• Example: Find a name in a phone directory (ordered list) 
– Go to the midpoint of the list, see which half contains the name. Repeat 

the same  bisection method takes  operations until one of left. 

• If we are given an unordered list, we will have to check all entries one a 
time. On average, this would take  operations  

– For ,    and  .  

• Grover’s algorithm (unstructured search): determines the special value 
with  (close to 1) by calling subroutine only  times.  

quadratic speed up compared with a classical computer. 
– (cf) exponential speed up is expected in Shor’s algorithm.

→ log2 N

N/2
N = 106 log2 N ≈ 20 N/2 ≈ 5 × 105

p ≈ 1 π
4 N →



Grover’s algorithm: Black Box (Oracle)
• Consider n-bit integers. 

• “ ” is a special number, and the goal is to find “ ”. 

• Define a subroutine which output 1 if input value  is equal to , and 
output 0 otherwise. 

a a
x a

f(a) = 1, f(x) = 0 for x ≠ a

U |x⟩n ⊗ |y⟩1 = |x⟩n ⊗ |y ⊕ f(x)⟩1

one qubitn qubits
X X

X X

X X

X

1

0

0

0

1

a = x4x3x2x1x0 = 01001

|y⟩

?

?

?

?

?

Example:  a=01001

?



Grover’s algorithm: Black Box (Oracle)

X X

X X

X X

X

|x0⟩

|x1⟩
|x2⟩

|x3⟩
|x4⟩

|y⟩

|x0⟩

|x1⟩
|x2⟩

|x3⟩
|x4⟩

|y ⊕ f(x)⟩

a = x4x3x2x1x0 = 01001 f (a) = 1
f (x) = 0, if x ≠ a

(1) X-gates on the left flip qubits 
  target qubit is 

flipped only if 
x1, x2 and x4 →

x4x3x2x1x0 = 01001

(2) Five-fold-controlled NOT 
acts to flip the target qubit , 
only if all control bits are 1.

y

(3) X-gates on the right flip 
back to the original input.

1

0

0

0

1



Grover’s algorithm: Black Box (Oracle)

X X

X X

X X

X

|x0⟩

|x1⟩

|x2⟩

|x3⟩

|x4⟩

|y⟩

|x0⟩

|x1⟩

|x2⟩

|x3⟩

|x4⟩

|y ⊕ f(x)⟩

a = x4x3x2x1x0 = 01001 f (a) = 1
f (x) = 0, if x ≠ a

• Useful to initialize  and 
apply  before . 

• The output qubit is

|y⟩ = |1⟩
H U

H |1⟩ = 1
2 ( |0⟩ − |1⟩)

f (x) = 1, |0 ⊕ f (x)⟩ − |1 ⊕ f (x)⟩ = |1⟩ − |0⟩ = − (|0⟩ − |1⟩)
if f (x) = 0, |0 ⊕ f (x)⟩ − |1 ⊕ f (x)⟩ = |0⟩ − |1⟩

Target qubit changes the sign, depending on the function value.

U ( |x⟩ ⊗ H |1⟩ ) = (−1) f(x) |x⟩ ⊗ H |1⟩⏟Output remains the same.



Define such  as   with |x⟩ |a⊥⟩ ⟨a |a⊥⟩ = 0

Grover’s search algorithm

U ( |x⟩ ⊗ H |1⟩ ) = (−1) f(x) |x⟩ ⊗ H |1⟩

Define : Q |x⟩ = (−1) f(x) |x⟩ = { |x⟩ , for x ≠ a
− |a⟩ , for x = a

U and Q are linear operators.

For a general state, , |ψ⟩ = ∑
x

Cx |x⟩

|ψ′ ⟩ = Q |ψ⟩ = ∑
x≠a

Cx |x⟩ − Ca |a⟩ = ∑
x

Cx |x⟩ − 2Ca |a⟩ = |ψ⟩ − 2 |a⟩⟨a |ψ⟩

Ca ≡ ⟨a |ψ⟩

⟨a |ψ′ ⟩ = ⟨a |ψ⟩ − 2⟨a |ψ⟩ = − ⟨a |ψ⟩

⟨a⊥ |ψ′ ⟩ = ⟨a⊥ |ψ⟩
→ Suppose |x⟩ satisfies ⟨x |a⟩ = 0 for x ≠ a

⃗v ⋅ ̂a⊥ = ⃗v′ ⋅ ̂a⊥

⃗v ⋅ ̂a = − ⃗v′ ⋅ ̂a

⃗v

⃗v′ = ⃗v − 2 ̂a ( ⃗v ⋅ ̂a)

̂a⊥ −2 ̂a ( ⃗v ⋅ ̂a)
̂a⊥ ( ⃗v ⋅ ̂a⊥)

⃗v
− ̂a ( ⃗v ⋅ ̂a)

̂a ̂a ̂a ⋅ ̂a⊥ = 0

reflection around the direction perpendicular to ̂a



Grover’s search algorithm
• Consider uniform superposition of all possible basis states.

|ψ0⟩ = H⊗n |0⟩ = 1
N

N−1

∑
x=0

|x⟩ N = 2n

|ψ0⟩ = 1
N

|a⟩ + N − 1
N

|a⊥⟩ = sin θ0 |a⟩ + cos θ0 |a⊥⟩

⟨a |a⊥⟩ = 0

⟨a |a⟩ = 1

⟨a⊥ |a⊥⟩ = 1

|a⊥⟩ = 1
N − 1

N−1

∑
x≠a, x=0

|x⟩   is the normalized uniform superposition 
of all basis states perpendicular to 
|a⊥⟩

|a⟩

|a⊥⟩

|a⟩

|ψ0⟩
1
N

N − 1
N

θ0

⟨a |ψ0⟩ = 1
N

≡ sin θ0 ⟨a⊥ |ψ0⟩ = N − 1
N

≡ cos θ0

• Probability of  being in  = |ψ0⟩ |a⟩ |⟨a |ψ0⟩ |2 = sin2 θ0 = 1
N
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Now that we are already familiar with the oracle, let us examine the stages of Grover’s
method. Let |wi represent the superposition of every state:

|si = 1p
N

N�1

Â
x=0

|xi, (22)

and the operator,
Us = 2|sihs|� I, (23)

is called the Grover diffusion operator. We can consider the winner |wi and an extra state
|s0i which is in the span of |wi and |si , which is orthogonal to |wi, and which is obtained
from |si by eliminating |wi and rescaling.

1. Let us just put the system in the state |si,

|si = 1p
N

N�1

Â
x=0

|xi. (24)

This superposition |si, which is easily produced from |si = H⌦n|0in, is the beginning
for the amplitude amplification technique, as shown in Figure 9.

Figure 9. Geometric visualization and the condition of the amplitude of the state |si.

The left chart corresponds to the two-dimensional plane spanned by orthogonal
vectors |wi and |s0i which allows for describing the beginning state as |si = sin q|wi+
cos q|s0i, where q = arcsinhs|wi = arcsin 1p

N
. The right picture is a bar chart of the

amplitudes of the state |si.
2. Execute r(N) times the following “Grover iteration”:

(a) Apply the Uw operator to |si.
Geometrically, this relates to a reflection of the state |si about |s0i. This trans-
formation indicates that the amplitude in front of the |wi state turns negative,
which in turn implies that the average amplitude (shown by a dashed line in
Figure 10) has been reduced.

(b) We now implement the operator Us to the state |si.
This transformation completes the transformation by matching the state to
UsUw|si, which relates a rotation around an angle q as shown in Figure 11.

The state will rotate by r ⇥ q after r implementation of step 2, where r = p
4
p

2n ⌘
O(

p
N) [38].

3. The final measurement will give the state |wi with probability P(w) � 1 � sin2( q
2 ) =

1 � 1
2n .
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Figure 10. Geometric visualization and the condition of the amplitude after the implementation of
the Uw operator.

Figure 11. Geometric visualization and the condition of the amplitude after the implementation of
the Us operator.

3.2.3. Quantum Phase Estimation
Quantum phase estimation is a quantum algorithm that employs the Quantum Fourier

Transform (QFT) to convert information encoded within the phase j with an amplitude
a = |a|eij of a state. The QFT accelerates exponentially the process of translating a quantum
state encoded vector into Fourier space. It is often utilized in QML algorithms to retrieve
the information contained in the eigenvalues of operators which includes details of data
points. Phase estimation consists essentially to identify the eigenvalues of such a matrix
U, which is represented as the operator U in the quantum circuit U, hence this operator
must be unitary. We designate their eigenvectors by |uji as well as eigenvalues eiq j, thus
U |uji = eiq j |uji. Assuming as inputs an eigenvector and an additional register |uji |0i,
the method should return |uji |qji. Because the eigenvectors form a basis, it is possible to
express every state |yi as |yi = Âj2[n] aj |uji. Phase estimation is therefore particularly
convincing due to its potential for use in superposition. The circuit diagram is shown
below. Given an eigenvector as well as an extra register |uji |0i as input, the algorithm will
return |uji |qji. Since eigenvectors constitute a basis, each state |yi could be represented as
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• Optimal number of Grover iteration: θm = π /2
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Searching large databases is an important problem with
broad applications. The Grover search algorithm1,2 provides
a powerful method for quantum computers to perform

searches with a quadratic speedup in the number of required
database queries over classical computers. It is an optimal search
algorithm for a quantum computer3, and has further applications
as a subroutine for other quantum algorithms4,5. Searches with
two qubits have been demonstrated on a variety of platforms6–12

and proposed for others13, but larger search spaces have only
been demonstrated on a non-scalable NMR system14.

The Grover search algorithm has four stages: initialization,
oracle, amplification, and measurement, as shown in Fig. 1a. The
initialization stage creates an equal superposition of all states. The
oracle stage marks the solution(s) by flipping the sign of that
state’s amplitude. The amplification stage performs a reflection
about the mean, thus increasing the amplitude of the marked state.
Finally, the algorithm output is measured. For a search database of
size N, the single-shot probability of measuring the correct answer
is maximized to near-unity by repeating the oracle and amplifi-
cation stages O((N)1/2) times1,2. By comparison, a classical search
algorithm will get the correct answer after an average of N/2
queries of the oracle. For large databases, this quadratic speedup
represents a significant advantage for quantum computers.

Here, we implement the Grover search algorithm using a
scalable trapped atomic ion system15 on n = 3 qubits, which
corresponds to a search database of size N = 2n = 8. The algorithm
is executed for all eight possible single-result oracles and all
28 possible two-result oracles. All searches are performed with
a single iteration. For a single-solution algorithm (t = 1), the
algorithmic probability of measuring the correct state after one

iteration is t ! N"2t
N þ 2ðN"tÞ

N

h i
1ffiffiffi
N

p
" #2

¼ 5
4
ffiffi
2

p
" #2

¼ 78:125%2, com-

pared to t
N þ N"t

N ! t
N"1 ¼

1
8 þ

7
8 !

1
7 ¼ 25% for the optimal classical

search strategy, which consists of a single query followed by a
random guess in the event the query failed. In the two-solution
case (t = 2), where two states are marked as correct answers
during the oracle stage and both states’ amplitudes are amplified
in the algorithm’s amplification stage, the probability of mea-
suring one of the two correct answers is 100% for the quantum
case, as compared to 13

28 ' 46:4% for the classical case. The
algorithm is performed with both a phase oracle, which has been
previously demonstrated on other experimental systems, and a
Boolean oracle, which requires more resources but is directly
comparable to a classical search. All quantum solutions are shown
to outperform their classical counterparts.

Results
Oracles. We examine two alternative methods of encoding the
marked state within the oracle. While both methods are mathe-
matically equivalent16, only one is directly comparable to a
classical search. The Boolean method requires the use of an
ancilla qubit initialized to |1〉, as shown in Fig. 1b. The oracle is
determined by constructing a circuit out of NOT and Ck(NOT)
(k ≤ n) gates such that, were the oracle circuit to be implemented
classically, the ancilla bit would flip if and only if the input to
the circuit is one of the marked states. By using classically
available gates, this oracle formulation is directly equivalent to
the classical search algorithm, and therefore can most convin-
cingly demonstrate the quantum algorithm’s superiority. On a
quantum computer, because the initialization sets up an equal
superposition of all possible input states, the Cn(NOT) gate
targeted on the ancilla provides a phase kickback that flips the
phase of the marked state(s) in the data qubits. An example oracle
is shown in Fig. 1c to illustrate this. The phase method of oracle
implementation does not require the ancilla qubit. Instead, the

Oracle

Repeat O (  N) times

Initialize
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Fig. 1 The Grover search algorithm. a Evolution of relative amplitudes for each state during a Grover search algorithm. The initialization stage creates an
equal superposition of all possible input states, so the amplitude αx= 1 for all basis states |x〉. The oracle stage marks the desired state, so the amplitude αm
of the marked state |m〉 becomes negative while the amplitudes αb of the unmarked states |b〉, b≠m remain unchanged. The amplification stage performs a
reflection about the mean vector

PN"1
x¼0 xj i, which has amplitude A ¼ 1

N

PN"1
x¼0 αx ¼ 1

N "αm þ N" 1ð Þαbð Þ, to amplify the marked state. An appropriate
number of repetitions of the oracle and amplification stages will maximize the amplitude of the correct answer. All qubit states are normalized by the factor
1ffiffiffi
N

p . The algorithm can also be generalized to mark and amplify the amplitude of t desired states. b General circuit diagram for a Grover search algorithm
using a Boolean oracle, depicted using standard quantum circuit diagram notation16. The last qubit qa is the ancilla qubit. c Example of single-solution
Boolean oracle marking the |011〉 state. d General circuit diagram for a Grover search algorithm using a phase oracle. e Example of two-solution phase
oracle marking the |011〉 and |101〉 states
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In this work, we show the characterization of quantum iterations that would generally construct quantum
amplitude-amplification algorithms with a quadratic speedup, namely, quantum amplitude-amplification opera-
tors (QAAOs). Exact quantum search algorithms that find a target with certainty and with a quadratic speedup
can be composed of sequential applications of QAAOs: existing quantum amplitude-amplification algorithms
thus turn out to be sequences of QAAOs. We show that an optimal and exact quantum amplitude-amplification
algorithm corresponds to the Grover algorithm together with a single iteration of QAAO. We then realize
three-qubit QAAOs with current quantum technologies via cloud-based quantum computing services, IBMQ and
IonQ. Finally, our results show that the fixed-point quantum search algorithms known so far are not a sequence
of QAAOs; for example, the amplitude of a target state may decrease during quantum iterations.

DOI: 10.1103/PhysRevA.104.062438

I. INTRODUCTION

Recent advances in noisy intermediate-scale quantum
(NISQ) technologies [1] signify the usefulness of iterations
of a quantum circuit that may contain advantages over its
classical counterpart [2]. The iterations may be used to de-
vise hybrid quantum-classical algorithms for more efficient
computation over the existing classical limitation [3,4]. For
instance, finding the capabilities of parametric quantum cir-
cuits exploited in variational quantum algorithms has great
importance (see, e.g., [5–7].

This structure is, in fact, that same as in Grover’s quantum
database search algorithm or quantum amplitude amplifica-
tion in general [8]. Namely, a Grover iteration is a building
block that is repeatedly applied and leads to a quadratic
speedup over a classical search [9,10]. We also recall that
the optimality proof of the algorithm is concerned with the
capability of single iterations whereby the speedup is achieved
by their concatenation [11,12].

There are two shortcomings in the Grover iterations. The
first is that an error exists in the measurement readout stage,
although it is sufficiently small up to 1/2n for n-qubit states.
This simply means that the Grover algorithm finds a target by
allowing a nonzero error. It has been shown that the errors can
be cleared out by improving the angle parameters in Grover
iterations: then, an exact quantum search that finds a target
with certainty is achieved [13–15]. The second is that when
there are multiple targets, the number should be provided in
advance. Otherwise, the algorithm shows oscillations between
the initial and target states [9,10]. Or quantum counting is
required as a prescription [16], which can also be simplified
[17,18].

A fixed-point quantum search was proposed in Ref. [19]
showing that a given initial state can arbitrarily converge to a
target state. A priori information about the number of target

states is not necessarily known in advance. A drawback is
that the quantum advantage with a quadratic speedup is not
attained. Then, it was shown that a fixed-point search algo-
rithm can be obtained with a quadratic speedup [20]. However,
as soon as an exact search is attempted, it is inevitable that
quadratic speedup is ruled out [20]. One can summarize that
a fixed-point quantum search also contains a nonzero error
probability in the measurement readout.

Therefore, the shortcomings have not yet been overcome
simultaneously so far. An exact and fixed-point quantum
search has not yet been achieved. It may be observed that
quantum amplitude amplification is generally composed of
quantum iterations. We here try to determine the character-
ization of quantum iterations whose sequences may lead to
a quadratic speedup in general. This identification may also
give a close-up view to see how exact and fixed-point quan-
tum searches are distinct. From a practical point of view,
the iterations would also be a useful building block in the
NISQ algorithms, as quantum amplitude amplification is a key
process in various quantum computing applications, e.g., op-
timization [21,22], state preparation [23], high-energy physics
[24], cryptanalysis [25–27], etc. Moreover, the process turns
out be a naturally occurring phenomenon [28].

Along these lines, we can see that the Grover iteration has
two subroutines, an oracle query and a specified diffusion
operation. There is a high chance that a diffusion step in the
Grover iteration may be served by any unitary transform [29].
This means that quantum amplitude amplification may be
readily characterized by a wide range of parameters, while the
oracle query operation is performed in a noise-free manner.

In this work, we show the characterization of quantum
iterations that can generally be used to construct quantum
amplitude amplification with a quadratic speedup. Namely,
quantum amplitude-amplification operators (QAAOs) are
identified. It is shown that QAAOs can be obtained for a wide

2469-9926/2021/104(6)/062438(10) 062438-1 ©2021 American Physical Society
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(a) (b)

(c)

FIG. 1. (a) The Grover iteration corresponds to consecutive rotations in the space spanned by a target state |t⟩ and its complement |t⊥⟩.
(b) The probability of finding a target state is plotted in the case of eight qubits. The probability is monotonically increasing. (c) The path of
an evolving state in the sphere is shown by Grover iterations from an initial to target states.

range of parameters: randomly generated parameters can build
a QAAO with a probability of almost 1/2. This means that
in practice, QAAOs can be straightforwardly generated and
also that QAAOs are generically resilient to errors appearing
in the preparation of the parameters. We realize QAAOs using
the cloud-based quantum computing services IBMQ and IonQ
and show that a single iteration of a QAAO can be realized
with NISQ technologies.

II. QUANTUM AMPLITUDE-AMPLIFICATION
OPERATORS

In this section, we present the characterization of QAAOs
for n-qubit states. For convenience, we consider amplification
of the amplitude of a single target state. Let |s0⟩ denote an
initial state, |t⟩ denote the target one, and |t⊥⟩ denote the
orthogonal complement to the target state. The initial state is
often given as a uniform superposition of N = 2n states,

|s0⟩ = 1√
N

N−1∑

j=0

| j⟩ = 1√
N

|t⟩ +
√

N − 1
N

|t⊥⟩.

In general, an n-qubit state in the space spanned by {|t⟩, |t⊥⟩}
can be written as

|s(θ ,φ)⟩ = eiφ sin
(

θ

2

)
|t⟩ + cos

(
θ

2

)
|t⊥⟩ (1)

for some θ and φ (see Fig. 1). For a state in Eq. (1) the
probability of finding a target is given by

p(target) = |⟨t |s(θ ,φ)⟩|2 = sin2 θ

2
. (2)

The initial state can also be written as

|s0⟩ = |s(θ0,φ0 = 0)⟩, θ0 = 2 sin−1 1√
N

. (3)

Note that the initial state can be prepared by applying
Hadamard gates to n qubits prepared in state |0⟩⊗n.

A. Quantum iteration

Let us begin by identifying the parameters to construct a
quantum iteration that leads to a quadratic speedup in ampli-
tude amplification. It is not difficult to see that the quantum
iteration corresponds to a rotation in the space spanned by
a target state and its orthogonal complement, |t⟩ and |t⊥⟩,
respectively. It then follows that a sequence of quantum itera-
tions realizes a transformation toward a target state and leads
to a sufficiently high probability to find a target state.

Thus, a quantum iteration can be realized in a decomposi-
tion as follows:

G(β, γ ) = D(β )R(γ ), D(β ) = e−iβ|s0⟩⟨s0|,

R(γ ) = e−iγ |t⟩⟨t | (4)

for β, γ ∈ [−π ,π ]. Note that the operation D(β ), called a
diffusion, can be constructed with an initial state given from
the beginning [see Eq. (3)]. The other one, R(γ ), is called
an oracular operation based on an oracle query, which is a
one-way function f (x) = δt,x for x ∈ {0, 1}n. Then, the oracle
operation works as U |x⟩|y⟩ = |x⟩|y ⊕ f (x)⟩ for x, y ∈ {0, 1}n.
In Fig. 2, a circuit for the operation R(γ ) is shown. Note
that the Grover iteration corresponds to the iteration with
(β, γ ) = (π ,π ). Note also that when γ = π , almost any uni-
tary transformation may serve a diffusion step [29].

Let |s j⟩ := |s(θ j,φ j )⟩ denote a state obtained after j iter-
ations, for which the probability of finding a target is given
by

p j := p j (target) = |⟨t |s j⟩|2 = sin2 θ j

2
.

An increment by the next iteration G(β j+1, γ j+1) for a given
state |s j⟩ is given as follows:

△p j (β j+1, γ j+1) := p j+1 − p j (5)

= |⟨t |G(β j+1, γ j+1)|s j⟩|2 − |⟨t |s j⟩|2. (6)

Note that the increment depends on parameters (β j+1, γ j+1)
of the ( j + 1)th iteration and the target probability pj of a
given state |s j⟩. One can compute and simplify the increment

062438-2
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(a) (b) (c)

FIG. 4. Quantum amplitude amplification is performed in the case of eight qubits. The x axis shows the number of oracle uses, and the y
axis shows the probability of finding a target state. (a) The π/3 algorithm is plotted [19]. The amplitude increases all the time until 103 oracle
calls, without a quantum speedup. (b) A fixed-point quantum search with optimal query complexity is plotted [20]. The amplitude of the target
state decreases in the meanwhile, and the oracle is called 45 times. (c) QAAOs are randomly generated and concatenated so that the amplitude
keeps increasing until it reaches 1 after the oracle calls 50 times.

for θ ∈ [π − 2θ0,π ]. For θ ∈ [0,π − 2θ0], Eq. (26) can be
rewritten as

△(β, γ ∗) = 1
2 [cos θ − cos(θ + t )]. (29)

The increment above is non-negative for all θ ∈ [0,π − 2θ0)
and maximized at t = 2θ0. From these, an optimal parameter
is obtained as β∗ = ±π . !

Proposition 2 in fact reproduces a proof of the optimality
of the Grover iteration for those states far from a target state.
When a state is closer to a target, i.e., a state |s(θ ,φ)⟩ with
θ ! π − 2θ0 that may be obtained after applying K∗ Grover
iterations, the Grover iteration is no longer a QAAO for the
state; by the iteration the probability of finding a target state
would decrease. This also explains why the Grover algorithm
has to stop right after K∗ iterations, at which a measurement
therefore reads a target state with an error O(N−1).

For the exact and optimal search shown in Eq. (18), an
extra iteration G(β∗, γ ∗) is needed. This in fact performs an

TABLE I. Parameters in the fixed-point quantum search algo-
rithm with an optimal number of oracle queries are shown for the
case of eight qubits. The increment & is negative from the 9th to 12th
iterations. This shows the algorithm is not a sequence of QAAOs.

No. State (θ , φ) Iteration (β, γ ) △(β, γ )

9 (1.9147, 5.1123) (2.8209, 2.895) −0.0061
10 (1.9018, 4.4555) (2.4078, 2.6915) −0.1007
11 (1.6947, 3.2412) (−1.4255, 1.4255) −0.0596
12 (1.5752, 3.2562) (−2.6915, −2.4078) −0.0575

exact transformation from the state resulting from the Grover
algorithm to a target state precisely. We also remark that to
achieve an exact transformation, it is essential to exploit an
oracle query e−iγ |t⟩⟨t | with γ ̸= π , whereas the Grover itera-
tion has γ = π at all times.

Let us now consider a set of parameters which are δ close
to optimal ones. As QAAOs can be defined in a wide range
of parameters from Proposition 1, optimal QAAOs may be
robust to noise in the preparation of the optimal parameters.
These parameters are generated as (βk, γk ) for 1 " k " K∗ +
1 by allowing errors up to δ:

for k ∈ [1, K∗], βk, γk ∈ [π − δ,π + δ],

|βK∗+1 − β∗| " δ, |γK∗+1 − γ ∗| " δ. (30)

For instance, cases with δ = 0.05π , 0.2π , 0.3π are con-
sidered, and the QAAOs are concatenated. In Fig. 3, the
probability of finding a target state is plotted for the case of
eight qubits. The sequences achieve a sufficiently high proba-
bility of finding a target state at the end. It is also shown that
QAAOs are generically resilient to errors in the preparation of
optimal parameters.

E. Exact quantum search algorithms

Having identified QAAOs and their optimal sequences for
an exact quantum search, we are now in a position to present a
generic and systematic scheme for constructing a sequence of
QAAOs such that an exact search is achieved with a quadratic
speedup. Since a QAAO is characterized by a pair of pa-
rameters (β, γ ), we first devise an algorithm that generates

062438-6
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Extension to more than one special value
• What if three are  solutions,  

• Superposition of all special states:

M ai, i = 1, 2, ⋯, M
|a⟩ = 1

M ∑
x∈{ai}

|x⟩ ⟨a |a⟩ = 1

• Uniform superposition of all other states: |a⊥⟩ = 1
N − M ∑

x∉{ai}
|x⟩ ⟨a⊥ |a⊥⟩ = 1

⟨a |a⊥⟩ = 0

• Initial state: |ψ0⟩ = M
N

|a⟩ + N − M
N

|a⊥⟩ ⟨ψ0 |ψ0⟩ = 1

= sin θ0 |a⟩ + cos θ0 |a⊥⟩ sin θ0 = ⟨a |ψ0⟩ = M
N

|a⊥⟩

|a⟩

|ψ0⟩
M
N

N − M
N

θ0

•      M ≪ N , θ ≈ π
2 → m = π

4
N
M



Quantum Counting
• What if we had no prior knowledge of ? 

• Grover operator G rotates vectors in  plane by angle 

M
|a⟩ − |a⊥⟩ 2θ0

sin θ0 = M
N

G = (cos 2θ0 −sin 2θ0
sin 2θ0 cos 2θ0) ⟶ eigenvalues e±2iθ0

⟶ Phase estimation

⟶

⟶

θ0 → M

Quantum algorithm can tell us whether 
a special value exists at all, i.e., M=0.



Distance-based classifier



Quantum Machine Learning
• Artificial Intelligence:   Statistical prediction  
• Machine Learning:  Learn from data 
• Quantum Machine Learning:  Learn from data with quantum algorithms 

– Subdiscipline of quantum computing and quantum information 
science 6 1 Introduction

Fig. 1.1 Four approaches to
combine quantum computing
and machine learning

data processing device

da
ta

ge
ne

ra
ti
ng

sy
st
em

QC QQ

CC CQ

C - classical, Q - quantum

and many others, and even slowly attracts the attention of selected machine learning
communities.

1.1.3 Four Intersections

As mentioned above, there are several definitions of the term quantum machine
learning, and we want to further specify its use in the context of this book. For this,
we slightly adapt a typology introduced by Aimeur, Brassard and Gambs [13]. It
distinguishes four approaches of how to combine quantum computing and machine
learning, depending on whether one assumes the data to be generated by a quantum
(Q) or classical (C) system, and if the information processing device is quantum (Q)
or classical (C) (see Fig. 1.1).

The CC flavour refers to classical data being processed classically. This is of
course the conventional approach to machine learning, but in this context it relates to
machine learning based on methods borrowed from quantum information research.
An example is the application of tensor networks, which have been developed for
quantum many-body systems, to neural network training [14, 15]. There are also
numerous “quantum-inspired” machine learning models. While for a long time,
this term described a body of literature with varying degrees of quantum mechan-
ical rigour, it is increasingly used to refer to so-called “dequantised” algorithms—
quantum algorithms for which a classical equivalent with similar speed guarantees
has been discovered [16, 17] (see also Sect. 7.1).

The QC intersection investigates how machine learning can help with quantum
computing. For example, one can use neural networks to describe quantum states
in a compact manner [18–20]. Another idea is to learn phase transitions in many-
body quantum systems, a fundamental physics problem with applications in the
development of quantum computers [21]. Machine learning has also been found

• CC:  classical data being processed 
classically  

• QC: how machine learning can help with 
quantum computing 

• CQ: classical data fed into quantum 
computer for analysis (quantum machine 
learning) 

• QQ: quantum data being processed by 
quantum computer (ex: Quantum 
simulation)



Quantum Algorithms and Data Embedding 
Classical Algorithm Quantum Algorithm

Dataset D 
Input x

Output y

Dataset D 
Input x

Output y

Input encoding

Processing

Read out

Quantum System

State preparation

Unitary evolution

Measurement



Quantum Algorithms and Data Embedding 
Classical data Requirement Quantum state

⃗x ∈ {0 ,1}⊗n

⃗x = (x1, x2, ⋯, xn) ∈ {0 ,1}
|ψ⟩ = |x1 x2 ⋯ xn⟩

= |x1⟩ ⊗ |x2⟩ ⊗ ⋯ ⊗ |xn⟩

⃗x ∈ ℝ2n

xi ∈ ℝ

2n

∑
i=1

|xi |
2 = 1 |ψx⟩ =

2n

∑
i=1

xi | i ⟩

A ∈ ℝ2n×2m

Aij ∈ ℝ
i = 1,⋯,2n

j = 1,⋯,2m ∑
i, j

|Aij |
2 = 1 |ψA⟩ = ∑

i, j
Aij | i ⟩ ⊗ | j ⟩

A ∈ ℝ2n×2n ∑
i

Aii = 1 A† = A
A*ij = Aji

ρA = ∑
i, j

Aij | i ⟩ ⟨ j |

x ∈ [ 0, 2π )x ∈ ℝ

A ∈ ℝ2n×2n

A ∈ ℝ2n×2n

A† = A

A† ≠ A (in general)

U(x) = e−ixH

HA = A

HA = ( 0 A
A† 0)

Basis 
Encoding

Amplitude 
Encoding

Time-evolution 
Encoding

Hamiltonian 
Encoding



Binary encoding into basis states

Represent numbers as binaries, each binary 
digit requires a qubit

data vector quantum state
binary fraction rep.

MITP Summer School         Lecture      Michael Spannowsky         July 2023                   56

sign

basis vector coefficient {0,1}

| i = ↵|0i+ �|1i (532)

|�i = �|0i+ �|1i (533)

(A⌦B)(| i ⌦ |�i) (534)

(A⌦B)(| i ⌦ |�i) = (A| i)⌦ (B|�i) = a| i ⌦ b|�i = ab(| i ⌦ |�i) (535)

| i ⌦ |�i = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|0i ⌦ |0i+ ↵�|0i ⌦ |1i+ ��|1i ⌦ |0i+ ��|1i ⌦ |1i

⇢ = p"| "ih" |+ p#| #ih# | (536)

p" =
1

1 + e�E/kT
, p# = 1� p" (537)

x =
⌧�1X

k=1

bk
1

2k
(538)

38

• Binary fraction = expression in power of 1/2

In decimal form: 0. jℓ jℓ+1 ⋯ jm = jℓ
2 + jℓ+1

22 + ⋯ + jm
2m−ℓ+1

j = j127 + j226 + j325 + j424 + j523 + j622 + j721 + j820

j
23 = j124 + j223 + j322 + j421 + j520 + j62−1 + j72−2 + j82−3

j1 j2 j3 j4 j5 . j6 j7 j8 ⏟binary fraction: 0 . j6 j7 j8



Angle/Rotation encoding
When used on an 𝑛-qubit circuit, this feature map of angle encoding can take 
up to 𝑛 numerical inputs 𝑥1, ... , 𝑥𝑛. The action of its circuit consists in the 
application of a rotation gate on each qubit 𝑗 parametrised by the value 𝑥𝑗 . In 
this feature map, we are using the 𝑥𝑗 values as angles in the rotations, hence 
the name of the encoding. 

Example
x normalised [0,2pi)

as RZ|0> doesnt do anything

MITP Summer School         Lecture      Michael Spannowsky         July 2023                   58



Distance-based classifier
• A distance-based classifier with a quantum interference 

circuit: arXiv:1703:10793 (supervised binary classification)

⋆⋆⋆⋆

⋆⋆⋆⋆⋆⋆⋆⋆
∙∙∙

∙∙∙∙
∙∙∙∙

*
Class 1

Class 2

Unlabelled data

feature 1

feature 2

( ⃗x1)0

( ⃗x1)1
training data set

D = {( ⃗x1, y1), ( ⃗x2, y2), ⋯, ( ⃗xM, yM)}
⃗xm ∈ ℝN ym ∈ {−1, + 1}

m = 1, 2, ⋯, M
M = the number of data
N = the number of features

⃗x̃m ∈ ℝN : unlabelled data

 Find the label → ỹ ∈ {−1,1}



Classical Kernel Method
• Kernel methods: kNN (k-nearest neighborhood), KDE (kernel density 

estimation), SVM (support vector machine), Gaussian processes 
– Nearest neighborhood method: a new input data is given the 

same label as the data point closest to it  k-nearest 
neighborhood (kNN) 

– Closeness = distance measure 

– (ex) Euclidean distance 

→

| ⃗x̃ − ⃗xm |2

ỹ = sign [
M

∑
m=1

ym(1 − 1
4M

| ⃗x̃ − ⃗xm |2 )]
ỹ = sign [

M

∑
m=1

wm ym κ( ⃗x̃, ⃗xm)]

• include all data but weigh 
influence of each data toward the 
decision by the weight κ( ⃗x̃, ⃗xm)

weight Label  for ±1 ⃗xm

Kernel





 Wasserstein distance 
(Kantorovich–Rubinstein metric)

• A distance function defined between probability 
distributions on a given metric space  M (named after 
“Vaseršteĭn" (Russian: Васерштейн) ) 

• If  P is an empirical measure with samples  
 and  Q is an empirical measure with 

samples   the p-Wasserstein distance is a 
simple function of the order statistics:

X1 , ⋯ , Xn
Y1 , ⋯ , Yn



Classical Kernel Method
• Kernel methods: kNN (k-nearest neighborhood), KDE (kernel density 

estimation), SVM (support vector machine), Gaussian processes 
– Nearest neighborhood method: a new input data is given the 

same label as the data point closest to it  k-nearest 
neighborhood (kNN) 

– Closeness = distance measure 

– (ex) Euclidean distance 

→

| ⃗x̃ − ⃗xm |2

ỹ = sign [
M

∑
m=1

ym(1 − 1
4M

| ⃗x̃ − ⃗xm |2 )]
ỹ = sign [

M

∑
m=1

wm ym κ( ⃗x̃, ⃗xm)]

• include all data but weigh 
influence of each data toward the 
decision by the weight κ( ⃗x̃, ⃗xm)

weight Label  for ±1 ⃗xm

Kernel



Distance-based classifier
• Choose  for all equally important datawm = 1

κ( ⃗x̃ , ⃗xm) = 1 − 1
4M

| ⃗x̃ − ⃗xm |2 Close data (small distance) are 
weighted more importantly.

(1) Encode input data (features) into the amplitude of a quantum system 
(amplitude encoding). For classical vector , ( )  Assume 

 (normalized to 1)
⃗x ∈ ℝN N = 2n

xT x = ⃗x ⋅ ⃗x = 1

|ψX⟩ =
N−1

∑
i=0

xi | i⟩
 : index in the computational basis i

Dimension of Hilbert space ≈ O(log N )

N = 2n : number of features

(2) initial state:  |D⟩ = 1
2M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃⟩ + |1⟩ |ψxm
⟩) |ym⟩

data index 
 = # of dataM

unlabelled  
data labeled  

data
label of  
class qubit

xm

ancilla qubit is entangled 
with third register



Distance-based classifier

(2) initial state:  |D⟩ = 1
2M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃⟩ + |1⟩ |ψxm
⟩) |ym⟩

data index 
 = # of dataM

unlabelled  
data

labeled  
data

label of  
class qubit

xm

ancilla qubit is entangled 
with third register

|ψxm
⟩ =

N−1

∑
i=0

xi
m | i⟩

|ψx̃⟩ =
N−1

∑
i=0

x̃i | i⟩

encoding of m-th training data (labeled)

encoding of new data (unlabeled)

|ym⟩ = { |0⟩ , if ym = − 1
|1⟩ , if ym = + 1

 contains all training data as well as  copies of new input.|D⟩ M



Distance-based classifier
(3) Apply Hadamard gate on the ancilla (second) qubit. |0⟩ → 1

2 ( |0⟩ + |1⟩)
|1⟩ → 1

2 ( |0⟩ − |1⟩)|D⟩ = 1
2M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃⟩ + |1⟩ |ψxm
⟩) |ym⟩

|D′ ⟩ = 1
2 M

M

∑
m=1

|m⟩ (|0⟩ |ψx̃+xm
⟩ + |1⟩ |ψx̃−xm

⟩) |ym⟩

|ψx̃±xm
⟩ = |ψx̃⟩ ± |ψxm

⟩ =
M−1

∑
i=0

( x̃i ± xi
m ) | i⟩

(4) Conditional measurement selecting the branch with ancilla state . 
      Likely to succeed if the collective Euclidean distance b/w  and training data 
      set is small. For standard data, .

|0⟩
x̃

p ≥ 0.5

Probability is p = 1
4M ∑

m
| ⃗x̃ + ⃗xm |2

|D′ ′ ⟩ = 1
2 M p

M

∑
m=1

N−1

∑
i=0

|m⟩ (x̃i + xi
m) | i⟩ |ym⟩



Distance-based classifier

|D′ ′ ⟩ = 1
2 M p

M

∑
m=1

N−1

∑
i=0

|m⟩ (x̃i + xi
m) | i⟩ |ym⟩

(5) Probability of measuring the class qubit |ym⟩ = |0⟩

P(ỹ = 0) = 1
4M p

M

∑
ym=0, m=1

| ⃗x̃ + ⃗xm |2 = 1 − 1
4M p

M

∑
ym=0, m=1

| ⃗x̃ − ⃗xm |2

using normalization condition
 choosing the class with the higher probability gives result of kernel method. 

     The # of measurement needed to estimate  to error  with a reasonably 
      high confidence interval grows with .

→
P(ỹ = 0) ϵ

O(ϵ−1)

Class 1

3

0 2 4 6

0

2

4

raw data

class 1
class 1

2 1 0 1 2

2

0

2

standarisation

1 0 1

x''

1

0

1

normalisation

feature 1

fe
at

ur
e 

2

x'
x1

x0

FIG. 2. Data processing illustrated with the example of the
first two classes (here called �1 and 1) of the first two fea-
tures of the Iris dataset. The raw data (left) gets standarised
to zero mean and unit variance (center), after which each fea-
ture vector is normalised to unit length (right). The training
points used in the experiment are marked in black, while the
arrows point to the new feature vectors to classify.

measurement is successful, the result is given by

1

2
p
Mpacc

MX

m=1

NX

i=1

|mi (x̃i + x
m
i ) |ii|ymi.

The amplitudes weigh the class qubit |y
m
i by the dis-

tance of the mth data point to the new input. In this
state, the probability of measuring the class qubit |y

m
i

in state 0,

p(ỹ = 0) =
1

4Mpacc

X

m|ym=0

|x̃+ xm
|
2
,

reflects the probability of predicting class �1 for the new
input. The choice of normalised feature vectors ensures
that 1

4Mpacc

P
m |x̃+xm

|
2 = 1� 1

4Mpacc

P
m |x̃�xm

|
2, and

choosing the class with the higher probability therefore
implements the classifier from eq. (1). The Supplemen-
tary Material shows that the number of measurements
needed to estimate p(ỹ = 0) to error ✏ with a reasonably
high confidence interval grows with O(✏�1).
As a demonstration we implement the interference circuit
with the IBM Quantum Experience (IBMQE) [17] using
the Iris dataset [24]. Data preprocessing consists of two
steps (see fig. 2): We first standardise the dataset to have
zero mean and unit variance. This is common practice
in machine learning to compensate scaling e↵ects, and in
our case ensures that the data does not only populate a
small subspace of the input space, which in higher dimen-
sions leads to indistinguishably small distances between
data points. Second, we need to normalise each feature
vector to unit length. This strategy is popular in machine
learning - for example with support vector machines - to
only consider the angle between data points. (As an in-
tuition, if we want to classify flowers, some items may
have grown bigger than others due to better local con-
ditions, but it is the proportion of the sepal and petal
length that is important for the class distinction). This
preprocessing strategy allows us to fulfill the conditions
of ‘super-e�cient’ preprocessing in refs. [22, 23] The
IBM Quantum Experience enables public use of a pro-

cessor of five non-error-corrected superconducting qubits
based on Josephson junctions located at the IBM Quan-
tum Lab at the Thomas J Watson Research Center in
Yorktown Heights, New York. The current processor has
limited connectivity between the five qubits and allows
the implementation of 80 gates from a set of 12 single-
qubit quantum logic gates as well as a CNOT gate (see
Supplementary Material for details). Due to these lim-
itations, we will only use the first two features of two
samples from the Iris dataset for the experimental imple-
mentation of the quantum algorithm. Consider the pre-
processed training dataset D1 = {(x0

, y
0), (x1

, y
1)} with

the two training vectors x0 = (0, 1), y0 = �1 (Iris sample
33) and x1 = (0.789, 0.615), y1 = 1 (Iris sample 85). In
two separate experiments we will consider the classifica-
tion of two new input vectors of class �1 but with vary-
ing distances to the training points, x̃0 = (�0.549, 0.836)
(Iris sample 28) and x̃00 = (0.053, 0.999) (Iris sample 36)
(see fig. 2).

Implementing this particular classification problem re-
quires four qubits; one qubit for the index register |mi

to represent two training vectors, one ancilla qubit, one
qubit storing the class of each training instance and one
qubit for the data register |ii to represent the two entries
of each training and input vector as

| x̃0i = �0.549 |0i+ 0.836 |1i, (3)

| x̃00i = 0.053 |0i+ 0.999 |1i,

| x0i = |1i,

| x1i = 0.789 |0i+ 0.615 |1i.

In this small-scale example e�cient state preparation
does not require sophisticated routines as discussed
above, but can be designed by hand (see fig. 6). The
main idea is to use controlled rotation gates such that
the input and training vectors become entangled with
the corresponding states of the ancilla and index qubits.
Two aspects have to be considered in the quantum circuit
design. Firstly, the single and double controlled rotation
gates (step B and D in fig. 6) as well as the To↵oli
gate (see step C in fig. 6) required for the entangle-
ment of the ancilla and index qubit with the training
vectors x0 and x1 are not part of IBM’s universal gate
set. Therefore, the state preparation routine needs to be
mapped to the available hardware by decomposing the
controlled rotation, To↵oli and SWAP gates (see Supple-
mentary Material). Secondly, state preparation for this
classification problem requires at least one CNOT opera-
tion between qubits that are not directly connected in the
hardware. This problem can be solved by exchanging ad-
jacent qubits with a SWAP gate such that the CNOT op-
eration between previously unconnected qubits becomes
feasible (see step E in fig. 6).
Using the IBMQE, the resulting quantum circuits were
first simulated in an error-free environment and then ex-
ecuted on the non error-corrected hardware for the max-
imum number of 8192 runs, and the results are sum-
marised in Table I. As expected the quantum circuits

• arXiv:1703:10793 
used Iris data

https://www.quantum-inspire.com/kbase/jupyter-classifier-part1/

https://arxiv.org/pdf/1703.10793.pdf
https://arxiv.org/pdf/1703.10793.pdf
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https://en.wikipedia.org/wiki/Iris_flower_data_set

Iris setosa Iris versicolor Iris virginica
R. A. Fisher

(Sepal length & width, petal length & width)

(1936)

consider only first two 
features of two samples

The data set
Iris flower data set
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Data re-uploading for a universal quantum classifier

quantum circuit where all data are loaded in the co-
e�cients of the initial wave function [8, 9, 13–15]. In
the simplest of cases, data are uploaded as rotations of
qubits in the computational basis. A quantum circuit
would then follow that should perform some classifi-
cation.

This strategy would be insu�cient to create a uni-
versal quantum classifier with a single qubit. A first
limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
a two-dimensional space. No quantum classifier in
higher dimensions can be created if this architecture
is to be used. A second limitation is that, once data
is uploaded, the only quantum circuit available is a
rotation in the Bloch sphere. It is easy to prove that
a single rotation cannot capture any non-trivial sepa-
ration of patterns in the original data.

We need to turn to a di↵erent strategy, which turns
out to be inspired by neural networks. In the case of
feed-forward neural networks, data are entered in a
network in such a way that they are processed by sub-
sequent layers of neurons. The key idea is to observe
that the original data are processed several times, one
for each neuron in the first hidden layer. Strictly
speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit

(a) Neural network (b) Quantum classifier

Figure 1: Simplified working schemes of a neural network

and a single-qubit quantum classifier with data re-uploading.

In the neural network, every neuron receives input from all

neurons of the previous layer. In contrast with that, the

single-qubit classifier receives information from the previous

processing unit and the input (introduced classically). It pro-

cesses everything all together and the final output of the

computation is a quantum state encoding several repetitions

of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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the simplest of cases, data are uploaded as rotations of
qubits in the computational basis. A quantum circuit
would then follow that should perform some classifi-
cation.

This strategy would be insu�cient to create a uni-
versal quantum classifier with a single qubit. A first
limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
a two-dimensional space. No quantum classifier in
higher dimensions can be created if this architecture
is to be used. A second limitation is that, once data
is uploaded, the only quantum circuit available is a
rotation in the Bloch sphere. It is easy to prove that
a single rotation cannot capture any non-trivial sepa-
ration of patterns in the original data.

We need to turn to a di↵erent strategy, which turns
out to be inspired by neural networks. In the case of
feed-forward neural networks, data are entered in a
network in such a way that they are processed by sub-
sequent layers of neurons. The key idea is to observe
that the original data are processed several times, one
for each neuron in the first hidden layer. Strictly
speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit
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processing unit and the input (introduced classically). It pro-
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of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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in the results section.
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The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
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which acts as
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The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to
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the more representation capabilities the circuit will
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⃗ϕ = (ϕ1, ϕ2, ϕ3)
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L(1) L(N)

|0Í U
1

„̨1, x̨
2

· · · U
1

„̨N , x̨
2

(b) Compressed scheme

Figure 2: Single-qubit classifier with data re-uploading. The

quantum circuit is divided into layer gates L(i), which con-

stitutes the classifier building blocks. In the upper circuit,

each of these layers is composed of a U(x̨) gate, which up-

loads the data, and a parametrized unitary gate U(„̨). We

apply this building block N times and finally compute a cost

function that is related to the fidelity of the final state of

the circuit with the corresponding target state of its class.

This cost function may be minimized by tunning the „̨i pa-

rameters. Eventually, data and tunable parameters can be

introduced with a single unitary gate, as illustrated in the

bottom circuit.

networks, where the size of the intermediate hidden
layer of neurons is critical to represent complex func-
tions.

There is a way to compactify the quantum circuit
into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
weight wi. These weights will play a similar role as
weights in artificial neural networks, as we will see in
the next section. Altogether, each layer gate can be
taken as

L(i) = U
1

◊̨i + w̨i ¶ x̨
2

, (5)

where w̨i ¶ x̨ =
!
w1

i x1, w2
i x2, w3

i x3"
is the Hadamard

product of two vectors. In case the data points have
dimension lesser than three, the rest of x̨ components
are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.

Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply

other encoding techniques, e.g. the ones proposed in
Ref. [10], but for the scope of this work, we have
just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
It is also possible to enlarge the dimensionality of

the input space in the following way. Let us extend
the definition of i-th layer to

L(i) = U
1

◊̨(k)
i + w̨(k)

i ¶ x̨(k)
2

· · · U
1

◊̨(1)
i + w̨(1)

i ¶ x̨(1)
2

,

(6)

where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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quantum circuit is divided into layer gates L(i), which con-

stitutes the classifier building blocks. In the upper circuit,

each of these layers is composed of a U(x̨) gate, which up-

loads the data, and a parametrized unitary gate U(„̨). We

apply this building block N times and finally compute a cost

function that is related to the fidelity of the final state of

the circuit with the corresponding target state of its class.

This cost function may be minimized by tunning the „̨i pa-

rameters. Eventually, data and tunable parameters can be

introduced with a single unitary gate, as illustrated in the

bottom circuit.

networks, where the size of the intermediate hidden
layer of neurons is critical to represent complex func-
tions.

There is a way to compactify the quantum circuit
into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
weight wi. These weights will play a similar role as
weights in artificial neural networks, as we will see in
the next section. Altogether, each layer gate can be
taken as

L(i) = U
1

◊̨i + w̨i ¶ x̨
2

, (5)

where w̨i ¶ x̨ =
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w1

i x1, w2
i x2, w3

i x3"
is the Hadamard

product of two vectors. In case the data points have
dimension lesser than three, the rest of x̨ components
are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.

Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply

other encoding techniques, e.g. the ones proposed in
Ref. [10], but for the scope of this work, we have
just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
It is also possible to enlarge the dimensionality of

the input space in the following way. Let us extend
the definition of i-th layer to
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where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
weight wi. These weights will play a similar role as
weights in artificial neural networks, as we will see in
the next section. Altogether, each layer gate can be
taken as

L(i) = U
1

◊̨i + w̨i ¶ x̨
2

, (5)

where w̨i ¶ x̨ =
!
w1

i x1, w2
i x2, w3

i x3"
is the Hadamard

product of two vectors. In case the data points have
dimension lesser than three, the rest of x̨ components
are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.

Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply
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Ref. [10], but for the scope of this work, we have
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where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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networks, where the size of the intermediate hidden
layer of neurons is critical to represent complex func-
tions.

There is a way to compactify the quantum circuit
into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
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Notice that data points are introduced linearly into
the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply

other encoding techniques, e.g. the ones proposed in
Ref. [10], but for the scope of this work, we have
just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
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where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.

The critical point in the quantum measurement is
to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.

The assignment of classes to the output reading of
a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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to measure any state with a full tomography process
which, for one qubit, is achievable. However, for many
di↵erent classes, we expect that one measurement will
be more e�cient than many.

Besides the weighted fidelity cost function being
costlier than the fidelity cost function, there is another
qualitative di↵erence between both. The fidelity cost
function forces the parameters to reach the maximum
in fidelities. Loosely speaking, this fidelity moves the
qubit state to where it should be. The weighted fi-
delity forces the parameters to be close to a specified
configuration of fidelities. It moves the qubit state to
where it should be and moves it away from where it
should not. Therefore, we expect that the weighted fi-
delity will work better than the fidelity cost function.
Moreover, this extra cost in terms of the number of
parameters of the weighted fidelity cost function will
only a↵ect the classical minimization part of the al-
gorithm. In a sense, we are increasing the classical
processing part to reduce the quantum resources re-
quired for the algorithm, i.e. the number of quantum
operations (layers). This fact gain importance in the
NISQ computation era.

3 Universality of the single-qubit clas-
sifier
After analyzing several classification problems, we ob-
tain evidence that the single-qubit classifier intro-
duced above can approximate any classification func-
tion up to arbitrary precision. In this section, we pro-
vide the motivation for this statement based on the
Universal Approximation Theorem (UAT) of artificial
neural networks [12].

3.1 Universal Approximation Theorem
Theorem– Let Im = [0, 1]

m be the m-dimensional unit
cube and C(Im) the space of continuous functions in
Im. Let the function Ï : R æ R be a nonconstant,
bounded and continuous function and f : Im æ R
a function. Then, for every ‘ > 0, there exists an
integer N and a function h : Im æ R, defined as

h(x̨) =

Nÿ

i=1
–i Ï (w̨i · x̨ + bi) , (10)

with –i, bi œ R and w̨i œ Rm, such that h is an ap-
proximate realization of f with precision ‘, i.e.,

|h(x̨) ≠ f(x̨)| < ‘ (11)

for all x̨ œ Im.
In artificial neural networks, Ï is the activation

function, w̨i are the weights for each neuron, bi are the
biases and –i are the neuron weights that construct
the output function. Thus, this theorem establishes

that it is possible to reconstruct any continuous func-
tion with a single layer neural network of N neurons.
The proof of this theorem for the sigmoidal activation
function can be found in Ref. [18]. This theorem was
generalized for any nonconstant, bounded and contin-
uous activation function in Ref. [12]. Moreover, Ref.
[12] presents the following corollary of this theorem:
Ï could be a nonconstant finite linear combination of
periodic functions, in particular, Ï could be a non-
constant trigonometric polynomial.

3.2 Universal Quantum Circuit Approximation
The single-qubit classifier is divided into several layers
which are general SU(2) rotational matrices. There
exist many possible decompositions of an SU(2) rota-
tional matrix. In particular, we use

U(„̨) = U(„1, „2, „3) = ei„2‡z ei„1‡y ei„3‡z , (12)

where ‡i are the conventional Pauli matrices. Using
the SU(2) group composition law, we can rewrite the
above parametrization in a single exponential,

U(„̨) = eiĘ̂(„̨)·‡̨, (13)

with Ę̂(„̨) =

1
Ê1(„̨), Ê2(„̨), Ê3(„̨)

2
and

Ê1(„̨) = d N sin ((„2 ≠ „3)/2) sin („1/2) , (14)

Ê2(„̨) = d N cos ((„2 ≠ „3)/2) sin („1/2) , (15)

Ê3(„̨) = d N sin ((„2 + „3)/2) cos („1/2) , (16)

where N =
!Ô

1 ≠ cos2 d
"≠1

and cos d =

cos ((„2 + „3)/2) cos („1/2).
The single-qubit classifier codifies the data points

into „̨ parameters of the U unitary gate. In particu-
lar, we can re-upload data together with the tunable
parameters as defined in Eq. (5), i.e.

„̨(x̨) = („1(x̨), „2(x̨), „3(x̨)) = ◊̨ + w̨ ¶ x̨. (17)

Thus,

U(x̨) = UN (x̨)UN≠1(x̨) · · · U1(x̨) =

NŸ

i=1
eiĘ̂(„̨i(x̨))·‡̨,

(18)

Next, we apply the Baker-Campbell-Hausdor↵ (BCH)
formula [19] to the above equation,

U(x̨) = exp

C
i

Nÿ

i=1
Ę̂(„̨i(x̨)) · ‡̨ + Ocorr

D
. (19)

Notice that the remaining BCH terms Ocorr are
also proportional to Pauli matrices due to [‡i, ‡j ] =

2i‘ijk‡k.

Accepted in Quantum 2020-01-27, click title to verify. Published under CC-BY 4.0. 6

to measure any state with a full tomography process
which, for one qubit, is achievable. However, for many
di↵erent classes, we expect that one measurement will
be more e�cient than many.

Besides the weighted fidelity cost function being
costlier than the fidelity cost function, there is another
qualitative di↵erence between both. The fidelity cost
function forces the parameters to reach the maximum
in fidelities. Loosely speaking, this fidelity moves the
qubit state to where it should be. The weighted fi-
delity forces the parameters to be close to a specified
configuration of fidelities. It moves the qubit state to
where it should be and moves it away from where it
should not. Therefore, we expect that the weighted fi-
delity will work better than the fidelity cost function.
Moreover, this extra cost in terms of the number of
parameters of the weighted fidelity cost function will
only a↵ect the classical minimization part of the al-
gorithm. In a sense, we are increasing the classical
processing part to reduce the quantum resources re-
quired for the algorithm, i.e. the number of quantum
operations (layers). This fact gain importance in the
NISQ computation era.

3 Universality of the single-qubit clas-
sifier
After analyzing several classification problems, we ob-
tain evidence that the single-qubit classifier intro-
duced above can approximate any classification func-
tion up to arbitrary precision. In this section, we pro-
vide the motivation for this statement based on the
Universal Approximation Theorem (UAT) of artificial
neural networks [12].

3.1 Universal Approximation Theorem
Theorem– Let Im = [0, 1]

m be the m-dimensional unit
cube and C(Im) the space of continuous functions in
Im. Let the function Ï : R æ R be a nonconstant,
bounded and continuous function and f : Im æ R
a function. Then, for every ‘ > 0, there exists an
integer N and a function h : Im æ R, defined as

h(x̨) =

Nÿ

i=1
–i Ï (w̨i · x̨ + bi) , (10)

with –i, bi œ R and w̨i œ Rm, such that h is an ap-
proximate realization of f with precision ‘, i.e.,

|h(x̨) ≠ f(x̨)| < ‘ (11)

for all x̨ œ Im.
In artificial neural networks, Ï is the activation

function, w̨i are the weights for each neuron, bi are the
biases and –i are the neuron weights that construct
the output function. Thus, this theorem establishes

that it is possible to reconstruct any continuous func-
tion with a single layer neural network of N neurons.
The proof of this theorem for the sigmoidal activation
function can be found in Ref. [18]. This theorem was
generalized for any nonconstant, bounded and contin-
uous activation function in Ref. [12]. Moreover, Ref.
[12] presents the following corollary of this theorem:
Ï could be a nonconstant finite linear combination of
periodic functions, in particular, Ï could be a non-
constant trigonometric polynomial.

3.2 Universal Quantum Circuit Approximation
The single-qubit classifier is divided into several layers
which are general SU(2) rotational matrices. There
exist many possible decompositions of an SU(2) rota-
tional matrix. In particular, we use

U(„̨) = U(„1, „2, „3) = ei„2‡z ei„1‡y ei„3‡z , (12)

where ‡i are the conventional Pauli matrices. Using
the SU(2) group composition law, we can rewrite the
above parametrization in a single exponential,

U(„̨) = eiĘ̂(„̨)·‡̨, (13)

with Ę̂(„̨) =

1
Ê1(„̨), Ê2(„̨), Ê3(„̨)

2
and

Ê1(„̨) = d N sin ((„2 ≠ „3)/2) sin („1/2) , (14)

Ê2(„̨) = d N cos ((„2 ≠ „3)/2) sin („1/2) , (15)

Ê3(„̨) = d N sin ((„2 + „3)/2) cos („1/2) , (16)

where N =
!Ô

1 ≠ cos2 d
"≠1

and cos d =

cos ((„2 + „3)/2) cos („1/2).
The single-qubit classifier codifies the data points

into „̨ parameters of the U unitary gate. In particu-
lar, we can re-upload data together with the tunable
parameters as defined in Eq. (5), i.e.

„̨(x̨) = („1(x̨), „2(x̨), „3(x̨)) = ◊̨ + w̨ ¶ x̨. (17)

Thus,

U(x̨) = UN (x̨)UN≠1(x̨) · · · U1(x̨) =

NŸ

i=1
eiĘ̂(„̨i(x̨))·‡̨,

(18)

Next, we apply the Baker-Campbell-Hausdor↵ (BCH)
formula [19] to the above equation,

U(x̨) = exp

C
i

Nÿ

i=1
Ę̂(„̨i(x̨)) · ‡̨ + Ocorr

D
. (19)

Notice that the remaining BCH terms Ocorr are
also proportional to Pauli matrices due to [‡i, ‡j ] =

2i‘ijk‡k.

Accepted in Quantum 2020-01-27, click title to verify. Published under CC-BY 4.0. 6

or



Multi-qubit using data re-uploading

|0Í L1(1) L1(2) L1(3) · · · L1(N)

|0Í L2(1) L2(2) L2(3) · · · L2(N)

(a) Ansatz with no entanglement

|0Í L1(1) • L1(2) • · · · • L1(N)

|0Í L2(1) • L2(2) • · · · • L2(N)

(b) Ansatz with entanglement

Figure 4: Two-qubit quantum classifier circuit without en-

tanglement (top circuit) and with entanglement (bottom

circuit). Here, each layer includes a rotation with data re-

uploading in both qubits plus a CZ gate if there is entangle-

ment. The exception is the last layer, which does not have

any CZ gate associated to it. For a fixed number of layers,

the number of parameters to be optimized doubles the one

needed for a single-qubit classifier.

for a multi-qubit classifier are taken as the computa-
tional basis states. A more sophisticated set of states
could be considered to improve the performance of
this method.

For the second strategy, we use the weighted fidelity
cost function. As stated above, we just focus on one
qubit, thus

Fc,q(◊̨, w̨, x̨) = ÈẪc|flq(◊̨, w̨, x̨)|ẪcÍ, (22)

where flq is the reduced density matrix of the qubit to
be measured. Then, the weighted fidelity cost func-
tion can be adapted as

‰2
wf (–̨, ◊̨, w̨) =

1

2

Mÿ

µ=1

Cÿ

c=1

A
Qÿ

q=1

1
–c,qFc,q(◊̨, w̨, x̨µ) ≠ Yc(x̨µ)

22
B

,

(23)

where we average over all Q qubits that form the clas-
sifier. Eventually, we can just measure one of these
qubits, reducing the number of parameters to be op-
timized.

4.2 Quantum circuits examples
The definition of a multi-qubit quantum classifier cir-
cuit could be as free as is the definition of a multi-
layer neural network. In artificial neural networks,
it is far from obvious what should be the number of
hidden layers and neurons per layer to perform some
task. Besides, it is, in general, problem-dependent.
For a multi-qubit quantum classifier, there is extra
degree of freedom in the circuit-design: how to in-
troduce the entanglement. This is precisely an open
problem in parametrized quantum circuits: to find a

|0Í L1(1) L1(2) L1(3) · · · L1(N)

|0Í L2(1) L2(2) L2(3) · · · L2(N)
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(b) Ansatz with entanglement

Figure 5: Four-qubit quantum classifier circuits. Without

entanglement (top circuit), each layer is composed by four

parallel rotations. With entanglement (bottom circuit) each

layer includes a parallel rotation and two parallel CZ gates.

The order of CZ gates alternates in each layer between (1)-

(2) and (3)-(4) qubits and (2)-(3) and (1)-(4) qubits. The

exception is in the last layer, which does not contain any CZ

gate. For a fixed number of layers, the number of parameters

to be optimized quadruples the ones needed for a single-qubit

classifier.

correct ansatz for the entangling structure of the cir-
cuit.

Figures 4 and 5 show the explicit circuits used in
this work. For a two-qubit classifier without entangle-
ment, and similarly for a four-qubit classifier, we iden-
tify each layer as parallel rotations on all qubits. We
introduce the entanglement using CZ gates between
rotations that are absorbed in the definition of layer.
For two-qubit classifier with entanglement, we apply a
CZ gate after each rotation with exception of the last
layer. For a four-qubit classifier, two CZ gates are ap-
plied after each rotation alternatively between (1)-(2)
and (3)-(4) qubits and (2)-(3) and (1)-(4) qubits.

The number of parameters needed to perform the
optimization doubles the ones needed for a single-
qubit classifier for the two-qubit classifier and quadru-
ples for the four-qubit classifier. For N layers, the cir-
cuit depth is N for the non-entangling classifiers and
2N for the entangling classifiers.

5 Minimization methods
The practical training of a parametrized single-qubit
or multi-qubit quantum classifier needs minimization
in the parameter space describing the circuit. This
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for a multi-qubit classifier are taken as the computa-
tional basis states. A more sophisticated set of states
could be considered to improve the performance of
this method.

For the second strategy, we use the weighted fidelity
cost function. As stated above, we just focus on one
qubit, thus

Fc,q(◊̨, w̨, x̨) = ÈẪc|flq(◊̨, w̨, x̨)|ẪcÍ, (22)

where flq is the reduced density matrix of the qubit to
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where we average over all Q qubits that form the clas-
sifier. Eventually, we can just measure one of these
qubits, reducing the number of parameters to be op-
timized.

4.2 Quantum circuits examples
The definition of a multi-qubit quantum classifier cir-
cuit could be as free as is the definition of a multi-
layer neural network. In artificial neural networks,
it is far from obvious what should be the number of
hidden layers and neurons per layer to perform some
task. Besides, it is, in general, problem-dependent.
For a multi-qubit quantum classifier, there is extra
degree of freedom in the circuit-design: how to in-
troduce the entanglement. This is precisely an open
problem in parametrized quantum circuits: to find a
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(2) and (3)-(4) qubits and (2)-(3) and (1)-(4) qubits. The

exception is in the last layer, which does not contain any CZ

gate. For a fixed number of layers, the number of parameters

to be optimized quadruples the ones needed for a single-qubit

classifier.

correct ansatz for the entangling structure of the cir-
cuit.

Figures 4 and 5 show the explicit circuits used in
this work. For a two-qubit classifier without entangle-
ment, and similarly for a four-qubit classifier, we iden-
tify each layer as parallel rotations on all qubits. We
introduce the entanglement using CZ gates between
rotations that are absorbed in the definition of layer.
For two-qubit classifier with entanglement, we apply a
CZ gate after each rotation with exception of the last
layer. For a four-qubit classifier, two CZ gates are ap-
plied after each rotation alternatively between (1)-(2)
and (3)-(4) qubits and (2)-(3) and (1)-(4) qubits.

The number of parameters needed to perform the
optimization doubles the ones needed for a single-
qubit classifier for the two-qubit classifier and quadru-
ples for the four-qubit classifier. For N layers, the cir-
cuit depth is N for the non-entangling classifiers and
2N for the entangling classifiers.

5 Minimization methods
The practical training of a parametrized single-qubit
or multi-qubit quantum classifier needs minimization
in the parameter space describing the circuit. This
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Single qubit classifier: measurements

1907.02085

• The quantum circuit characterized by a series of processing angle  and 
weights  delivers a final state . 

• The critical point in the quantum measurement is to find an optimal way to 
associate outputs from the observations to target classes. 

• This is easily established for a dichotomic classification, where one of two 
classes A and B have to be assigned to the final measurement of the single 
qubit. 

• In such a case it is possible to measure the output probabilities  for  
and  for . A given pattern could be classified into the A class if 

 and into B otherwise.  
• We may refine this criterium by introducing a bias. That is, the pattern is 

classified as A if , and as B otherwise. The  is chosen to optimize the 
success of classification on a training set. 

• The assignment of classes to the output reading of a single qubit becomes an 
involved issue when many classes are present.  

• For example, one possible strategy consists on comparing the probability 
 to four sectors with three thresholds: . Then, the 

value of  will fall into one of them, and classification is issued.

{θi}
{wi} |ψ⟩

P(0) |0⟩
P(1) |1⟩

P(0) > P(1)

P(0) > λ λ

P(0) 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ 1
P(0)

quantum circuit where all data are loaded in the co-
e�cients of the initial wave function [8, 9, 13–15]. In
the simplest of cases, data are uploaded as rotations of
qubits in the computational basis. A quantum circuit
would then follow that should perform some classifi-
cation.

This strategy would be insu�cient to create a uni-
versal quantum classifier with a single qubit. A first
limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
a two-dimensional space. No quantum classifier in
higher dimensions can be created if this architecture
is to be used. A second limitation is that, once data
is uploaded, the only quantum circuit available is a
rotation in the Bloch sphere. It is easy to prove that
a single rotation cannot capture any non-trivial sepa-
ration of patterns in the original data.

We need to turn to a di↵erent strategy, which turns
out to be inspired by neural networks. In the case of
feed-forward neural networks, data are entered in a
network in such a way that they are processed by sub-
sequent layers of neurons. The key idea is to observe
that the original data are processed several times, one
for each neuron in the first hidden layer. Strictly
speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit

(a) Neural network (b) Quantum classifier

Figure 1: Simplified working schemes of a neural network

and a single-qubit quantum classifier with data re-uploading.

In the neural network, every neuron receives input from all

neurons of the previous layer. In contrast with that, the

single-qubit classifier receives information from the previous

processing unit and the input (introduced classically). It pro-

cesses everything all together and the final output of the

computation is a quantum state encoding several repetitions

of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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Single qubit classifier: cost function

1907.02085

• A fidelity cost function: (fidelity is a measure of similarity of two things.) 
• We want to force the quantum state (data state)  to be as near 

as possible to one particular state (label state) on the Bloch sphere.  
• The angular distance between the label state and the data state can be 

measured with the relative fidelity between the two states.  
• Goal is to maximize the average fidelity  

•  where  is the correct label state 

of the data points. (M = total number of training data) 

|ψ ( ⃗θ, ⃗w , ⃗x )⟩

χ2
f ( ⃗θ, ⃗w ) =

M

∑
μ=1

(1 − ⟨ψ̃s |ψ ( ⃗θ, ⃗w , ⃗xμ)
2 ) | ψ̃s⟩

Figure 2: Model architecture (Up to recommendation).

Figure 3: Multiqubit circuit results. Left Bloch sphere represents training data before train-
ing, middle: represents the training data after training for 50 epochs , right one represents
the test data. Size of the training data is 10 000 while for test data is 15 000. [Do we need
to add the model output score for the CNN here or not ? Do we need to present the last
qubit? The main puprpose is how to train the embedded data. Shall we keep the first two
qubits with fidelity in one row? ]

10

Before training After training With testing data

Easy choice:  and |0⟩ |1⟩



Example: binary classification

1907.02085

‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.50 0.75 – 0.50 0.76 – 0.76 –

2 0.85 0.80 0.73 0.94 0.96 0.96 0.96 0.96

3 0.85 0.81 0.93 0.94 0.97 0.95 0.97 0.96

4 0.90 0.87 0.87 0.94 0.97 0.96 0.97 0.96

5 0.89 0.90 0.93 0.96 0.96 0.96 0.96 0.96

6 0.92 0.92 0.90 0.95 0.96 0.96 0.96 0.96

8 0.93 0.93 0.96 0.97 0.95 0.97 0.95 0.96

10 0.95 0.94 0.96 0.96 0.96 0.96 0.96 0.97

Table 1: Results of the single- and multi-qubit classifiers with data re-uploading for the circle problem. Numbers indicate the

success rate, i.e. number of data points classified correctly over total number of points. Words “Ent.” and “No Ent.” refer

to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization method with the

weighted fidelity and fidelity cost functions. For this problem, both cost functions lead to high success rates. The multi-qubit

classifier increases this success rate but the introduction of entanglement does not a�ect it significantly.

is 50%. We create a train dataset with 200 random
entries. We then validate the single-qubit classifier
against a test dataset with 4000 random points.

The results of this classification are written in Ta-
ble 1. With the weighted fidelity cost function, the
single-qubit classifier achieves more than 90% of suc-
cess with only two layers, that is, 12 parameters. The
results are worse with the fidelity cost function. For
a two-qubit and a four-qubit classifier, two layers are
required to achieve 96% of success rate, that is, 22 pa-
rameters for the two-qubit and 42 for the four-qubit.
The introduction of entanglement does not change the
result in any case. The results show a saturation of
the success rate. Considering more layers or more
qubits does not change this success rate.

The characterization of a closed curved is a hard
problem for an artificial neural network that works
in a linear regime, although enough neurons, i.e. lin-
ear terms, can achieve a good approximation to any
function. On the contrary, the layers of a single-qubit
classifier are rotational gates, which have an intrinsic
non-linear behavior. In a sense, a circle becomes an
easy function to classify as a linear function is for an
artificial neural network. The circle classification is,
in a sense, trivial for a quantum classifier. We need
to run these classifiers with more complex figures or
problems to test their performance.

It is interesting to compare classifiers with di↵erent
number of layers. Figure 6 shows the result of the
classification for a single-qubit classifier of 1, 2, 4 and
8 layers. As with only one layer the best classification
that can be achieved consist on dividing the plane in
half, with two layers the classifier catches the circular
shape. As we consider more layers, the single-qubit
classifier readjust the circle to match the correct ra-
dius.

(a) 1 layer (b) 2 layers

(c) 4 layers (d) 8 layers

Figure 6: Results of the circle classification obtained with a

single-qubit classifier with di�erent number of layers using the

L-BFGS-B minimizer and the weighted fidelity cost function.

With one layer, the best that the classifier can do is to divide

the plane in half. With two layers, it catches the circular

shape which is readjusted as we consider more layers.

6.2 Classification of multiple patterns
We want to show now that the single-qubit classifier
can solve multi-class problems. We divide a 2D plane
into several regions and assign a label to each one.
We propose the following division: three regions cor-
responding to three circular sectors and the interme-
diate space between them. We call this problem the
3-circles problem. This is a hardly non-linear prob-
lem and, consequently, di�cult to solve for a classical
neural network in terms of computational power.
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1 0.50 0.75 – 0.50 0.76 – 0.76 –

2 0.85 0.80 0.73 0.94 0.96 0.96 0.96 0.96

3 0.85 0.81 0.93 0.94 0.97 0.95 0.97 0.96

4 0.90 0.87 0.87 0.94 0.97 0.96 0.97 0.96

5 0.89 0.90 0.93 0.96 0.96 0.96 0.96 0.96

6 0.92 0.92 0.90 0.95 0.96 0.96 0.96 0.96

8 0.93 0.93 0.96 0.97 0.95 0.97 0.95 0.96

10 0.95 0.94 0.96 0.96 0.96 0.96 0.96 0.97

Table 1: Results of the single- and multi-qubit classifiers with data re-uploading for the circle problem. Numbers indicate the

success rate, i.e. number of data points classified correctly over total number of points. Words “Ent.” and “No Ent.” refer

to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization method with the

weighted fidelity and fidelity cost functions. For this problem, both cost functions lead to high success rates. The multi-qubit

classifier increases this success rate but the introduction of entanglement does not a�ect it significantly.

is 50%. We create a train dataset with 200 random
entries. We then validate the single-qubit classifier
against a test dataset with 4000 random points.

The results of this classification are written in Ta-
ble 1. With the weighted fidelity cost function, the
single-qubit classifier achieves more than 90% of suc-
cess with only two layers, that is, 12 parameters. The
results are worse with the fidelity cost function. For
a two-qubit and a four-qubit classifier, two layers are
required to achieve 96% of success rate, that is, 22 pa-
rameters for the two-qubit and 42 for the four-qubit.
The introduction of entanglement does not change the
result in any case. The results show a saturation of
the success rate. Considering more layers or more
qubits does not change this success rate.

The characterization of a closed curved is a hard
problem for an artificial neural network that works
in a linear regime, although enough neurons, i.e. lin-
ear terms, can achieve a good approximation to any
function. On the contrary, the layers of a single-qubit
classifier are rotational gates, which have an intrinsic
non-linear behavior. In a sense, a circle becomes an
easy function to classify as a linear function is for an
artificial neural network. The circle classification is,
in a sense, trivial for a quantum classifier. We need
to run these classifiers with more complex figures or
problems to test their performance.

It is interesting to compare classifiers with di↵erent
number of layers. Figure 6 shows the result of the
classification for a single-qubit classifier of 1, 2, 4 and
8 layers. As with only one layer the best classification
that can be achieved consist on dividing the plane in
half, with two layers the classifier catches the circular
shape. As we consider more layers, the single-qubit
classifier readjust the circle to match the correct ra-
dius.

(a) 1 layer (b) 2 layers

(c) 4 layers (d) 8 layers

Figure 6: Results of the circle classification obtained with a

single-qubit classifier with di�erent number of layers using the

L-BFGS-B minimizer and the weighted fidelity cost function.

With one layer, the best that the classifier can do is to divide

the plane in half. With two layers, it catches the circular

shape which is readjusted as we consider more layers.

6.2 Classification of multiple patterns
We want to show now that the single-qubit classifier
can solve multi-class problems. We divide a 2D plane
into several regions and assign a label to each one.
We propose the following division: three regions cor-
responding to three circular sectors and the interme-
diate space between them. We call this problem the
3-circles problem. This is a hardly non-linear prob-
lem and, consequently, di�cult to solve for a classical
neural network in terms of computational power.
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Example: 4 classes

1907.02085

‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.73 0.56 – 0.75 0.81 – 0.88 –

2 0.79 0.77 0.78 0.76 0.90 0.83 0.90 0.89

3 0.79 0.76 0.75 0.78 0.88 0.89 0.90 0.89

4 0.84 0.80 0.80 0.86 0.84 0.91 0.90 0.90

5 0.87 0.84 0.81 0.88 0.87 0.89 0.88 0.92

6 0.90 0.88 0.86 0.85 0.88 0.89 0.89 0.90

8 0.89 0.85 0.89 0.89 0.91 0.90 0.88 0.91

10 0.91 0.86 0.90 0.92 0.90 0.91 0.87 0.91

Table 2: Results of the single- and multi-qubit classifiers with data re-uploading for the 3-circles problem. Numbers indicate

the success rate, i.e. number of data points classified correctly over total number of points. Words “Ent.” and “No Ent.”

refer to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization method with

the weighted fidelity and fidelity cost functions. Weighted fidelity cost function presents better results than the fidelity cost

function. The multi-qubit classifier reaches 0.90 success rate with a lower number of layers than the single-qubit classifier.

The introduction of entanglement slightly increases the success rate respect the non-entangled circuit.

Table 2 shows the results for this four-class prob-
lem. For a single-qubit classifier, a maximum of 92%
of success is achieved with 10 layers, i.e. 54 parame-
ters. From these results, it seems that this problem
also saturates around 91% of success. However, the
introduction of more qubits and entanglement makes
possible this result possible with less parameters. For
two qubits with entanglement, 4 layers are necessary
to achieve the same success as with a single-qubit, i.e.
34 parameters. For four qubits without entanglement
4 layers are also required. Notice also that, although
the number of parameters increases significantly with
the number of qubits, some of the e↵ective operations
are performed in parallel.

There is an e↵ect that arises from this more com-
plex classification problem: local minima. Notice that
the success rate can decrease when we add more layers
into our quantum classifier.

As with the previous problem, it is interesting to
compare the performance in terms of sucess rate of
classifiers with di↵erent number of layers. Figure 7
shows the results for a two-qubit classifier with no en-
tanglement for 1, 3, 4 and 10 layers. Even with only
one layer, the classifier identifies the four regions, be-
ing the more complicated to describe the central one.
As we consider more layers, the classifier performs
better and adjust these four regions.

6.3 Classification in multiple dimensions
As explained in Section 2, there is no restriction in
uploading multidimensional data. We can upload up
to three values per rotation since this is the degrees of
freedom of a SU(2) matrix. If the dimension of data is
larger than that, we can just split the data vector into
subsets and upload each one at a time, as described
explicitly in Eq. (6). Therefore, there is no reason to
limit the dimension of data to the number of degrees
of freedom of a qubit. We can in principle upload any

(a) 1 layer (b) 3 layers

(c) 4 layers (d) 10 layers

Figure 7: Results for the 3-circles problem using a single-

qubit classifier trained with the L-BFGS-B minimizer and the

weighted fidelity cost function. With one layer, the classifier

intuits the four regions although the central one is di�cult

to tackle. With more layers, this region is clearer for the

classifier and it tries to adjust the circular regions.

kind of data if we apply enough gates.

Following this idea we will now move to a more
complicated classification using data with 4 coordi-
nates. We use as a problem the four-dimensional
sphere, i.e. classifying data points according to
x2

1 + x2
2 + x2

3 + x2
4 < 2/fi. Similarly with the previous

problems, xi œ [≠1, 1] and the radius has been chosen
such that the volume of the hypersphere is half of the
total volume. This time, we will take 1000 random
points as the training set because the total volume
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‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.73 0.56 – 0.75 0.81 – 0.88 –

2 0.79 0.77 0.78 0.76 0.90 0.83 0.90 0.89

3 0.79 0.76 0.75 0.78 0.88 0.89 0.90 0.89

4 0.84 0.80 0.80 0.86 0.84 0.91 0.90 0.90

5 0.87 0.84 0.81 0.88 0.87 0.89 0.88 0.92

6 0.90 0.88 0.86 0.85 0.88 0.89 0.89 0.90

8 0.89 0.85 0.89 0.89 0.91 0.90 0.88 0.91

10 0.91 0.86 0.90 0.92 0.90 0.91 0.87 0.91

Table 2: Results of the single- and multi-qubit classifiers with data re-uploading for the 3-circles problem. Numbers indicate

the success rate, i.e. number of data points classified correctly over total number of points. Words “Ent.” and “No Ent.”

refer to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization method with

the weighted fidelity and fidelity cost functions. Weighted fidelity cost function presents better results than the fidelity cost

function. The multi-qubit classifier reaches 0.90 success rate with a lower number of layers than the single-qubit classifier.

The introduction of entanglement slightly increases the success rate respect the non-entangled circuit.

Table 2 shows the results for this four-class prob-
lem. For a single-qubit classifier, a maximum of 92%
of success is achieved with 10 layers, i.e. 54 parame-
ters. From these results, it seems that this problem
also saturates around 91% of success. However, the
introduction of more qubits and entanglement makes
possible this result possible with less parameters. For
two qubits with entanglement, 4 layers are necessary
to achieve the same success as with a single-qubit, i.e.
34 parameters. For four qubits without entanglement
4 layers are also required. Notice also that, although
the number of parameters increases significantly with
the number of qubits, some of the e↵ective operations
are performed in parallel.

There is an e↵ect that arises from this more com-
plex classification problem: local minima. Notice that
the success rate can decrease when we add more layers
into our quantum classifier.

As with the previous problem, it is interesting to
compare the performance in terms of sucess rate of
classifiers with di↵erent number of layers. Figure 7
shows the results for a two-qubit classifier with no en-
tanglement for 1, 3, 4 and 10 layers. Even with only
one layer, the classifier identifies the four regions, be-
ing the more complicated to describe the central one.
As we consider more layers, the classifier performs
better and adjust these four regions.

6.3 Classification in multiple dimensions
As explained in Section 2, there is no restriction in
uploading multidimensional data. We can upload up
to three values per rotation since this is the degrees of
freedom of a SU(2) matrix. If the dimension of data is
larger than that, we can just split the data vector into
subsets and upload each one at a time, as described
explicitly in Eq. (6). Therefore, there is no reason to
limit the dimension of data to the number of degrees
of freedom of a qubit. We can in principle upload any

(a) 1 layer (b) 3 layers

(c) 4 layers (d) 10 layers

Figure 7: Results for the 3-circles problem using a single-

qubit classifier trained with the L-BFGS-B minimizer and the

weighted fidelity cost function. With one layer, the classifier

intuits the four regions although the central one is di�cult

to tackle. With more layers, this region is clearer for the

classifier and it tries to adjust the circular regions.

kind of data if we apply enough gates.

Following this idea we will now move to a more
complicated classification using data with 4 coordi-
nates. We use as a problem the four-dimensional
sphere, i.e. classifying data points according to
x2

1 + x2
2 + x2

3 + x2
4 < 2/fi. Similarly with the previous

problems, xi œ [≠1, 1] and the radius has been chosen
such that the volume of the hypersphere is half of the
total volume. This time, we will take 1000 random
points as the training set because the total volume
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Example: 3 classes

1907.02085

‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.87 0.87 – 0.87 0.87 – 0.90 –

2 0.87 0.87 0.87 0.87 0.92 0.91 0.90 0.98

3 0.87 0.87 0.87 0.89 0.89 0.97 – –

4 0.89 0.87 0.87 0.90 0.93 0.97 – –

5 0.89 0.87 0.87 0.90 0.93 0.98 – –

6 0.90 0.87 0.87 0.95 0.93 0.97 – –

8 0.91 0.87 0.87 0.97 0.94 0.97 – –

10 0.90 0.87 0.87 0.96 0.96 0.97 – –

Table 3: Results of the single- and multi-qubit classifiers with data re-uploading for the four-dimensional hypersphere problem.

Numbers indicate the success rate, i.e. the number of data points classified correctly over the total number of points. Words

“Ent.” and “No Ent.” refer to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B

minimization method with the weighted fidelity and fidelity cost functions. The fidelity cost function gets stuck in some local

minima for the multi-qubit classifiers. The results obtained with the weighted fidelity cost function are much better, reaching

the 0.98 with only two layers for the four-qubit classifier. Here, the introduction of entanglement improves significantly the

performance of the multi-qubit classifier.

‰2
f ‰2

wf

Qubits 1 2 1 2 4

Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.34 0.51 – 0.43 0.77 – 0.81 –

2 0.57 0.63 0.59 0.76 0.79 0.82 0.87 0.96

3 0.80 0.68 0.65 0.68 0.94 0.95 0.92 0.94

4 0.84 0.78 0.89 0.79 0.93 0.96 0.93 0.96

5 0.92 0.86 0.82 0.88 0.96 0.96 0.96 0.95

6 0.93 0.91 0.93 0.91 0.93 0.96 0.97 0.96

8 0.90 0.89 0.90 0.92 0.94 0.95 0.95 0.94

10 0.90 0.91 0.92 0.93 0.95 0.96 0.95 0.95

Table 4: Results of the single- and multi-qubit classifiers with data re-uploading for the three-class annulus problem. Numbers

indicate the success rate, i.e. the number of data points classified correctly over the total number of points. Words “Ent.” and

“No Ent.” refer to considering entanglement between qubits or not, respectively. We have used the L-BFGS-B minimization

method with the weighted fidelity and fidelity cost functions. The weighted fidelity cost function presents better success rates

than the fidelity cost function. The multi-qubit classifiers improve the results obtained with the single-qubit classifier but the

using of entanglement does not introduce significant changes.

increases.
Results are shown in Table 3. A single-qubit

achieves 97% of success with eight layers (82 parame-
ters) using the weighted fidelity cost function. Results
are better if we consider more qubits. For two qubits,
the best result is 98% and it only requires three en-
tangled layers (62 parameters). For four qubits, it
achieves 98% success rate with two layers with entan-
glement, i.e. 82 parameters.

6.4 Classification of non-convex figures
As a final benchmark, we propose the classification of
a non-convex pattern. In particular, we classify the
points of an annulus with radii r1 =


0.8 ≠ 2/fi and

r2 =
Ô

0.8. We fix three classes: points inside the
small circle, points in the annulus and points outside
the big circle. So, besides it being a non-convex clas-
sification task, it is also a multi-class problem. A sim-
pler example, with binary classification, can be found

in Appendix B.
The results are shown in Table 4. It achieves 93% of

success with a single-qubit classifier with 10 layers and
a weighted fidelity cost function. With two qubits, it
achieves better results, 94% with three layers. With
four qubits, it reaches a 96% success rate with only
two layers with entanglement.

It is interesting to observe how the single-qubit clas-
sifier attempts to achieve the maximum possible re-
sults as we consider more and more layers. Figure 8
shows this evolution in terms of the number of layers
for a single-qubit classifier trained with the weighted
fidelity cost function. It requires four layers to learn
that there are three concentric patterns and the ad-
dition of more layers adjusts these three regions.

6.5 Comparison with classical classifiers
It is important to check if our proposal is in some
sense able to compete with actual technology of su-
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(a) 1 layer (b) 2 layers (c) 3 layers (d) 4 layers

(e) 5 layers (f) 6 layers (g) 8 layers (h) 10 layers

Figure 8: Results obtained with the single-qubit classifier for the annulus problem, using the weighted fidelity cost function

during the training. The better results are obtained with a 10 layers classifier (93% of success rate). As we consider more

qubits and entanglement, we can increase the success rate up to 96%, as shows Table 4.

pervised machine learning. To do so we have used the
standard machine learning library scikit-learn [22]
and solved the same problems as we have solved with
the quantum classifier. We have included the four
problems presented in the main paper plus five extra
problems analyzed in Appendix B. The aim of this
classical benchmarking is not to make an extended
review of what classical machine learning is capable
to perform. The aim is to compare our simple quan-
tum classifier to simple models such as shallow neural
networks and simple support vector machines.

The technical details of the classical classification
are the following: the neural network has got one hid-
den layer with 100 neurons, a ReLu activation func-
tion and the solver lbfgs by scikit-learn. The sup-
port vector machine is the default sklearn.svm.SVC.
Some changes in the initialization parameters were
tested with no significant di↵erences.

Table 5 compares the best performance of a neural
network, support vector classifier (SVC), the single-
qubit classifier with fidelity cost function and single-
qubit classifier with a weighted fidelity cost function.
In all problems, the performance of the single-qubit
classifier is, at least, comparable with the classical
methods. In some problems, like the 3-circles problem
and the binary annulus problem, the results of the
single-qubit classifier are better than with the classical
methods.

7 Conclusions
We have proposed a single-qubit classifier that can
represent multidimensional complex figures. The core
of this quantum classifier is the data re-uploading.
This formalism allows circumventing the limitations
of the no-cloning theorem to achieve a correct gener-
alization of an artificial neural network with a single
layer. In that sense, we have applied the Universal
Approximation Theorem to prove the universality of
a single-qubit classifier.
The structure of this classifier is the following.

Data and processing parameters are uploaded mul-
tiple times along the circuit by using one-qubit rota-
tions. The processing parameters of these rotations
are di↵erent at each upload and should be optimized
using a classical minimization algorithm. To do so, we
have defined two cost functions: one inspired in the
traditional neural networks cost functions (weighted
fidelity cost function) and the other, simpler, consist-
ing of the computation of the fidelity of the final state
with respect to a target state. These target states
are defined to be maximally orthogonal among them-
selves. Then, the single-qubit classifier finds the opti-
mal rotations to separate the data points into di↵erent
regions of the Bloch sphere, each one corresponding
with a particular class.
The single-qubit classifier can be generalized to a

larger number of qubits. This allows the introduction
of entanglement between these qubits by adding two-
qubit gates between each layer of rotations. We use
a particular entangling ansantz as a proof of concept.
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Single qubit classifier: example

1907.02085Problem
Classical classifiers Quantum classifier

NN SVC ‰2
f ‰2

wf

Circle 0.96 0.97 0.96 0.97

3 circles 0.88 0.66 0.91 0.91

Hypersphere 0.98 0.95 0.91 0.98

Annulus 0.96 0.77 0.93 0.97

Non-Convex 0.99 0.77 0.96 0.98

Binary annulus 0.94 0.79 0.95 0.97

Sphere 0.97 0.95 0.93 0.96

Squares 0.98 0.96 0.99 0.95

Wavy Lines 0.95 0.82 0.93 0.94

Table 5: Comparison between single-qubit quantum classifier and two well-known classical classification techniques: a neural

network (NN) with a single hidden layer composed of 100 neurons and a support vector classifier (SVC), both with the default

parameters as defined in scikit-learn python package. We analyze nine problems: the first four are presented in Section 6

and the remaining five in Appendix B. Results of the single-qubit quantum classifier are obtained with the fidelity and weighted

fidelity cost functions, ‰2
f and ‰2

wf defined in Eq. (7) and Eq. (9) respectively. This table shows the best success rate, being

1 the perfect classification, obtained after running ten times the NN and SVC algorithms and the best results obtained with

single-qubit classifiers up to 10 layers.

The exploration of other possible ansatzes is out of
the scope of this work.

We have benchmarked several quantum classifiers
of this kind, made of a di↵erent number of layers,
qubits and with and without entanglement. The pat-
terns chosen to test these classifiers are the points
inside and outside of a circle (simple example) and
similarly for a four-dimensional hypersphere (multi-
dimensional example); a two dimensional region com-
posed by three circles of di↵erent size (multiple classes
example); and the points outside and inside of an an-
nulus (non-convex example). In all cases, the single-
qubit classifier achieves more than 90% of the success
rate. The introduction of more qubits and entangle-
ment increases this success and reduces the number
of layers required. The weighted fidelity cost function
turns out to be more convenient to achieve better re-
sults than the fidelity cost function. In all problems,
the probability to get stuck in a local minima increases
with the number of layers, an expected result from an
optimization problem involving several parameters.

In summary, we have proposed a quantum classifier
model that seems to be universal by exploiting the
non-linearities of the single-qubit rotational gates and
by re-uploading data several times.
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Quantum computers can be used for supervised learning by treating parametrised quantum cir-
cuits as models that map data inputs to predictions. While a lot of work has been done to investigate
practical implications of this approach, many important theoretical properties of these models re-
main unknown. Here we investigate how the strategy with which data is encoded into the model
influences the expressive power of parametrised quantum circuits as function approximators. We
show that one can naturally write a quantum model as a partial Fourier series in the data, where
the accessible frequencies are determined by the nature of the data encoding gates in the circuit.
By repeating simple data encoding gates multiple times, quantum models can access increasingly
rich frequency spectra. We show that there exist quantum models which can realise all possible
sets of Fourier coe�cients, and therefore, if the accessible frequency spectrum is asymptotically rich
enough, such models are universal function approximators.

A popular approach to quantum machine learning
uses trainable quantum circuits as machine learning
models similar to neural networks. Quantum gates –
the building blocks of quantum circuits – are used to
encode data inputs x = (x1, . . . , xN ) as well as train-
able weights ✓ = (✓1, . . . , ✓M ). The circuit is measured
multiple times to estimate the expectation of some ob-
servable, and the result is interpreted as a prediction.
The overall computation implements a “quantum model
function” f✓(x), a machine learning model that is based
on quantum computing. This approach is known by dif-
ferent names such as variational circuits [1, 2], quantum
circuit learning [3], quantum neural networks [4, 5], or
parametrised quantum circuits [6].

A lot of work has been done to understand the prac-
tical details of this approach, leading to useful training
strategies [3, 7, 8] and ways to emulate and extend clas-
sical machine learning methods [2, 9–12]. A growing
body of literature, motivated by the dilemma of inves-
tigating the performance of quantum machine learning
when only small-scale experiments are physically pos-
sible, tries to understand the potential power of vari-
ational circuits from a theoretical perspective [5, 13–
15]. Still, only little is known about the actual function
classes that quantum circuits give rise to. Can quantum
models express any function in the input x, or are they
limited to a specific class of functions? Can this class
of “learnable functions” be characterised in a meaning-
ful way, and can the characterisation be used to guide
design choices and potential applications for these quan-
tum models?

In this paper we investigate these questions in a
framework focused on the role of data encoding. We
consider standard models from the literature that con-
sist of multiple “circuit layers”, each made up of a data

encoding (circuit) block and a trainable (circuit) block,
and assume that input features x 2 R are encoded by
gates of the form eixH , where H is an arbitrary Hamil-

...

FIG. 1. Illustration of the main result of this paper, shown
for one-dimensional inputs x 2 R: quantum models consist-
ing of layers of trainable circuit blocks W = W (✓) and data
encoding circuit blocks S(x) can be written as a weighed
sum

P
! c!e

i!x. The data encoding circuit determines the
frequencies !, and the remainder of the circuit architecture
determines the coe�cients c!. If the ! are integer-valued (or
integer-valued multiples of a base frequency !0), the sum be-
comes a partial Fourier series, which allows us to systemati-
cally study properties of the function class a given quantum
model can learn.

tonian. Our main tool is the natural representation of
such quantum models as a Fourier-type sum

f✓(x) =
X

!2⌦

c!(✓)e
i!x, (1)

where !x is the inner product. We show that the fre-

quency spectrum ⌦ ⇢ RN is solely determined by the
eigenvalues of the data-encoding Hamiltonians while the
design of the entire circuit controls the coe�cients c!
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that a quantummodel can realise (see Fig.1). The repre-
sentation of quantum models as Fourier-type sums char-
acterises the function families that a given class of quan-
tum models can learn via two interrelated properties.
The first property is the frequency spectrum ⌦, which
determines the functions ei!x that the quantum model
“has access to”. The second property is the expressivity
of the coe�cients {c!} that a class of quantum models
can control, which determines how the accessible func-
tions can be combined. In many natural settings, the
frequencies are integers, ⌦ ⇢ ZN , and the sum becomes
a multi-dimensional partial Fourier series

f✓(x) =
X

n2⌦

cn(✓)e
inx, (2)

where the einx are orthogonal basis functions. We use
the nomenclature partial Fourier series to indicate the
fact that only a subset of the Fourier coe�cients are non-
zero. The Fourier series formalism allows us to study
quantum models using the rich techniques developed in
Fourier analysis.

First, we consider the popular strategy of encoding
an input into single-qubit rotations, and show that re-
peating the encoding r times either sequentially or in
parallel allows the model to access frequency spectra ⌦
consisting of r frequencies. This places into a broader
context an observation made in Ref. [7], which states
that encoding a data feature only once into the angle of
a single qubit rotation restricts the function class that
quantum models can learn to a simple sine function (or
equivalently, a Fourier series with a single frequency).
Second, we provide bounds for the maximum number
of frequencies and Fourier coe�cients a quantum model
can control for more general data encoding strategies.
Finally, we study the universality of quantum models.
We show that for su�ciently flexible trainable circuit
blocks there exists a quantum model which can realise
any possible set of Fourier coe�cients. If, asymptoti-
cally, the accessible frequency spectrum is rich enough,
then such models are universal function approximators.
This follows from the fact that Fourier series with arbi-
trary coe�cients can approximate any square integrable
function on a given interval [16].

A few existing studies are related to our work. For
example, Pérez-Salinas et al. [17] considered quantum
models with sequentially repeated data encodings and
conjectured that they are universal function approxima-
tors under a special kind of classical data pre-processing.
Killoran et al. [18] have shown that many neural net-
works can be naturally emulated on a photonic quan-
tum computer, and point out that such quantum models
therefore inherit universality. The majority of quantum
machine learning papers concerned with questions of ex-
pressivity and universality [19–22], however, interpret
these concepts from a quantum information perspective,
which asks whether a circuit can express any quantum

computation, not any function in the inputs. However,
in the context of (supervised) machine learning, quan-
tum universality does not necessarily imply universal

function approximation; a quantum circuit able to re-
alise arbitrary unitary evolutions may only be able to ex-
press a limited class of functions f(x).1 From the func-

tion expressivity view-point, Ref. [23] has investigated
the pseudo-dimension of a particular class of quantum
models, an expressivity metric which allows one to char-
acterize learnability and generalization power of the as-
sociated model. Also the essential role of data encoding
for quantum machine learning has been emphasised in
previous papers. For example, it was remarked that
data encoding determines the features that quantum
models represent [24, 25], the decision boundaries they
can learn [26], as well as the measurements that opti-
mally distinguish between data classes [27]. A central
contribution of this paper is to systematically combine
the study of data encoding with that of the expressivity
of quantum models.

We present our results as follows: Section I introduces
the basic idea of writing quantum models as partial
Fourier series. Section II puts the tool to use and analy-
ses the expressivity of quantum models, which leads to a
proof that quantum models are universal in Section III.
Section IV discusses practically relevant implications.

Note: After publishing the preprint of this article, we

were made aware that the connection between Fourier

series and quantum machine learning models with re-

peated data-encoding has already been established in

Ref. [28]. While there is significant overlap between this

work and ours, we provide a novel universality result,

as well as a systematic development of this connection

through practically relevant examples.

I. QUANTUM MODELS AS PARTIAL
FOURIER SERIES

First, we introduce our basic tool: the natural repre-
sentation of a quantum model as a partial Fourier se-
ries. For simplicity, the majority of our presentation
will focus on the case of univariate functions with in-
puts x 2 R, but we generalise this to multivariate func-
tions in Appendix A, which is used for the analysis of
universality in Section III.

We define a (univariate) quantum model f✓(x) as the
expectation value of some observable with respect to a
state prepared via a parametrised quantum circuit, i.e.

f✓(x) = h0|U †(x,✓)MU(x,✓) |0i , (3)

where |0i is some initial state of the quantum computer,
U(x,✓) is a quantum circuit that depends on the in-
put x and a (possibly empty) set of parameters ✓, and

1
As an extreme example, consider a parametrised quantum cir-

cuit that encodes the data into gates acting on qubits which

are never entangled with the measured qubits – in which case

f(x) is a constant function, and the resulting machine learning

model trivial.

2

that a quantummodel can realise (see Fig.1). The repre-
sentation of quantum models as Fourier-type sums char-
acterises the function families that a given class of quan-
tum models can learn via two interrelated properties.
The first property is the frequency spectrum ⌦, which
determines the functions ei!x that the quantum model
“has access to”. The second property is the expressivity
of the coe�cients {c!} that a class of quantum models
can control, which determines how the accessible func-
tions can be combined. In many natural settings, the
frequencies are integers, ⌦ ⇢ ZN , and the sum becomes
a multi-dimensional partial Fourier series

f✓(x) =
X

n2⌦

cn(✓)e
inx, (2)

where the einx are orthogonal basis functions. We use
the nomenclature partial Fourier series to indicate the
fact that only a subset of the Fourier coe�cients are non-
zero. The Fourier series formalism allows us to study
quantum models using the rich techniques developed in
Fourier analysis.

First, we consider the popular strategy of encoding
an input into single-qubit rotations, and show that re-
peating the encoding r times either sequentially or in
parallel allows the model to access frequency spectra ⌦
consisting of r frequencies. This places into a broader
context an observation made in Ref. [7], which states
that encoding a data feature only once into the angle of
a single qubit rotation restricts the function class that
quantum models can learn to a simple sine function (or
equivalently, a Fourier series with a single frequency).
Second, we provide bounds for the maximum number
of frequencies and Fourier coe�cients a quantum model
can control for more general data encoding strategies.
Finally, we study the universality of quantum models.
We show that for su�ciently flexible trainable circuit
blocks there exists a quantum model which can realise
any possible set of Fourier coe�cients. If, asymptoti-
cally, the accessible frequency spectrum is rich enough,
then such models are universal function approximators.
This follows from the fact that Fourier series with arbi-
trary coe�cients can approximate any square integrable
function on a given interval [16].

A few existing studies are related to our work. For
example, Pérez-Salinas et al. [17] considered quantum
models with sequentially repeated data encodings and
conjectured that they are universal function approxima-
tors under a special kind of classical data pre-processing.
Killoran et al. [18] have shown that many neural net-
works can be naturally emulated on a photonic quan-
tum computer, and point out that such quantum models
therefore inherit universality. The majority of quantum
machine learning papers concerned with questions of ex-
pressivity and universality [19–22], however, interpret
these concepts from a quantum information perspective,
which asks whether a circuit can express any quantum

computation, not any function in the inputs. However,
in the context of (supervised) machine learning, quan-
tum universality does not necessarily imply universal

function approximation; a quantum circuit able to re-
alise arbitrary unitary evolutions may only be able to ex-
press a limited class of functions f(x).1 From the func-

tion expressivity view-point, Ref. [23] has investigated
the pseudo-dimension of a particular class of quantum
models, an expressivity metric which allows one to char-
acterize learnability and generalization power of the as-
sociated model. Also the essential role of data encoding
for quantum machine learning has been emphasised in
previous papers. For example, it was remarked that
data encoding determines the features that quantum
models represent [24, 25], the decision boundaries they
can learn [26], as well as the measurements that opti-
mally distinguish between data classes [27]. A central
contribution of this paper is to systematically combine
the study of data encoding with that of the expressivity
of quantum models.

We present our results as follows: Section I introduces
the basic idea of writing quantum models as partial
Fourier series. Section II puts the tool to use and analy-
ses the expressivity of quantum models, which leads to a
proof that quantum models are universal in Section III.
Section IV discusses practically relevant implications.

Note: After publishing the preprint of this article, we

were made aware that the connection between Fourier

series and quantum machine learning models with re-

peated data-encoding has already been established in

Ref. [28]. While there is significant overlap between this

work and ours, we provide a novel universality result,

as well as a systematic development of this connection

through practically relevant examples.

I. QUANTUM MODELS AS PARTIAL
FOURIER SERIES

First, we introduce our basic tool: the natural repre-
sentation of a quantum model as a partial Fourier se-
ries. For simplicity, the majority of our presentation
will focus on the case of univariate functions with in-
puts x 2 R, but we generalise this to multivariate func-
tions in Appendix A, which is used for the analysis of
universality in Section III.

We define a (univariate) quantum model f✓(x) as the
expectation value of some observable with respect to a
state prepared via a parametrised quantum circuit, i.e.

f✓(x) = h0|U †(x,✓)MU(x,✓) |0i , (3)

where |0i is some initial state of the quantum computer,
U(x,✓) is a quantum circuit that depends on the in-
put x and a (possibly empty) set of parameters ✓, and

1
As an extreme example, consider a parametrised quantum cir-

cuit that encodes the data into gates acting on qubits which

are never entangled with the measured qubits – in which case

f(x) is a constant function, and the resulting machine learning

model trivial.

3

M is some observable. The prediction of the quantum
model at a specific point x is estimated in practice by
running the circuit multiple times and averaging over
the measurement results.2 The quantum circuit itself
is constructed from L layers, each consisting of a data
encoding circuit block S(x) and a trainable circuit block
W (✓) controlled by the parameters ✓ (see Fig. 1). The
data encoding block is the same in every layer and con-
sists of gates of the form G(x) = e�ixH , where H is a
Hamiltonian that generates the “time evolution” used
to encode the data. Since we want to focus on the role
of the data encoding, and to avoid further assumptions
on how the trainable circuit blocks are parametrised, we
view the trainable circuit blocks as arbitrary unitary op-
erations, W (✓) = W , and drop the subscript of f✓ from
here on.3 With this assumption, the overall quantum
circuit has the form

U(x) = W (L+1)S(x)W (L) . . .W (2)S(x)W (1). (4)

Note that the encoding strategy is very natural, since
the physical control parameters of quantum dynamics
usually enter as time evolutions of Hamiltonians – the
most prominent example being Pauli rotations. This
model includes “parallel encodings” that repeat the en-
coding on di↵erent subsystems [29], as well as “data
reuploading”, where the encoding is repeated multi-
ple times in sequence [17] (see Fig. 2). With a small
amount of classical pre-processing this model includes
even many quantum machine learning algorithms that
are not based on the principles of parametrised circuits
(see also Section IVA).

Our goal is to write f as a partial Fourier series

f(x) =
X

n2⌦

cne
inx, (5)

with integer-valued frequencies (if ⌦ = {�K, . . . ,K},
then we call (5) a truncated Fourier series). The first
step is to note that one can always find an eigenvalue de-
composition of the generator Hamiltonian H = V †⌃V
where ⌃ is a diagonal operator containing H’s eigenval-
ues �1, ...,�d on its diagonal. The data encoding uni-
tary becomes S(x) = V †e�ix⌃V , and we can “absorb”
V , V † into the arbitrary unitaries W 0 = VWV †. Hence,
without loss of generality we will assume that H is di-
agonal. This allows us to separate the data-dependent
expressions from the remainder of the circuit in each

2
Note that the quantum model is a theoretical construction,

since physical measurements will always result in an estimate
of the output expectation, making f a random variable – a

complication that we will ignore here.
3
Of course, in realistic near-term settings these unitaries are im-

plemented as short gate sequences and are by no means uni-

versal, and there are many interesting questions around how a

specific parametrisation influences the properties of the result-

ing quantum model.

FIG. 2. The general quantum model considered in this paper
includes qubit-based circuits where the encoding subroutine
consists of a single-qubit gate G(x), which is often used in
practice. The picture illustrates two special cases investi-
gated in Section II: (a) shows a circuit where the scalar in-
put feature x is encoded by one single-qubit gate, which can
be repeated r = L > 1 times but always acts on the same
qubit, and (b) repeats the encoding gate r times in “par-
allel” using only one layer. Note that the trainable blocks
W (purple rectangles) represent arbitrary unitaries, which in
practice would be implemented as a sequence of local gates
(inset).

component i of the quantum state U(x) |0i,

[U(x) |0i]
i
=

dX

j1...jL=1

e�i(�j1+···+�jL
)x

⇥W (L+1)
ijL

. . .W (2)
j2j1

W (1)
j11

. (6)

For ease of notation we introduce the multi-index j =
{j1, . . . , jL} 2 [d]L, where [d]L denotes the set of any L
integers between 1, . . . , d. We can then denote the sum
of eigenvalues for a given j by ⇤j = �j1 + · · ·+�jL , and
write

[U(x) |0i]
i
=

X

j2[d]L

e�i⇤jxW (L+1)
ijL

. . .W (2)
j2j1

W (1)
j11

. (7)

To consider the full quantum model from Eq. (3) we
need to take into account the complex conjugation of
this expression as well as the measurement, and get

f(x) =
X

k,j2[d]L

ei(⇤k�⇤j)xak,j , (8)

where the ak,j contain the terms stemming from the
arbitrary unitaries and measurement,

ak,j =
X

i,i0

(W ⇤)(1)1k1
(W ⇤)(2)

j1j2
. . . (W ⇤)(L+1)

jLi
Mi,i0

⇥W (L+1)
i0jL

. . .W (2)
j2j1

W (1)
j11

. (9)
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(Fig. 2a). Consider the quantum model in Eqs. (3) and
(4), for L = r > 1 layers, where S(x) = exp(�i(x/2)�j)
is a single-qubit Pauli rotation (i.e. �j 2 {�x,�y,�z})
which acts on the same qubit in each layer. The circuit
in Eq. (4) becomes

U(x) = W (L+1)e�i
x
2 �LW (L) . . .W (2)e�i

x
2 �1W (1).

Diagonalizing the Pauli rotations as before, then gives
us ⌃ = (1/2)�z for all encoding layers. The frequency
spectrum from Eq. (10) is a sum of 2r terms of value
±1/2,

⌦seq = {(�k1 + · · ·+ �kr )� (�j1 + · · ·+ �jr ) |
k1, . . . , kr, j1, . . . , jr 2 {1, 2}}. (26)

After a short calculation, one finds that ⌦seq = ⌦par.
Again, a quantum model with r sequential repetitions
of the single-qubit Pauli encoding can be expressed as a
truncated Fourier series of degree r. The growth mecha-
nism of a quantum model’s frequency spectrum via par-
allel and sequential repetitions of single-qubit Pauli en-
codings is numerically illustrated in Fig. 4.

C. Limits of expressivity

The representation of quantum models as Fourier-
type sums immediately allows us to derive upper bounds
on the expressivity of such quantum models when us-
ing L repetitions of an encoding gate of dimension
d (which is at most the size of the overall Hilbert
space). Firstly, let us consider the maximum spec-
trum size K(L, d) of a quantum model, quantifying
the number of frequencies it can “support” or “has ac-
cess to”. Since the frequency spectrum is defined as
⌦ = {(�j1 + . . .�kL)� (�j1 + · · ·+ �kL)} (where the in-
dices j1, . . . , jL, k1, . . . , kL run over all dimensions of the
encoding gate, from 1 to d), the frequencies are sums of
2L terms, each having d potential values. As a result,
they can at most realise d2L distinct values – irrespective
of whether the eigenvalues are real or integer-valued.
Since the size K counts the pairs �!,! 2 ⌦ as one and
excludes the “zero frequency”, we get

K  d2L

2
� 1. (27)

As an example, if data is encoded in a single-qubit en-
coding gate, we recover the result from the previous
sections where the model has degree 22

2 � 1 = 1. Using

L di↵erent encoding gates increases this to 22L

2 � 1. As
we have seen, further assumptions on the eigenvalues
allow us to make this bound a lot tighter; for example
when the L repetitions use the same single-qubit encod-
ing gate, K = L.

An interesting question is whether there is a single
quantum gate which can encode data into a quantum
model that supports the frequency spectrum ⌦1 =

x x xx x x
x
x
x
x

x x x x
x
x

x

...

FIG. 4. Fitting a truncated Fourier series of degree 5,
g(x) =

P5
n=�5 cne

2inx with cn = 0.05�0.05i for n = 1, . . . , 5
and c0 = 0, using a quantum model that repeats the encod-
ing r = 1, 3, 5 times in sequence (left) and in parallel (right).
Increasing r allows for closer and closer fits until r = 5 fits
the data almost perfectly in both cases - illustrating that
parallel and sequential repetitions of Pauli encodings extend
the Fourier spectrum in the same manner. All models were
trained with at most 200 steps of an Adam optimiser with
learning rate 0.3 and batch size 25. For the “parallel” simu-
lations, the W are not arbitrary unitaries but implemented
by a smaller ansatz of three layers of parametrised rotations
as well as entangling CNOT gates, as per Ref. [30], which is
depicted by the hollow rounded gate symbols. The quantum
model still easily fitted the target function, which suggests
that the results of this paper are of relevance for realistic
quantum models.

{�1, . . . ,�1, 0, 1, . . . ,1} of a full Fourier series. The
answer is yes: the ubiquitous phase shifts in continuous-
variable (CV) quantum systems, which correspond to a
free evolution of a harmonic oscillator, have the number
operator n̂ = diag(0, 1, 2, . . . ) as a generator.

While the frequency spectrum of a quantum model
can directly be derived from the input encoding gates,
the flexibility in the coe�cients is a lot harder to in-
vestigate systematically (we will do so for special cases
in the universality proofs in Section III). In principle,
every block W (1), . . . ,W (L+1), as well as the measure-
ment observable, contribute to every Fourier coe�cient.
This means that only a few degrees of freedom in the
gates may change an exponentially large (or, in the
case of continuous-variable quantum computing, infi-
nite) amount of Fourier coe�cients. However, these
Fourier coe�cients are not arbitrary, but functions of
the limited degrees of freedom of the quantum circuit,
and a quantum circuit of a certain structure may only
be able to realise a small subset of the entire set of all
possible Fourier coe�cients {cn}. To arbitrarily con-
trol K+1 complex Fourier coe�cients, we need at least

2008.08605
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Example
Inner Product Calculation

• Let  be two vectors. How to compute the magnitude of the inner product  ? 

• Digital: 

 multiplications & additions 

Decompose multiplications & additions as NAND gate 

• Quantum: 

Run the following circuit with  qubits and  gates 

 

|ψ⟩, |ϕ⟩ ∈ ℂ2n |⟨ϕ |ψ⟩ |2

2n

2n + 1 n + 2

Pr(0) − Pr(1) = |⟨ϕ |ψ⟩ |2

5

|0⟩

|ψ⟩

|ϕ⟩

×

×

H H

…
…

{
{

×

×

×

×

…

Example
Inner Product Calculation

• Let  be two vectors. How to compute the magnitude of the inner product  ? 

• Digital: 

 multiplications & additions 

Decompose multiplications & additions as NAND gate 

• Quantum: 

Run the following circuit with  qubits and  gates 

 

|ψ⟩, |ϕ⟩ ∈ ℂ2n |⟨ϕ |ψ⟩ |2

2n

2n + 1 n + 2

Pr(0) − Pr(1) = |⟨ϕ |ψ⟩ |2

5

|0⟩

|ψ⟩

|ϕ⟩

×

×

H H

…
…

{
{

×

×

×

×

…

Inner product
• Let ,  be two  dimensional vectors. How to compute the 

magnitude of the inner product ? 
• Classical  

–  multiplications and additions 
– Decompose multiplications and additions as NAND gates 

• Quantum 

– Run the following circuits with  qubits and  gates 

–

|ψ⟩ |ϕ⟩ ∈ ℂ2n N = 2n

|⟨ϕ |ψ⟩ |2

N = 2n

2n + 1 n + 2
Prob(0) − Prob(1) = |⟨ϕ |ψ⟩ |2

|ψ⟩ = (ψ1, ⋯, ψN)
|ϕ⟩ = (ϕ1, ⋯, ϕN)

⟨ϕ |ψ⟩ =
N

∑
i=1

ϕ*i ψi



|a⟩ ⊗ |b⟩ = |a⟩ |b⟩

H ( |0⟩ |a⟩ |b⟩) = 1
2

( |0⟩ + |1⟩) |a⟩ |b⟩

SWAP H ( |0⟩ |a⟩ |b⟩) = 1
2

SWAP ( |0⟩ + |1⟩) |a⟩ |b⟩ = 1
2

( |0⟩ |a⟩ |b⟩ + |1⟩ |b⟩ |a⟩)

|ψ⟩ = H SWAP H ( |0⟩ |a⟩ |b⟩) = 1
2

H ( |0⟩ |a⟩ |b⟩ + |1⟩ |b⟩ |a⟩)

= 1
2 |0⟩( |a⟩ |b⟩ + |b⟩ |a⟩) + 1

2 |1⟩( |a⟩ |b⟩ − |b⟩ |a⟩)

P(0) = | (⟨0 ⊗ I ) |ψ⟩ |2 = 1
2 − 1

2 |⟨a |b⟩ |2

H |x⟩ = 1
2

( |0⟩ + (−1)x |1⟩)

P(1) = | (⟨0 ⊗ I ) |ψ⟩ |2 = 1
2 + 1

2 |⟨a |b⟩ |2
P(1) − P(0) = |⟨a |b⟩ |2

|0⟩
|a⟩ |ψ⟩

H

|b⟩

H

X

X

Example
Inner Product Calculation

• Let  be two vectors. How to compute the magnitude of the inner product  ? 

• Digital: 

 multiplications & additions 

Decompose multiplications & additions as NAND gate 

• Quantum: 

Run the following circuit with  qubits and  gates 

 

|ψ⟩, |ϕ⟩ ∈ ℂ2n |⟨ϕ |ψ⟩ |2

2n

2n + 1 n + 2

Pr(0) − Pr(1) = |⟨ϕ |ψ⟩ |2

5

|0⟩

|ψ⟩

|ϕ⟩

×

×

H H

…
…

{
{

×

×

×

×

…

differencesum of the “unswapped” and the “swapped”

(1) (3)(2) (4)
(1)

(2)

(3)

(4)

Proof: Inner product



Measuring Overlap of Quantum States
• Prepare two qubits registers:  and want to 

compute 
|a⟩ ⊗ |b⟩ = |a⟩ |b⟩

|⟨a |b⟩ |2

I. Swap test

(1) add ancilla qubit: |0⟩ |a⟩ |b⟩
(2) apply Hadamard gate to ancilla: 1

2 ( |0⟩ + |1⟩) |a⟩ |b⟩
(3) apply swap operator on two registers  
     and  conditioned on the  
     ancilla being in state 1:

|a⟩ |b⟩ 1
2 ( |0⟩ |a⟩ |b⟩ + |1⟩ |b⟩ |a⟩)

(4) apply Hadamard gate to ancilla:

|ψ⟩ = 1
2 ( |0⟩ + |1⟩) |a⟩ |b⟩ + 1

2 ( |0⟩ − |1⟩) |b⟩ |a⟩

|ψ⟩ = 1
2 |0⟩ ⊗ (|a⟩ |b⟩ + |b⟩ |a⟩) + 1

2 |1⟩ ⊗ (|a⟩ |b⟩ − |b⟩ |a⟩)
differencesum of the “unswapped” and the “swapped”



Measuring Overlap of Quantum States
I. Swap test

(5) P0 = P(last qubit = 0) = 1
2 (⟨a |⟨b | + ⟨b |⟨a |)1

2 ( |a⟩ |b⟩ + |b⟩ |a⟩)
= 1

2 + 1
2 |⟨a |b⟩ |2 if ⟨a |b⟩ = 0, P0 = 1

2
if ⟨a |b⟩ = 1, P0 = 1

⟶ |⟨a |b⟩ |2 = 2P0 − 1

⃗a = (a1, a2, ⋯, aN) ∈ ℝN ⟶ |a⟩
b⃗ = (b1, b2, ⋯, bN) ∈ ℝN ⟶ |b⟩

⟶ |⟨a |b⟩ |2 = |aTb |2

sign ambiguity?

Assume | ⃗a | = 1 = | b⃗ |

|a⟩ = ( 1
2

a1, ⋯ 1
2

aN, 1
2 )

|b⟩ = ( 1
2

b1, ⋯ 1
2

bN, 1
2 )

P0 = 1
2 + 1

2 |⟨a |b⟩ |2 = 1
2 + 1

2
1
2 a1b1 + ⋯ + 1

2 aNbN + 1
2

2

= 1
2 + 1

2
1
2 aTb + 1

2
2

= 1
2 + 1

2 ( 1
2 aTb + 1

2 )2

∴ aTb = 2 2P0 − 1 − 1

−1 ≤ ⃗a ⋅ b⃗ ≤ 1

P0 ∈ [ 1
2 , 1] aTb ∈ [−1, 1]



II. Hadamard test

III. Inversion test

Measuring Overlap of Quantum States

(1) Prepare initial state: |ψ⟩ = 1
2 ( |0⟩ |a⟩ + |1⟩ |b⟩)

(2) apply Hadamard: |ψ⟩ = 1
2 |0⟩( |a⟩ + |b⟩) + 1

2 ( |a⟩ − |b⟩)

 similar to   for the representation of  and  rather than → 1
2

(α, β) |a⟩ |b⟩ α ⊗ β

|a⟩ = A |0⟩ |b⟩ = B |0⟩

Run the circuit B†A |0⟩
Probability of observing the final quantum state in the initial state  

       =

|0⟩
⟨0 |B†A |0⟩

2
= |⟨b |a⟩ |2

For many operators,   or  U = U† U†(θ) = U(−θ)



The First Wave of Quantum 
Machine Learning?The First Wave of Quantum Machine Learning

6

Long-term: Quantum Linear Algebra 

Exponential or polynomial speed-up in 

‣ Support vector machine 

‣ Principle component analysis 

‣ Bayesian methods 

‣ …

Ax = b Complexity of inversion of a regular matrix=  
Complexity of inversion of a sparse matrix=

O(N3)
O(N )



Harrow-Hassidim-Lloyd Algorithm
• An algorithm that solves exponentially large linear system in polynomial 

time. Given a matrix  and a vector , find  such 
that . 

• Let us assume  and  is invertible    problem is 
reduced to inverting .

A ∈ ℝN×M b ∈ ℝN x ∈ ℝM

Ax = b
N = M A → x = A−1b →

A

• Additional assumptions 

•  is hermitian (and squared and invertible), . 

• For eigenvalues ,  and . 

• Algorithm has access to many copies of . 

• Can implement unitary transformation  for any value of  such that 
.

A A† = A
0 < λ1 ≤ λ2 ≤ ⋯ ≤ λN ≤ 1 min

j
|λj | ≥ α > 0 max

j
|λj | ≤ 1

|b⟩
eiAt t

0 ≤ t ≤ polylog N

x = A−1b |x⟩ = A−1 |b⟩
A−1 |b⟩

x ⟷ |x⟩
b ⟷ |b⟩

some polynomial in log(N) = (log N )k = logk N



Harrow-Hassidim-Lloyd Algorithm
Quantum Phase 

Estimation of 
U = eiA

R

Inverse QPE 
circuit

|b⟩
|0⟩⊗ℓ

|0⟩

• : eigenvectors of  with eigenvalues  

•  forms orthonormal basis,   

•
,   and  

•
  with 

|uj⟩ = | j⟩ A 0 < α ≤ λ1 ≤ λ2 ≤ ⋯ ≤ λN ≤ 1
{ |uj⟩} ⟨i | j⟩ = δij

A = ∑
j

λj | j⟩⟨ j | U = eiA = ∑
j

eiλj | j⟩⟨ j | A−1 = ∑
j

1
λj

| j⟩⟨ j |

|b⟩ =
n

∑
j=1

bj | j⟩ ∑
j

|bj |
2 = 1

(0) (1) (2) (3)

(Algorithm has access to many copies of .)|b⟩



Quantum Circuit for QPE
H|0⟩

|0⟩

|u⟩

|0⟩

|0⟩

H

H

H

U20

QFT†

U21 U2n−2 U2n−1

(0) (3)(2)(1)

{
{

n 
co

nt
ro

l 
re

gi
st

er
s

m
 e

ig
en

st
at

e 
re

gi
st

er
s

|ψ2⟩ =
n−1

∏
j=0

CU2j 1
2

n ( |0⟩ + |1⟩)⊗n ⊗ |u⟩

1
2 ( |0⟩ + |1⟩) ⊗ |u⟩ CU2j 1

2 ( |0⟩ ⊗ |u⟩ + U2j |1⟩ ⊗ |u⟩)
= 1

2 ( |0⟩ + eiϕ 2j |1⟩) ⊗ |u⟩

U2j |u⟩ = (eiϕ)2j |u⟩ = eiϕ 2j |u⟩

U |u⟩ = eiϕ |u⟩



Harrow-Hassidim-Lloyd Algorithm
Quantum Phase 

Estimation of 
U = eiA

R

Inverse QPE 
circuit

|b⟩
|0⟩⊗ℓ

|0⟩

(0) (1) (2) (3)

|ψ0⟩ = |b⟩ ⊗ |0⟩⊗ℓ ⊗ |0⟩

n qubits

 qubitsℓ
1 qubit 
(ancilla )

QPE = H + conditional U2k + QFT† U = e2πiA

|b⟩ ⊗ |0⟩⊗ℓ H⟶ |b⟩ ⊗ 1
2ℓ ( |0⟩ + |1⟩)⊗ℓ CU⟶

ℓ−1

∏
k=0

CU2k (
n

∑
j=1

bj | j⟩ )⊗ 1
2ℓ ( |0⟩ + |1⟩)⊗ℓ

=
n

∑
j=1

bj

ℓ−1

∏
k=0

CU2k | j⟩ ⊗ 1
2ℓ ( |0⟩ + |1⟩)⊗ℓ

=
n

∑
j=1

bj | j⟩ ⊗ 1
2ℓ ( |0⟩ + |1⟩e2πiλj20) ⊗ (|0⟩ + |1⟩e2πiλj21) ⊗ ⋯ ⊗ (|0⟩ + |1⟩e2πiλj2ℓ−1)

=
n

∑
j=1

bj | j⟩ ⊗ 1
2ℓ

2ℓ−1

∑
y=0

e2πiλj y |y⟩ QFT−1
⟶ ⋯⋯

Control qubits

Target qubits



Harrow-Hassidim-Lloyd Algorithm
Quantum Phase 

Estimation of 
U = eiA

R

Inverse QPE 
circuit

|b⟩
|0⟩⊗ℓ

|0⟩

(0) (1) (2) (3)

n qubits

 qubitsℓ
1 qubit 
(ancilla )

QPE = H + conditional U2k + QFT†

⋯⋯ =
n

∑
j=1

bj | j⟩ ⊗ 1
2ℓ

2ℓ−1

∑
y=0

e2πiλj y |y⟩ QFT−1
⟶

n

∑
j=1

bj

2ℓ−1

∑
y=0

1
2ℓ

1
2ℓ

2ℓ−1

∑
x=0

e2πiy(λj−x/2ℓ) | j⟩ ⊗ |x⟩

QFT−1 |y⟩ = 1
2ℓ

2ℓ−1

∑
x=0

e−2πixy/2ℓ |x⟩

λj = x /2ℓ

1
2ℓ

2ℓ−1

∑
y=0

e2πiy(a−x)/2ℓ = δax
=

n

∑
j=1

bj | j⟩ ⊗ |λj⟩ -bit string =  qubits approximation of ℓ ℓ λj

⏟⏟

|ψ1⟩ = QPE |ψ0⟩ =
n

∑
j=1

bj | j⟩ ⊗ |λj⟩ ⊗ |0⟩

|ψ2⟩ =
n

∑
j=1

bj | j⟩ ⊗ |λj⟩ ⊗ [ 1 − α2

λ2
j

|0⟩ + α
λj

|1⟩] 0 < α ≤ min |λj | ≤ max |λj | ≤ 1
R⟶



Harrow-Hassidim-Lloyd Algorithm
Quantum Phase 

Estimation of 
U = eiA

R

Inverse QPE 
circuit

|b⟩
|0⟩⊗ℓ

|0⟩

(0) (1) (2) (3)

n qubits

 qubitsℓ
1 qubit 
(ancilla )

|ψ3⟩ =
n

∑
j=1

bj | j⟩ ⊗ |0⟩⊗ℓ ⊗ [ 1 − α2

λ2
j

|0⟩ + α
λj

|1⟩]

0 < α ≤ min |λj | ≤ max |λj | ≤ 1

QPE−1
⟶

|ψ2⟩ =
n

∑
j=1

bj | j⟩ ⊗ |λj⟩ ⊗ [ 1 − α2

λ2
j

|0⟩ + α
λj

|1⟩]

“uncomputing”

R⟶

|ψ3⟩ =
n

∑
j=1

bj 1 − α2

λ2
j

| j⟩ ⊗ |0⟩⊗ℓ ⊗ |0⟩ +
n

∑
j=1

bj
α
λj

| j⟩ ⊗ |0⟩⊗ℓ ⊗ |1⟩

P( |1⟩) = ∑
j

bj
α
λj

| j⟩ ⊗ |0⟩⊗ℓ 2 = ∑
j

bj
α
λj

2
= ∑

j
bj

2 α
λj

2
≥ ∑

j
bj

2
| α |2 = | α |2 > 0

0 < α ≤ min |λj | ≤ max |λj | ≤ 1



Harrow-Hassidim-Lloyd Algorithm

P( |1⟩) = ∑
j

bj
α
λj

| j⟩ ⊗ |0⟩⊗ℓ 2 = ∑
j

bj
α
λj

2
= ∑

j
bj

2 α
λj

2
≥ ∑

j
bj

2
| α |2 = | α |2 > 0

• If we measure , repeat the measurement.  

• How many times do we repeat?  amplitude application  

 calls of the algorithm for having a probability of success . 

|0⟩
→ O( 1

α2 ) →

→ O( 1
α ) p ∼ 1

0 < α ≤ min |λj | ≤ max |λj | ≤ 1

• Post-measurement state conditioned on |1⟩ = 1
p ∑

j
bj

α
λj

| j⟩ × |0⟩⊗ℓ ⊗ |1⟩

= α
p ∑

j

bj

λj
| j⟩ × |0⟩⊗ℓ ⊗ |1⟩

= α
p ( A−1 |b⟩ ) × |0⟩⊗ℓ ⊗ |1⟩

⏟|x⟩

|ψ3⟩ =
n

∑
j=1

bj 1 − α2

λ2
j

| j⟩ ⊗ |0⟩⊗ℓ ⊗ |0⟩

+
n

∑
j=1

bj
α
λj

| j⟩ ⊗ |0⟩⊗ℓ ⊗ |1⟩



HHL Algorithm: revisit assumptions
• What if  ?A ∈ ℝN×M

• Bounds on eigenvalues 

• Why can we assume ?  If not, work with  and 

 

• What about    This condition is known as “A is a well-
conditioned matrix”   usually needed in classical algorithms to avoid issues 
with non-convertible matrix because  is zero or very close to zero,

λmax(A) ≤ 1 Ã = A
λmax(A)

b̃ = b
λmax(A)

λmin(A) ≥ α > 0?
→

λmin

•  and  need to simulate dynamics of 

Hamiltonian. 
• Can we efficiently implement  for a range of . 
• If  is sparse, i.e., each row of  contains at most   entries, each entry 

can be captured in  time.

|ψ(t)⟩ = e−iAt |ψ(0)⟩ i
d
dt

|ψ(t)⟩ = A |ψ(t)⟩

e−iAt t
A A s ≪ N

O(s)

Ax = b A ∈ ℝN×M x ∈ ℝM b ∈ ℝN

Ã = ( 0 A
A† 0) ∈ ℝ(N+M)×(N+M) any solution x̃ to Ãx̃ = b̃ will be such that

x̃ = (x,0,⋯0)T satisfies Ax = b .



HHL Algorithm: 4 qubit example

• QPE will output an  bit (2 bit) binary approximation to .   

• If we set , QPE will give 2-bit binary approximation to   and , 

which are  and , respectively. 

•  

•

nℓ
λj t
2π

t = 2π
3
8

λ1 t
2π

= 1
4

λ2 t
2π

= 1
2

|01⟩ |10⟩
01 = 0 ⋅ 2−1 + 1 ⋅ 2−2 = 1/4
10 = 1 ⋅ 2−1 + 0 ⋅ 2−2 = 1/2

A = ( 1 −1/3
−1/3 1 ) |b⟩ = (1

0)
λ1 = 2

3

λ2 = 4
3

|u1⟩ = 1
2 (1

1)
|u2⟩ = 1

2 ( 1
−1)  auxiliary (ancilla) qubit for conditional rotationn = 1

 to store binary approximation of eigenvaluesnℓ = 2

 to store  and nb = 1 |b⟩ |x⟩

|b⟩ =
2

∑
j=1

bj |uj⟩ = 1
2

2

∑
j=1

|uj⟩ = 1
2 ( |u1⟩ + |u2⟩)

A |x⟩ = |b⟩

= |b⟩ =
n

∑
j=1

bj | j⟩

|01⟩ = |λ1⟩
|11⟩ = |λ2⟩

b1 = 1
2

= b2



HHL Algorithm: 4 qubit example
Quantum Phase 

Estimation of 
U = eiA

R

Inverse QPE 
circuit

|b⟩
|0⟩⊗ℓ

|0⟩

(0) (1) (2) (3)

n qubits

 qubitsℓ
1 qubit 
(ancilla )

ℓ = 2 = nℓ

n = 1

|ψ0⟩ = |b⟩ ⊗ |0⟩⊗ℓ ⊗ |0⟩ |b⟩ = 1
2 ( |u1⟩ + |u2⟩)

|ψ1⟩ = QPE |ψ0⟩ =
ℓ

∑
j=1

bj | j⟩ ⊗ |λj⟩ ⊗ |0⟩

λ1 = 2
3

λ2 = 4
3

|u1⟩ = 1
2 (1

1)
|u2⟩ = 1

2 ( 1
−1)

(0)

(1)

= 1
2 ( |u1⟩ ⊗ |01⟩ + |u2⟩ ⊗ |10⟩) ⊗ |0⟩

(2) conditional rotation with α = 1
8 ≤ λ1 t

2π
= 1

4 ≤ λ2 t
2π

= 1
2 ≤ 1

|ψ2⟩ = 1
2

|u1⟩ |01⟩[ 1 − (1/8
1/4 )2 |0⟩ + (1/8

1/4 ) |1⟩+] + 1
2

|u2⟩ |10⟩[ 1 − (1/8
1/2 )2 |0⟩ + (1/8

1/2 ) |1⟩+]
|ψ2⟩ = 1

2
|u1⟩ |01⟩[ 1 − 1

4 |0⟩ + 1
2 |1⟩+] + 1

2
|u2⟩ |10⟩[ 1 − 1

16 |0⟩ + 1
4 |1⟩+]

b1 = 1
2

= b2



HHL Algorithm: 4 qubit example
Quantum Phase 

Estimation of 
U = eiA

R

Inverse QPE 
circuit

|b⟩
|0⟩⊗ℓ

|0⟩

(0) (1) (2) (3)

n qubits

 qubitsℓ
1 qubit 
(ancilla )

ℓ = 2 = nℓ

n = 1

|ψ2⟩ = 1
2

|u1⟩ |01⟩[ 1 − 1
4 |0⟩ + 1

2 |1⟩] + 1
2

|u2⟩ |10⟩[ 1 − 1
16 |0⟩ + 1

4 |1⟩](2)

|ψ3⟩ = QPE† |ψ2⟩ = 1
2

|u1⟩ |00⟩[ 1 − 1
4 |0⟩ + 1

2 |1⟩] + 1
2

|u2⟩ |00⟩[ 1 − 1
16 |0⟩ + 1

4 |1⟩](3)

(4) on outcome 1 when measuring the ancilla qubit, the state is
1
2

|u1⟩ |00⟩ 1
2 |1⟩ + 1

2
|u2⟩ |00⟩ 1

4 |1⟩

5/32
=

( 1
2 2

|u1⟩ + 1
4 2

|u2⟩) |00⟩ |1⟩

5/32
= |x⟩

∥|x⟩∥

(5) how to compute the norm of   probability of measuring 1 in the ancilla qubit|x⟩ →
P( |1⟩) = ( 1

2 2 )2 + ( 1
4 2 )2 = 5

32 = |x⟩ 2



Quantum Error Correction

• quant-ph/9705052, Stabilizer codes and quantum error correction, Caltech PhD 
thesis by D. Gottesman 

• https://github.com/qiskit-community/qiskit-community-tutorials/blob/master/
awards/teach_me_quantum_2018/intro2qc/10.Quantum error correction.ipynb



• Classically error correction is not necessary  
– Hardware for one bit is huge on an atomic scale 
– State 0 and 1 are so different that the probability of an 

unwanted flip is tiny. 
• Error correction is needed for transmitting signal over long 

distance where it attenuates and can be corrupted by noise. 
• Suppose we send one bit through a channel. 
• Use redundancy: 

• Apply majority rule:   

• Flip probability is p:   

Simple Classical (Bitflip) Error Correction

|0⟩ ⟶ |000⟩
|1⟩ ⟶ |111⟩ called codewords

{000,001,010,100} → 0
{111,110,101,011} → 1
p3 + 3(1 − p)p2 = 3p2 − 2p3 ≤ p, if p < 1/2



Quantum Error Correction
• QEC is essential and QC requires error correction 

– Physical system for a single qubit is small (often on an 
atomic scale) so any small external interference can disrupt 
the quantum system 

• Measurement destroys quantum information  
– Checking for error is problematic. 
– Monitoring means measuring which would alter quantum 

states 
• More general types of error can occur  

– (ex) phase error:   

• Errors are continuous 
– Unlike all or nothing bit flip errors for classical bits, errors on 

qubits can grow continuously out of the uncorrupted state.

1
2

( |0⟩ + |1⟩) ⟶ 1
2

( |0⟩ + eiϕ |1⟩)



Bit Flip Error Correction
• If the error rate is low, we hope to correct them by tailing the 

number of qubits as the classical case.

α |0⟩ + β |1⟩
|0⟩ ⊕

⊕|0⟩

α |000⟩ + β |111⟩}
α |0⟩ + β |1⟩ α |000⟩ + β |111⟩⟶ is not a clone of the input state

(α |0⟩ + β |1⟩)⊗3 = α3 |000⟩ + α2β( |001⟩ + |010⟩ + |100⟩)

+αβ2( |110⟩ + |101⟩ + |011⟩) + β3 |111⟩

|x⟩

|0⟩ ⊕
⊕|0⟩

|x⟩

|x⟩

|x⟩



Bit Flip Error Correction

• Assume that no more than one qubit is flipped (reasonable 
approximation if the error rate is small)

α |0⟩ + β |1⟩

|0⟩ ⊕
⊕|0⟩

X

X

X

or

or

|ψ⟩ = α |000⟩ + β |111⟩
|ψ1⟩ = α |100⟩ + β |011⟩ = X1 |ψ⟩

|ψ3⟩ = α |001⟩ + β |110⟩ = X3 |ψ⟩
|ψ2⟩ = α |010⟩ + β |101⟩ = X2 |ψ⟩

qubit 1 flipped

qubit 2 flipped

qubit 3 flipped

 four states are called “syndromes”⟶
• Classically to determine if one of the bits is flipped, we just have 

to look at them. However quantum mechanically, if we measure 
, we get  with probability  and  with  

which destroys the coherent superposition. 
• Need to couple the codeword qubits to ancilla qubits and measure 

those, which does not destroy the coherent superposition.

|ψ⟩ |000⟩ |α |2 |111⟩ |β |2



Bit Flip Error Correction

|ψ⟩ = α |000⟩ + β |111⟩

1

X X

X

X

X

X X

Xxỹ

Xxy

Xx̃y3

2

|0⟩

|0⟩

|x⟩

|y⟩

} |ψ⟩
or

or}|ψ⟩

correction
|ψ⟩ : codeword |000⟩ → no ancilla flipped → x = 0 = y

codeword |111⟩ → both ancillas flipped → x = 0 = y
|ψ1⟩ : codeword |100⟩ → x flipped, y not flipped → x = 1, y = 0

codeword |011⟩ → x flipped, y flipped twice → x = 1, y = 0
|ψ2⟩ : codeword |010⟩ → x and y flipped once → x = 1 = y

codeword |101⟩ → x and y flipped once → x = 1 = y
|ψ3⟩ : codeword |001⟩ → x not flipped, y flipped → x = 0, y = 1

codeword |110⟩ → x flipped twice, y flipped → x = 0, y = 1



Bit Flip Error Correction

|ψ⟩ = α |000⟩ + β |111⟩

1

X X

X

X

X

X X

Xxỹ

Xxy

Xx̃y3

2

|0⟩

|0⟩

|x⟩

|y⟩

} |ψ⟩
or

or}|ψ⟩

correction

|ψ⟩ = α |000⟩ + β |111⟩
|ψ1⟩ = α |100⟩ + β |011⟩

|ψ3⟩ = α |001⟩ + β |110⟩
|ψ2⟩ = α |010⟩ + β |101⟩

Syndromes Bit flipped x y
None

1

2

3

0 0

1 0

1 1

0 1



Bit Flip Error Correction

|ψ⟩ = α |000⟩ + β |111⟩

1

X X

X

X

X

X X

Xxỹ

Xxy

Xx̃y3

2

|0⟩

|0⟩

|x⟩

|y⟩

or

or

correction

|ψ⟩ = α |000⟩ + β |111⟩
|ψ1⟩ = α |100⟩ + β |011⟩

|ψ3⟩ = α |001⟩ + β |110⟩
|ψ2⟩ = α |010⟩ + β |101⟩

Syndromes Bit flipped x y
None

1

2

3

0 0

1 0

1 1

0 1

  gate on qubit 1, only if x=1 and y=0      correcting Xxỹ → |ψ1⟩

  gate on qubit 2, only if x=1 and y=1      correcting Xxy → |ψ2⟩

  gate on qubit 3, only if x=0 and y=0      correcting Xx̃y → |ψ3⟩

x = 1, ỹ = 1

x = 1, y = 1

x̃ = 1, ỹ = 1



Bit Flip Error Correction

• What if errors in quantum circuits can arise continuously from 
zero? (Assume the error rate is small)

|ψ⟩ ⟶ [1 + (ϵ1X1 + ϵ2X2 + ϵ3X3)] |ψ⟩ ϵi ∈ ℂ , |ϵi | ≪ 1

|ψ⟩ = α |000⟩ + β |111⟩

1

X X

X

X

X

X X

3

2

|0⟩

|0⟩

|x⟩

|y⟩

}|ψ⟩
or

or}|ψ⟩

X

X

X

X

X

correction

  gate on qubit 1, only if x=1 and y=0      correcting Xxỹ → |ψ1⟩
  gate on qubit 2, only if x=1 and y=1      correcting Xxy → |ψ2⟩
  gate on qubit 3, only if x=0 and y=0      correcting Xx̃y → |ψ3⟩



Stabilizer Formalism
• Useful method for error correction of arbitrary error. 

• Consider two Hermitian operators,  and Z1Z2 Z2Z3
Z2

i = I2×2 Z1Z2 = Z2Z1 (Z1Z2)2 = I2×2 (Z2Z3)2 = I2×2

⟶ A2 = I2×2 ⟶ eigenvalues = ± 1 Ax = λx A2x = λ2x = x λ2 = 1

⟶ [ Z1Z2, Z2Z3 ] = 0 Z1Z3 and Z2Z3 have the same eigenvectors .

|ψ⟩ = α |000⟩ + β |111⟩
|ψ1⟩ = α |100⟩ + β |011⟩ = X1 |ψ⟩

|ψ3⟩ = α |001⟩ + β |110⟩ = X3 |ψ⟩
|ψ2⟩ = α |010⟩ + β |101⟩ = X2 |ψ⟩

Syndromes Z1Z2 x y
1

-1

-1

1

0 0

1 0

1 1

0 1

1

1

-1

-1

Z2Z3

• Syndromes are eigenvectors of  and . 
• Stabilizers are operators whose eigenvalues distinguish the different syndromes.

Z1Z2 Z2Z3

Z1Z2 = (−1)x

Z2Z3 = (−1)y



Properties of Stabilizers and Syndromes
• Syndromes are eigenvectors of  and . 
• Stabilizers are operators whose eigenvalues distinguish the different 

syndromes. 
• Eigenvalues of a stabilizer in a syndrome is +1 or -1. 

• Eigenvalues of all stabilizers are +1 in the uncorrupted syndrome . 

• Operators for the stabilizers are built out of the single qubit operators  
and . 

• Syndromes with a single qubit error are obtained by acting on the 
uncorrupted syndrome with ,  and  operators. 

• For a general stabilizer  and a syndrome state ,  
either commutes or anti-commutes with . 

–  involves a single Pauli’s operator (X, Y or Z). 

–  involves a product of Pauli's operators (X’s, and Z’s b/c ).

Z1Z2 Z2Z3

|ψ⟩
Zi

Xi

Xi Yi Zi

Aα |ψβ⟩ = Bβ |ψ⟩ Aα
Bβ

Bβ

Aα Y = iXZ



Properties of Stabilizers and Syndromes
• If ,   and eigenvalue of the stabilizer 

 in state  is +1. 

–  

• If ,   

–  

• Syndromes must be eigenvectors of all stabilizers  stabilizers must 
commute each other 

• How to determine efficiently if a stabilizer commutes or anti-commutes 
with the operator which generates a corrupted syndrome out of the 
uncorrupted syndrome? 

• For the case of 3-qubit bit-flip code, stabilizers are  and . 

• Operators which generate the corrupted syndromes from the 
uncorrupted syndrome:  ,  and .

[ Aα, Bβ] = 0 Aα |ψβ⟩ = + 1 |ψβ⟩
Aα |ψβ⟩

Aα |ψβ⟩ = AαBβ |ψ⟩ = BβAα |ψ⟩ = Bβ |ψ⟩ = |ψβ⟩
{ Aα, Bβ} = 0 Aα |ψβ⟩ = − 1 |ψβ⟩
Aα |ψβ⟩ = AαBβ |ψ⟩ = − BβAα |ψ⟩ = − Bβ |ψ⟩ = − |ψβ⟩

→

Z1Z2 Z2Z3

X1 X2 X3



Properties of Stabilizers and Syndromes
• How to determine efficiently if a stabilizer commutes or anti-

commutes with the operator which generates a corrupted syndrome 
out of the uncorrupted syndrome? 

• For the case of 3-qubit bit-flip code, stabilizers are  and . 
• Operators which generate the corrupted syndromes from the 

uncorrupted syndrome:  ,  and . 

–  commutes with   .  no sites in 
common  

–  has one common site with .  

Z1Z2 Z2Z3

X1 X2 X3
X1 Z2Z3 ⟷ [X1, Z2Z3] = 0 ∵

→ Z2Z3 |ψ1⟩ = + 1 |ψ1⟩
X2 Z2Z3
→ X2Z2Z3 = − Z2X2Z3 = − Z2Z3X2
→ {X2, Z2Z3} = 0 → Z2Z3 |ψ2⟩ = − |ψ2⟩



• In the stabilizer formalism, we need to construct a set of Hermitian 
operators (stabilizers) which satisfy the following properties 

– They square to 1  (so eigenvalues are ). 
– They mutually commute (so they have the same eigenvectors). 
– The syndromes are eigenstates. 
– The uncorrupted syndrome has eigenvalue +1 for all stabilizers. 

– The set of  eigenvalues of the stabilizers uniquely specifies the 
syndrome. 

– Whether the eigenvalue is +1 or -1 is easily determined from the 
commutation properties of the stabilizer with respect to the 
operator which generate the corruption in the syndrome. 

±1

±1

Stabilizer Formalism



• Circuit which will measure the eigenvalues of stabilizers and hence 
determine which syndromes have occurred.

Stabilizer Formalism: Circuits

H H

U

|0⟩

|ψ⟩

|ϕ0⟩ |ϕ1⟩ |ϕ3⟩|ϕ2⟩

control

target

U = U†

U |ψ±⟩ = ± |ψ±⟩

|ψ⟩ ≡ α+ |ψ+⟩ + α− |ψ−⟩

|ϕ0⟩ = |0⟩ ⊗ |ψ⟩ = α+ |0ψ+⟩ + α− |0ψ−⟩

|ϕ1⟩ = 1
2

( |0⟩ + |1⟩) ⊗ |ψ⟩ = α+

2 [ |0ψ+⟩ + |1ψ+⟩] + α−

2 [ |0ψ−⟩ + |1ψ−⟩]
|ϕ2⟩ = α+

2 ( |0ψ+⟩ + |1ψ+⟩) + α−

2 ( |0ψ−⟩ − |1ψ−⟩)
|ϕ3⟩ = α+ |0ψ+⟩ + α− |1ψ−⟩



• If a measurement of the upper qubit gives  (with probability 
), the lower qubit will be in state . 

• If a measurement of the upper qubit gives  (with probability 
), the lower qubit will be in state . 

•  control bit tells us which eigenstates of U the target qubit is in.

|0⟩
|α+ |2 |ψ+⟩

|1⟩
|α− |2 |ψ−⟩
∴

Stabilizer Formalism: Circuits

H H

U

|0⟩

|ψ⟩

|ϕ0⟩ |ϕ1⟩ |ϕ3⟩|ϕ2⟩

control

target

H H

Z

XH HZ
≡ ≡ H2 = 1

HZH = X



Bitflip code for 3 qubits

|ψ⟩ = α |000⟩ + β |111⟩

1

H

Z

X

X

X

H

Xxỹ

Xxy

Xx̃y3

2

|0⟩

|0⟩

|x⟩

|y⟩

} |ψ⟩
or

or}|ψ⟩

H

ZZ

Z

H

H H

U

|0⟩

|ψ⟩

|ϕ0⟩ |ϕ1⟩ |ϕ3⟩|ϕ2⟩

control

target



Bitflip code for 3 qubits

1

X X

X

X

X

X X
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Correlations in Spin-Singlet States

• Consider a two-electron system in a spin-singlet state, that is, with a total 
spin of zero. 

• If one of the components is shown to be in the spin-up state, the other is 
necessarily in the spin-down state, and vice versa.  

• This correlation can persist even if the two particles are well separated and 
have ceased to interact provided that as they fly apart, there is no change in 
their spin states.  

• This is certainly the case for a J = 0 system disintegrating spontaneously 
into two spin 1/2 particles with no relative orbital angular momentum, 
because angular momentum conservation must hold in the disintegration / 
decay process. A good example is the decay of eta: 

• Proton-proton scattering at a very low energy can lead to    
– No orbital angular momentum, spin-singlet state.
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3.10 Spin Correlation Measurements and Bell’s Inequality

3.10.1 Correlations in Spin-Singlet States

The simplest example of angular-momentum addition we encountered in Section 3.8 was
concerned with a composite system made up of spin 1

2 particles. In this section we use such
a system to illustrate one of the most astonishing consequences of quantum mechanics.

Consider a two-electron system in a spin-singlet state, that is, with a total spin of zero.
We have already seen that the state ket can be written as [see (3.335d)]

|spin singlet⟩ =

(
1√
2

)
(|ẑ+; ẑ−⟩− |ẑ−; ẑ+⟩), (3.427)

where we have explicitly indicated the quantization direction. Recall that |ẑ+; ẑ−⟩ means
that electron 1 is in the spin-up state and electron 2 is in the spin-down state. The same is
true for |ẑ−; ẑ+⟩.

Suppose we make a measurement on the spin component of one of the electrons. Clearly,
there is a 50% chance of getting either up or down because the composite system may be in
|ẑ+; ẑ−⟩ or |ẑ−; ẑ+⟩ with equal probabilities. But if one of the components is shown to be
in the spin-up state, the other is necessarily in the spin-down state, and vice versa. When the
spin component of electron 1 is shown to be up, the measurement apparatus has selected
the first term, |ẑ+; ẑ−⟩ of (3.427); a subsequent measurement of the spin component of
electron 2 must ascertain that the state ket of the composite system is given by |ẑ+; ẑ−⟩.

It is remarkable that this kind of correlation can persist even if the two particles are well
separated and have ceased to interact provided that as they fly apart, there is no change in
their spin states. This is certainly the case for a J = 0 system disintegrating spontaneously
into two spin 1

2 particles with no relative orbital angular momentum, because angular-
momentum conservation must hold in the disintegration process. An example of this would
be a rare decay of the η meson (mass 549 MeV/c2) into a muon pair

η→ µ+ +µ− (3.428)

which, unfortunately, has a branching ratio of only approximately 6×10−6. More realisti-
cally, in proton-proton scattering at low kinetic energies, the Pauli principle to be discussed
in Chapter 7 forces the interacting protons to be in 1S0 (orbital angular momentum 0, spin-
singlet state), and the spin states of the scattered protons must be correlated in the manner
indicated by (3.427) even after they become separated by a macroscopic distance.

To be more pictorial we consider a system of two spin 1
2 particles moving in opposite

directions, as in Figure 3.11. Observer A specializes in measuring Sz of particle 1 (flying

B AParticle 2
Particle 1

Fig. 3.11 Spin correlation in a spin-singlet state.
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that electron 1 is in the spin-up state and electron 2 is in the spin-down state. The same is
true for |ẑ−; ẑ+⟩.
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• Consider a system of two spin 1/2 particles moving in opposite 
direction. 

• Observer A specializes in measuring Sz of particle 1, while 
observer B specializes in measuring Sz of particle 2.  

• If A finds Sz to be positive for particle 1, then A can predict, even 
before B performs any measurement, the outcome of B’s 
measurement with certainty: B must find Sz to be negative for 
particle 2.  

• If A makes no measurement, B has a 50% chance of getting Sz+ 
or Sz−.
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Correlations in Spin-Singlet States

what does A predict about B’s measurement?

what does B measure for Sz?



Correlations in Spin-Singlet States

• Pick one ball out of a bag of 
a black ball and a white 
ball. 

• When we pick one ball, 
there is 50%-50% chance if 
getting black or white. If the 
1st ball is black, then we 
predict with certainty that 
the second ball must be 
white. 



• Quantum case is more 
complicated, because 
observers may choose to 
measure Sx in place of Sz. 

• Sx and Sz eigenstates ae 
related via: 

Correlations in Spin-Singlet States
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to the right), while observer B specializes in measuring Sz of particle 2 (flying to the
left). To be specific, let us assume that observer A finds Sz to be positive for particle 1.
Then he or she can predict, even before B performs any measurement, the outcome of B’s
measurement with certainty: B must find Sz to be negative for particle 2. On the other hand,
if A makes no measurement, B has a 50% chance of getting Sz+ or Sz−.

This by itself might not be so peculiar. One may say, “It is just like an urn known to
contain one black ball and one white ball. When we blindly pick one of them, there is a
50% chance of getting black or white. But if the first ball we pick is black, then we can
predict with certainty that the second ball will be white.”

It turns out that this analogy is too simple. The actual quantum-mechanical situation is
far more sophisticated than that! This is because observers may choose to measure Sx in
place of Sz. The same pair of “quantum-mechanical balls” can be analyzed either in terms
of black and white or in terms of blue and red!

Recall now that for a single spin 1
2 system the Sx eigenkets and Sz eigenkets are related

as follows:

|x̂±⟩ =

(
1√
2

)
(|ẑ+⟩±|ẑ−⟩), |ẑ±⟩ =

(
1√
2

)
(|x̂+⟩±|x̂−⟩). (3.429)

Returning now to our composite system, we can rewrite spin-singlet ket (3.427) by
choosing the x-direction as the axis of quantization:

|spin singlet⟩ =

(
1√
2

)
(|x̂−; x̂+⟩− |x̂+; x̂−⟩). (3.430)

Apart from the overall sign, which in any case is a matter of convention, we could have
guessed this form directly from (3.427) because spin-singlet states have no preferred
direction in space. Let us now suppose that observer A can choose to measure Sz or Sx of
particle 1 by changing the orientation of his or her spin analyzer, while observer B always
specializes in measuring Sx of particle 2. If A determines Sz of particle 1 to be positive, B
clearly has a 50% chance for getting Sx+ or Sx−; even though Sz of particle 2 is known
to be negative with certainty, its Sx is completely undetermined. On the other hand, let us
suppose that A also chooses to measure Sx; if observer A determines Sx of particle 1 to be
positive, then without fail, observer B will measure Sx of particle 2 to be negative. Finally,
if A chooses to make no measurement, B, of course, will have a 50% chance of getting
Sx+ or Sx−. To sum up, we have the following.

1. If A measures Sz and B measures Sx, there is a completely random correlation between
the two measurements.

2. If A measures Sx and B measures Sx, there is a 100% (opposite sign) correlation between
the two measurements.

3. If A makes no measurement, B’s measurements show random results.

Table 3.1 shows all possible results of such measurements when B and A are allowed
to choose to measure Sx or Sz. These considerations show that the outcome of B’s
measurement appears to depend on what kind of measurement A decides to perform: an Sx
measurement, an Sz measurement, or no measurement. Notice again that A and B can be
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Suppose we make a measurement on the spin component of one of the electrons. Clearly,
there is a 50% chance of getting either up or down because the composite system may be in
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• If A measures Sz and B measures Sx, there is a completely 
random correlation between the two measurements.  

• If A measures Sx and B measures Sx, there is a 100% 
(opposite sign) correlation between the two measurements.  

• If A makes no measurement, B’s measurements show 
random results. 
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if A makes no measurement, B has a 50% chance of getting Sz+ or Sz−.

This by itself might not be so peculiar. One may say, “It is just like an urn known to
contain one black ball and one white ball. When we blindly pick one of them, there is a
50% chance of getting black or white. But if the first ball we pick is black, then we can
predict with certainty that the second ball will be white.”

It turns out that this analogy is too simple. The actual quantum-mechanical situation is
far more sophisticated than that! This is because observers may choose to measure Sx in
place of Sz. The same pair of “quantum-mechanical balls” can be analyzed either in terms
of black and white or in terms of blue and red!

Recall now that for a single spin 1
2 system the Sx eigenkets and Sz eigenkets are related

as follows:

|x̂±⟩ =

(
1√
2

)
(|ẑ+⟩±|ẑ−⟩), |ẑ±⟩ =

(
1√
2

)
(|x̂+⟩±|x̂−⟩). (3.429)

Returning now to our composite system, we can rewrite spin-singlet ket (3.427) by
choosing the x-direction as the axis of quantization:

|spin singlet⟩ =

(
1√
2

)
(|x̂−; x̂+⟩− |x̂+; x̂−⟩). (3.430)

Apart from the overall sign, which in any case is a matter of convention, we could have
guessed this form directly from (3.427) because spin-singlet states have no preferred
direction in space. Let us now suppose that observer A can choose to measure Sz or Sx of
particle 1 by changing the orientation of his or her spin analyzer, while observer B always
specializes in measuring Sx of particle 2. If A determines Sz of particle 1 to be positive, B
clearly has a 50% chance for getting Sx+ or Sx−; even though Sz of particle 2 is known
to be negative with certainty, its Sx is completely undetermined. On the other hand, let us
suppose that A also chooses to measure Sx; if observer A determines Sx of particle 1 to be
positive, then without fail, observer B will measure Sx of particle 2 to be negative. Finally,
if A chooses to make no measurement, B, of course, will have a 50% chance of getting
Sx+ or Sx−. To sum up, we have the following.

1. If A measures Sz and B measures Sx, there is a completely random correlation between
the two measurements.

2. If A measures Sx and B measures Sx, there is a 100% (opposite sign) correlation between
the two measurements.

3. If A makes no measurement, B’s measurements show random results.

Table 3.1 shows all possible results of such measurements when B and A are allowed
to choose to measure Sx or Sz. These considerations show that the outcome of B’s
measurement appears to depend on what kind of measurement A decides to perform: an Sx
measurement, an Sz measurement, or no measurement. Notice again that A and B can be
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3.10.1 Correlations in Spin-Singlet States

The simplest example of angular-momentum addition we encountered in Section 3.8 was
concerned with a composite system made up of spin 1

2 particles. In this section we use such
a system to illustrate one of the most astonishing consequences of quantum mechanics.

Consider a two-electron system in a spin-singlet state, that is, with a total spin of zero.
We have already seen that the state ket can be written as [see (3.335d)]

|spin singlet⟩ =

(
1√
2

)
(|ẑ+; ẑ−⟩− |ẑ−; ẑ+⟩), (3.427)

where we have explicitly indicated the quantization direction. Recall that |ẑ+; ẑ−⟩ means
that electron 1 is in the spin-up state and electron 2 is in the spin-down state. The same is
true for |ẑ−; ẑ+⟩.

Suppose we make a measurement on the spin component of one of the electrons. Clearly,
there is a 50% chance of getting either up or down because the composite system may be in
|ẑ+; ẑ−⟩ or |ẑ−; ẑ+⟩ with equal probabilities. But if one of the components is shown to be
in the spin-up state, the other is necessarily in the spin-down state, and vice versa. When the
spin component of electron 1 is shown to be up, the measurement apparatus has selected
the first term, |ẑ+; ẑ−⟩ of (3.427); a subsequent measurement of the spin component of
electron 2 must ascertain that the state ket of the composite system is given by |ẑ+; ẑ−⟩.

It is remarkable that this kind of correlation can persist even if the two particles are well
separated and have ceased to interact provided that as they fly apart, there is no change in
their spin states. This is certainly the case for a J = 0 system disintegrating spontaneously
into two spin 1

2 particles with no relative orbital angular momentum, because angular-
momentum conservation must hold in the disintegration process. An example of this would
be a rare decay of the η meson (mass 549 MeV/c2) into a muon pair

η→ µ+ +µ− (3.428)

which, unfortunately, has a branching ratio of only approximately 6×10−6. More realisti-
cally, in proton-proton scattering at low kinetic energies, the Pauli principle to be discussed
in Chapter 7 forces the interacting protons to be in 1S0 (orbital angular momentum 0, spin-
singlet state), and the spin states of the scattered protons must be correlated in the manner
indicated by (3.427) even after they become separated by a macroscopic distance.

To be more pictorial we consider a system of two spin 1
2 particles moving in opposite

directions, as in Figure 3.11. Observer A specializes in measuring Sz of particle 1 (flying

B AParticle 2
Particle 1

Fig. 3.11 Spin correlation in a spin-singlet state.

Correlations in Spin-Singlet States

• If A determines Sz of particle 1 to be positive, B has a 50% chance for 
getting Sx+ or Sx−; even though Sz of particle 2 is known to be negative 
with certainty, its Sx is completely undetermined.  

• If A chooses to measure Sx and determines Sx of particle 1 to be 
positive, then B will measure Sx of particle 2 to be negative.  

• If A makes no measurement, B will have a 50% chance of getting Sx+ or 
Sx−. 

what does B measure for Sx?

what can B say about Sx measurement?
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Table 3.1 Spin-Correlation Measurements

Spin component Spin component
measured by A A’s result measured by B B’s result

z + z −
z − x +

x − z −
x − z +

z + x −
x + x −
z + x +

x − x +

z − z +

z − x −
x + z +

x + z −

miles apart with no possibility of communications or mutual interactions. Observer A can
decide how to orient his or her spin-analyzer apparatus long after the two particles have
separated. It is as though particle 2 “knows” which spin component of particle 1 is being
measured.

The orthodox quantum-mechanical interpretation of this situation is as follows. A
measurement is a selection (or filtration) process. When Sz of particle 1 is measured to
be positive, then component |ẑ+; ẑ−⟩ is selected. A subsequent measurement of the other
particle’s Sz merely ascertains that the system is still in |ẑ+; ẑ−⟩. We must accept that a
measurement on what appears to be a part of the system is to be regarded as a measurement
on the whole system.

3.10.2 Einstein’s Locality Principle and Bell’s Inequality

Many physicists have felt uncomfortable with the preceding orthodox interpretation of
spin-correlation measurements. Their feelings are typified in the following frequently
quoted remarks by A. Einstein, which we call Einstein’s locality principle: “But on
one supposition we should, in my opinion, absolutely hold fast: The real factual situation
of the system S2 is independent of what is done with the system S1, which is spatially
separated from the former.” Because this problem was first discussed in a 1935 paper of
A. Einstein, B. Podolsky, and N. Rosen, it is sometimes known as the Einstein–Podolsky–
Rosen paradox.15

Some have argued that the difficulties encountered here are inherent in the probabilistic
interpretations of quantum mechanics and that the dynamic behavior at the microscopic
level appears probabilistic only because some yet unknown parameters, so-called hidden

15 To be historically accurate, the original Einstein–Podolsky–Rosen paper dealt with measurements of x and p.
The use of composite spin 1

2 systems to illustrate the Einstein–Podolsky–Rosen paradox started with D. Bohm.

• The outcome of B’s 
measurement appears to 
depend on what kind of 
measurement A decides to 
perform: an Sx measurement, 
an Sz measurement, or no 
measurement.  

• A and B can be miles apart 
with no possibility of 
communications or mutual 
interactions. 

• Orthodox quantum-mechanical interpretation:  A measurement is a selection (or filtration) 
process. When Sz of particle 1 is measured to be positive, then component |zˆ+; zˆ−⟩ is 
selected. A subsequent measurement of the other particle’s Sz merely ascertains that the 
system is still in |zˆ+; zˆ−⟩. We must accept that a measurement on what appears to be a 
part of the system is to be regarded as a measurement on the whole system.  



Einstein’s Locality Principle

• Einstein’s locality principle:  “But on one supposition we should, in my 
opinion, absolutely hold fast: The real factual situation of the system S2 is 
independent of what is done with the system S1, which is spatially 
separated from the former.” - A. Einstein, B. Podolsky, and N. Rosen, 
1935 - EPR paradox 

• Some have argued that the difficulties encountered here are inherent in 
the probabilistic interpretations of quantum mechanics and that the 
dynamic behavior at the microscopic level appears probabilistic only 
because some yet unknown parameters, so-called hidden variables, have 
not been specified. 

• Still 1964, people thought that such theorists would give no prediction 
other than usual QM prediction that would be verified experimentally. The 
whole debate belonged to the realm of metaphysics…. 

• Bell pointed out that alternative theories based on Einstein’s locality 
principle actually predict a testable inequality relation among the 
observables of spin-correlation experiments that disagrees with the 
predictions of quantum mechanics. 



Bell’s Inequality with a simple spin 1/2 
model by Wigner (alternative theories)

• It is impossible to determine Sx and Sz simultaneously. 
• When we have a large number of spin 1/2 particles, we assign a certain 

fraction of them to have the following property.  

• A particle satisfying this property is said to belong to type (zˆ+,xˆ−).  
• we can not simultaneously measure Sz and Sx to be + and −, respectively.  
• When we measure Sz, we do not measure Sx, and vice versa.  
• We are assigning definite values of spin components in more than one 

direction with the understanding that only one or the other of the 
components can actually be measured. Even though this approach is 
fundamentally different from that of quantum mechanics, the quantum- 
mechanical predictions for Sz and Sx measurements performed on the 
spin-up (Sz+) state are reproduced provided there are as many particles 
belonging to type (zˆ+,xˆ+) as to type ( zˆ+ , xˆ− ) . 



Spin-Singlet States  
(alternative theories)

• There must be a perfect matching between particle 1 and 
particle 2 to ensure zero total angular momentum: if particle 1 
is of type (zˆ+,xˆ−), then particle 2 must belong to type 
(zˆ−,xˆ+), and so forth, with equal populations, 25% each.

• If observer A decides to measure Sz of 
particle 1, then he or she necessarily 
obtains a plus sign regardless of whether 
B decides to measure Sz or Sx.  

• It is in this sense that Einstein’s locality 
principle is incorporated in this model: A’s 
result is predetermined independently of 
B’s choice as to what to measure. 



• Consider three unit vectors, a, b and c (in general, not mutually orthogonal).  
• One particle belongs to some definite type, say (aˆ−,bˆ+,cˆ+), which means 

that if S·a is measured, we obtain a minus sign with certainty; if S · b is 
measured, we obtain a plus sign with certainty; if S · c is measured, we 
obtain a plus sign with certainty.  

• There must be a perfect matching in the sense that the other particle 
necessarily belongs to type (aˆ+,bˆ−,cˆ−) to ensure zero total angular 
momentum.  

• These eight possibilities are mutually exclusive and disjoint.
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Table 3.2 Spin-Component Matching in the Alternative Theories

Population Particle 1 Particle 2

N1 (â+, b̂+, ĉ+) (â−, b̂−, ĉ−)

N2 (â+, b̂+, ĉ−) (â−, b̂−, ĉ+)

N3 (â+, b̂−, ĉ+) (â−, b̂+, ĉ−)

N4 (â+, b̂−, ĉ−) (â−, b̂+, ĉ+)

N5 (â−, b̂+, ĉ+) (â+, b̂−, ĉ−)

N6 (â−, b̂+, ĉ−) (â+, b̂−, ĉ+)

N7 (â−, b̂−, ĉ+) (â+, b̂+, ĉ−)

N8 (â−, b̂−, ĉ−) (â+, b̂+, ĉ+)

particle 1; then he or she necessarily obtains a plus sign regardless of whether B decides to
measure Sz or Sx. It is in this sense that Einstein’s locality principle is incorporated in this
model: A’s result is predetermined independently of B’s choice as to what to measure.

In the examples considered so far, this model has been successful in reproducing the
predictions of quantum mechanics. We now consider more complicated situations where
the model leads to predictions different from the usual quantum-mechanical predictions.
This time we start with three unit vectors â, b̂, and ĉ, which are, in general, not mutually
orthogonal. We imagine that one of the particles belongs to some definite type, say
(â−, b̂+, ĉ+), which means that if S · â is measured, we obtain a minus sign with certainty;
if S · b̂ is measured, we obtain a plus sign with certainty; if S · ĉ is measured, we obtain a
plus sign with certainty. Again there must be a perfect matching in the sense that the other
particle necessarily belongs to type (â+, b̂−, ĉ−) to ensure zero total angular momentum.
In any given event, the particle pair in question must be a member of one of the eight
types shown in Table 3.2. These eight possibilities are mutually exclusive and disjoint.
The population of each type is indicated in the first column.

Let us suppose that observer A finds S1 · â to be plus and observer B finds S2 · b̂ to
be plus also. It is clear from Table 3.2 that the pair belong to either type 3 or type 4, so
the number of particle pairs for which this situation is realized is N3 + N4. Because Ni is
positive semidefinite, we must have inequality relations like

N3 +N4 ≤ (N2 +N4)+(N3 +N7). (3.432)

Let P(â+; b̂+) be the probability that, in a random selection, observer A measures S1 · â to
be + and observer B measures S2 · b̂ to be +, and so on.

Clearly, we have

P(â+; b̂+) =
(N3 +N4)

∑8
i Ni

. (3.433)

In a similar manner, we obtain

P(â+; ĉ+) =
(N2 +N4)

∑8
i Ni

and P(ĉ+; b̂+) =
(N3 +N7)

∑8
i Ni

. (3.434)

• Suppose that observer A 
finds S1 · a to be plus and 
observer B finds S2 · b to be 
plus also. It is clear from 
Table in the left that the pair 
belong to either type 3 or 
type 4, so the number of 
particle pairs for which this 
situation is realized is N3 +N4

Spin-Singlet States  
(alternative theories)



Bell’s Inequality from Einstein’s 
locality principle (alternative theories)

• Let P(aˆ+; bˆ+) be the probability that, in a random selection, observer A measures 
S1 · a to be + and observer B measures S2 ·b to be +, and so on. 
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particle 1; then he or she necessarily obtains a plus sign regardless of whether B decides to
measure Sz or Sx. It is in this sense that Einstein’s locality principle is incorporated in this
model: A’s result is predetermined independently of B’s choice as to what to measure.

In the examples considered so far, this model has been successful in reproducing the
predictions of quantum mechanics. We now consider more complicated situations where
the model leads to predictions different from the usual quantum-mechanical predictions.
This time we start with three unit vectors â, b̂, and ĉ, which are, in general, not mutually
orthogonal. We imagine that one of the particles belongs to some definite type, say
(â−, b̂+, ĉ+), which means that if S · â is measured, we obtain a minus sign with certainty;
if S · b̂ is measured, we obtain a plus sign with certainty; if S · ĉ is measured, we obtain a
plus sign with certainty. Again there must be a perfect matching in the sense that the other
particle necessarily belongs to type (â+, b̂−, ĉ−) to ensure zero total angular momentum.
In any given event, the particle pair in question must be a member of one of the eight
types shown in Table 3.2. These eight possibilities are mutually exclusive and disjoint.
The population of each type is indicated in the first column.

Let us suppose that observer A finds S1 · â to be plus and observer B finds S2 · b̂ to
be plus also. It is clear from Table 3.2 that the pair belong to either type 3 or type 4, so
the number of particle pairs for which this situation is realized is N3 + N4. Because Ni is
positive semidefinite, we must have inequality relations like

N3 +N4 ≤ (N2 +N4)+(N3 +N7). (3.432)

Let P(â+; b̂+) be the probability that, in a random selection, observer A measures S1 · â to
be + and observer B measures S2 · b̂ to be +, and so on.

Clearly, we have

P(â+; b̂+) =
(N3 +N4)

∑8
i Ni

. (3.433)

In a similar manner, we obtain

P(â+; ĉ+) =
(N2 +N4)

∑8
i Ni

and P(ĉ+; b̂+) =
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i Ni

. (3.434)
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N3 (â+, b̂−, ĉ+) (â−, b̂+, ĉ−)
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model: A’s result is predetermined independently of B’s choice as to what to measure.

In the examples considered so far, this model has been successful in reproducing the
predictions of quantum mechanics. We now consider more complicated situations where
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orthogonal. We imagine that one of the particles belongs to some definite type, say
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In any given event, the particle pair in question must be a member of one of the eight
types shown in Table 3.2. These eight possibilities are mutually exclusive and disjoint.
The population of each type is indicated in the first column.

Let us suppose that observer A finds S1 · â to be plus and observer B finds S2 · b̂ to
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N8 (â−, b̂−, ĉ−) (â+, b̂+, ĉ+)
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(â−, b̂+, ĉ+), which means that if S · â is measured, we obtain a minus sign with certainty;
if S · b̂ is measured, we obtain a plus sign with certainty; if S · ĉ is measured, we obtain a
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and P(ĉ+; b̂+) =
(N3 +N7)

∑8
i Ni

. (3.434)

228 Theory of Angular Momentum

Table 3.2 Spin-Component Matching in the Alternative Theories

Population Particle 1 Particle 2
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This time we start with three unit vectors â, b̂, and ĉ, which are, in general, not mutually
orthogonal. We imagine that one of the particles belongs to some definite type, say
(â−, b̂+, ĉ+), which means that if S · â is measured, we obtain a minus sign with certainty;
if S · b̂ is measured, we obtain a plus sign with certainty; if S · ĉ is measured, we obtain a
plus sign with certainty. Again there must be a perfect matching in the sense that the other
particle necessarily belongs to type (â+, b̂−, ĉ−) to ensure zero total angular momentum.
In any given event, the particle pair in question must be a member of one of the eight
types shown in Table 3.2. These eight possibilities are mutually exclusive and disjoint.
The population of each type is indicated in the first column.

Let us suppose that observer A finds S1 · â to be plus and observer B finds S2 · b̂ to
be plus also. It is clear from Table 3.2 that the pair belong to either type 3 or type 4, so
the number of particle pairs for which this situation is realized is N3 + N4. Because Ni is
positive semidefinite, we must have inequality relations like

N3 +N4 ≤ (N2 +N4)+(N3 +N7). (3.432)

Let P(â+; b̂+) be the probability that, in a random selection, observer A measures S1 · â to
be + and observer B measures S2 · b̂ to be +, and so on.

Clearly, we have

P(â+; b̂+) =
(N3 +N4)

∑8
i Ni

. (3.433)

In a similar manner, we obtain

P(â+; ĉ+) =
(N2 +N4)

∑8
i Ni

and P(ĉ+; b̂+) =
(N3 +N7)

∑8
i Ni

. (3.434)
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The positivity condition (3.432) now becomes

P(â+; b̂+) ≤ P(â+; ĉ+)+P(ĉ+; b̂+). (3.435)

This is Bell’s inequality, which follows from Einstein’s locality principle.

3.10.3 Quantum Mechanics and Bell’s Inequality

We now return to the world of quantum mechanics. In quantum mechanics we do not talk
about a certain fraction of particle pairs, say N3/∑8

i Ni, belonging to type 3. Instead, we
characterize all spin-singlet systems by the same ket (3.427); in the language of Section 3.4
we are concerned here with a pure ensemble. Using this ket and the rules of quantum
mechanics we have developed, we can unambiguously calculate each of the three terms in
inequality (3.435).

We first evaluate P(â+; b̂+). Suppose observer A finds S1 · â to be positive; because
of the 100% (opposite sign) correlation we discussed earlier, B’s measurement of S2 · â
will yield a minus sign with certainty. But to calculate P(â+; b̂+) we must consider a
new quantization axis b̂ that makes an angle θab with â; see Figure 3.12. According to
the formalism of Section 3.2, the probability that the S2 · b̂ measurement yields + when
particle 2 is known to be in an eigenket of S2 · â with negative eigenvalue is given by

cos2
[
(π−θab)

2

]
= sin2

(
θab
2

)
. (3.436)

As a result, we obtain

P(â+; b̂+) =

(
1
2

)
sin2

(
θab
2

)
, (3.437)

where the factor 1
2 arises from the probability of initially obtaining S1 · â with +. Using

(3.437) and its generalization to the other two terms of (3.435), we can write Bell’s
inequality as

a-directionˆ

b-directionˆ

S2

S1

θab

Fig. 3.12 Evaluation of P(â+; b̂+).

Ni ≥ 0
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• In quantum mechanics we do not talk about a certain fraction 

of particle pairs, belonging to a particular type. Instead, we 
characterize all spin-singlet systems by the same ket. 
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This is Bell’s inequality, which follows from Einstein’s locality principle.

3.10.3 Quantum Mechanics and Bell’s Inequality

We now return to the world of quantum mechanics. In quantum mechanics we do not talk
about a certain fraction of particle pairs, say N3/∑8

i Ni, belonging to type 3. Instead, we
characterize all spin-singlet systems by the same ket (3.427); in the language of Section 3.4
we are concerned here with a pure ensemble. Using this ket and the rules of quantum
mechanics we have developed, we can unambiguously calculate each of the three terms in
inequality (3.435).
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(3.437) and its generalization to the other two terms of (3.435), we can write Bell’s
inequality as

a-directionˆ

b-directionˆ

S2

S1

θab

Fig. 3.12 Evaluation of P(â+; b̂+).

• P(aˆ+;bˆ+): 
– A finds S1·a to be positive; because of the 100% 

(opposite sign) correlation we discussed earlier, 
B’s measurement of S2 · a will yield a minus sign 
with certainty.  

– To calculate P(aˆ+;bˆ+) we must consider a new 
quantization axis b that makes an angle θab with a, 
the probability that the S2 · b measurement yields 
+ when particle 2 is known to be in an eigenket of 
S2 · a with negative eigenvalue is given by 

⟨ ⃗S2 ⋅ b⃗ + | ⃗S2 ⋅ ⃗a−⟩
2

= cos2 ( π − θab

2 ) = sin2 ( θab

2 )
where 1/2 is from the probability 
of initially obtaining S1·a with +.
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• For simplicity let us choose a, b, and c to lie in a plane, and let 
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sin2
(

θab
2

)
≤ sin2

(
θac
2

)
+ sin2

(
θcb
2

)
. (3.438)

We now show that inequality (3.438) is not always possible from a geometric point of
view. For simplicity let us choose â, b̂, and ĉ to lie in a plane, and let ĉ bisect the two
directions defined by â and b̂:

θab = 2θ , θac = θcb = θ . (3.439)

Inequality (3.438) is then violated for

0 < θ <
π
2 . (3.440)

For example, take θ = π/4; we then obtain

0.500 ≤ 0.292 ?? (3.441)

So the quantum-mechanical predictions are not compatible with Bell’s inequality. There
is a real observable, in the sense of being experimentally verifiable, difference between
quantum mechanics and the alternative theories satisfying Einstein’s locality principle.

Several experiments have been performed to test Bell’s inequality. For a review, see
“Bell’s inequality test: more ideal than ever” by Aspect, Nature, 398 (1999) 189. In
one of the experiments spin correlations between the final protons in low-energy proton-
proton scattering were measured. In all other experiments photon polarization correlations
between a pair of photons in a cascade transition of an excited atom (Ca, Hg,...),

( j = 0)
γ→( j = 1)

γ→( j = 0), (3.442)

or in the decay of a positronium (an e+e− bound state in 1S0) were measured; studying
photon polarization correlations should be just as good in view of the analogy developed
in Section 1.1

Sz+ → ε̂ in x-direction, (3.443a)

Sz−→ ε̂ in y-direction, (3.443b)

Sx+ → ε̂ in 45◦ diagonal direction, (3.443c)

Sx−→ ε̂ in 135◦ diagonal direction. (3.443d)

The results of all recent precision experiments have conclusively established that Bell’s
inequality was violated, in one case by more than nine standard deviations. Furthermore,
in all these experiments the inequality relation was violated in such a way that the quantum-
mechanical predictions were fulfilled within error limits. In this controversy, quantum
mechanics has triumphed with flying colors.

The fact that the quantum-mechanical predictions have been verified does not mean
that the whole subject is now a triviality. Despite the experimental verdict we may still
feel psychologically uncomfortable about many aspects of measurements of this kind.
Consider in particular the following point: Right after observer A performs a measurement
on particle 1, how does particle 2 – which may, in principle, be many light years away from
particle 1 – get to “know” how to orient its spin so that the remarkable correlations apparent
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• Note that we can not use the spin-correlation measurement to transmit 
any useful information between two macroscopically separated points. 

• Superluminal communications are impossible.



Bell’s Inequality Revisited

• N(A, not B) = number of objects which have parameters A but not B.

Add:    N(A, not B, not C) + N(A, B, not C) 

N(A, not B, C) + N(not A, B, not C)  ≥ 0

      N(A, not B, C)       + N(not A, B, not C)   
  + N(A, not B, not C) + N(A, B, not C)         ≥  N(A, not B, not C) + N(A, B, not C)                  

N(A, not B) + N(B, not C)  ≥  N(A, not C)

• We assumed that parameters exist whether they are measured or not. i.e., 
either B or not B is true for every member.

• A:  spin-up along a,    B: spin-up along b,    C: spin-up along c

• Consider spin1/2 system: 
• Not B for particle 1 = spin-down along b for particle 1 = spin-up along b for particle 2



Bell’s Inequality Revisited

N(A, not B) + N(B, not C)  ≥  N(A, not C)

• A:  spin-up along a,        B: spin-up along b,        C: spin-up along c 
• Consider spin1/2 system: 
• Not B for particle 1 = spin-down along b for particle 1 = spin-up along b for particle 2

N( ̂a + , b̂+) + N(b̂ + , ̂c+) ≥ N( ̂a + , ̂c+)

P( ̂a + , b̂+) + P(b̂ + , ̂c+) ≥ P( ̂a + , ̂c+)

• Assumption 
• Logic is valid. 
• Electrons have spin in a given direction, even if we do not measure it  → 

there is a reality separate from its observation →Hidden variables exist. 
• No information can travel faster than the speed of light → Locality → 

Hidden variables are local. 



Bell’s Inequality Revisited
• Assumptions 

1. Logic is valid. 
2. Electrons have spin in a given direction, even if we do not measure it  
→ there is a reality separate from its observation →Hidden variables 
exist. 

3. No information can travel faster than the speed of light → Locality → 
Hidden variables are local.  

• Are we sure about the assumptions? 
1. It has been suspected since long before Bell that Quantum 

Mechanics is in conflict with classical logic. Deductive logic has 
proved that logic is incomplete (1931, Kurt Gödel), Self-reference: 
“This statement is false.” 

2. What if there is no reality separate from its observation? “The path of 
the electron comes into existence3 only when we observe it” - 
Heisenberg for the double slit. Ontology of QM? 

3. Non-locality? Quantum teleportation, quantum entanglement.



Bell’s Inequality and experimental tests

• QM prediction is not compatible with Bell’s inequality.  
• Experimental tests showing violation of Bell inequalities have 

been performed for pairs of two-outcome measurements using 
photons, ions, superconducting systems and nitrogen vacancy 
centers, and in pairs of three-outcome measurements using 
photons.  

• Proposals have also been made to test Bell inequalities in e+e- 

collisions and positronium decays. Recently it has been proposed 
to make such tests in entangled t + t ̄ decays, in the Higgs decay 
to WW, and in systems of B0-B0bar mesons at the LHC. 



Testing Bell inequalities at the LHC with 
top-quark pairs

• The quantum state of a two spin-1/2 pair, as the one formed by a 
top-quark pair system, can be expressed by the density matrix: 

nitrogen vacancy centers [22], and in pairs of three-outcome measurements using photons [23].
Similar tests in the high-energy regime of particle physics have been suggested by means of e+e�

collisions [24], Kaon physics [25–27], Positronium [28], Charmonium decays [29, 30] and neutrino
oscillations [31]. No test has so far been performed at the high energies made available by the
Large Hadron Collider (LHC). Only very recently it was proposed to make such tests in entangled
t + t̄ decays at the LHC [32] and in the Higgs decay, h ! WW

⇤ ! `
+
`
�
⌫`⌫̄` [33]. These studies

are performed very recently and none of them includes proper backgrounds or investigate e↵ects of
cuts properly. We propose to examine the Bell’s inequality at the HL-LHC, including
full backgrounds and proper detector e↵ects with Delphes. A key is to reconstruct
the spin correlation matrix in the center-of-momentum (CM) frame, which is a topic
in one of PI’s expertise. We will begin with the top quark production first.

The quantum state of a two spin-1/2 pair, as the one formed by a top-quark pair system, can
be expressed by the density matrix

⇢ =
1

4

h
1 ⌦ 1 +

X

i

Ai(�i ⌦ 1) +
X

j

Bj(1 ⌦ �j) +
X

ij

Cij(�i ⌦ �j)
i
, (1)

where �i are Pauli matrices, 1 is the unit 2⇥ 2 matrix, while the sums of the indices i, j run over
the labels representing any orthonormal reference frame in three-dimensions. The real coe�cients
Ai = Tr[⇢ (�i⌦1)] and Bj = Tr[⇢ (1⌦�j)] represent the polarization of the two spins, while the real
matrix Cij = Tr[⇢ (�i ⌦ �j)] gives their correlations. In the case of the top-quark pair system, Ai,
Bj and Cij are functions of the parameters describing the kinematics of the quark pair production.

In the CM reference frame of the top-quark pair system as produced at a pp collider, the two
spin-1/2 quarks fly apart in opposite directions. One can then extract the probability P("n̂;�)
of finding the spin of one quark in the state "n̂, with the projection of the spin along the axis
determined by the unit vector n̂ pointing in the up direction. Similarly, one can consider double
probabilities, like P("n̂; #m̂), of finding the projection of the spin of the quark along the unit vector
n̂ pointing in the up state, while the companion antiquark has the projection of its spin along the
direction of a di↵erent unit vector m̂ pointing in the down state.

In classical physics, these probabilities involve averages over suitable distributions of variables
and obey the following (generalized) Bell inequality [34]:

P("n̂1 ; "n̂2)� P("n̂1 ; "n̂4) + P("n̂3 ; "n̂2) + P("n̂3 ; "n̂4)  P("n̂3 ;�) + P(�; "n̂2) , (2)

where n̂1, n̂2, n̂3 and n̂4 are four di↵erent three-dimensional unit vectors determining four spatial
directions along which the spins of the quark and antiquark can be measured. In quantum me-
chanics the same probabilities are computed as expectation of suitable spin-observable operators
(Eq. (1)), so that the previous inequality reduces to the following constraint

���n̂1 · C ·
�
n̂2 � n̂4

�
+ n̂3 · C ·

�
n̂2 + n̂4

����  2 , (3)

involving only the spin correlation matrix Cij and not the polarization coe�cients Ai and Bj .
In order to test the Bell inequality in Eq. (3), one needs to experimentally determine the matrix

C and then suitably choose four spatial directions n̂1, n̂2, n̂3 and n̂4 that maximize the left-hand
side of Eq. (3). In practice, there is no need to optimize the choice of n̂i: this maximization
process has already been performed in full generality in Ref. [35], for a generic spin correlation
matrix. Indeed, consider the matrix C and its transpose CT and form the symmetric, positive, 3⇥3
matrix M = C

T
C whose three eigenvalues m1, m2, m3 can be ordered by decreasing magnitude:

m1 � m2 � m3. The two-spin state density matrix ⇢ in Eq. (1) violates the inequality Eq. (3), or
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Correlations between the spins of top-quark pairs produced at a collider can be used to probe
quantum entanglement at energies never explored so far. We show how the measurement of a single
observable can provide a test of the violation of a Bell inequality at the 98% CL with the statistical
uncertainty of the data already collected at the Large Hadron Collider, and at the 99.99% CL with
the higher luminosity of the next run. Detector acceptance, e�ciency and migration e↵ects are taken
into account. The test relies on the spin correlations alone and does not require the determination
of probabilities—in contrast to all other tests of Bell inequalities.

Introduction.— A characteristic property of a quan-
tum system is the presence of quantum correlations (en-
tanglement) among its constituents not accounted for by
classical physics (for a review, see [1]), leading to the vi-
olation of specific constraints, the so-called Bell inequal-
ities [2, 3].The violation of Bell inequalities requires the
presence of the strongest version of quantum non-locality;
although weaker forms of non-classical correlations have
been identified, they play no role in our considerations.

Quantum correlations can readily be studied in a
bipartite system made of two spin-1/2 particles [4].
This physical system is routinely produced at collid-
ers and the spin correlations among quark pairs have
been shown [5, 6] to be a powerful tool in the physi-
cal analysis—limited aspects of which have been already
studied by the experimental collaborations at the LHC
on data at 7 [7], 8 [8] and 13 TeV [9] of center-of-mass
(CM) energy.

In this Letter, we focus on top-antitop pairs produced
at the Large Hadron Collider (LHC) and identify a single
observable probing the presence of quantum correlations
among their spins. The measurement of such an observ-
able provides a test of a (generalized) Bell inequality.

Many experiments have been performed to test anal-
ogous inequalities in various quantum systems involv-
ing photons and atoms [4, 10–13]. Similar tests in the
high-energy regime of particle physics have been sug-
gested by means of e

+
e
� collisions [14], neutral me-

son physics [15, 16], Positronium [17], Charmonium de-
cays [18] and neutrino oscillations [19]. No test has so
far been performed at the high energies made available
by the LHC—even though some preliminary work has
been done in [5, 6] and more recently in [20]. In particu-
lar, we build on the results of [20] in which the entangle-
ment of the top-quark pairs and the kinematical regions
where it could be maximal were identified and explicitly
discussed.

Let us stress that all these tests involve the direct mea-
surement of the joint probabilities entering the various
inequalities and therefore might be a↵ected by the so-

called loopholes, depending on the specific characteristics
of the used setups. Our approach is quite di↵erent and
unexplored: the focus is not on the probabilities of joint
events, specifically top-quark pair spin projection mea-
surements, but rather on their mutual spin correlations.
Such a measurement of correlations will provide evidence
against a whole class of local completions of quantum
mechanics by explicitly exposing their internal inconsis-
tency. In order to be validated, these classical theories
will need to reproduce both the probabilities entering the
Bell inequality and the averages of the spin correlation
matrix through the presence of auxiliary stochastic vari-
ables and do that both at atomic energies and in the ex-
treme relativistic setting of proton collisions at the LHC.
Reformulating the actual determination of the selected

spin observable into a statistical test, we show how the
value of this observable can be extracted from the events
and the violation quantified at the confidence level (CL)
of 98% with the data already collected by the experimen-
tal collaborations at the LHC and 99.99% CL (4� signif-
icance) with the higher luminosity of the next run. De-
tector acceptance, e�ciency and migration e↵ects have
been taken into account.

Methods.— The quantum state of a two spin-1/2 pair,
as the one formed by a top-quark pair system, can be
expressed by the density matrix

⇢ =
1
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Ai(�i ⌦ 1) +
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Bj(1 ⌦ �j)

+
X

ij

Cij(�i ⌦ �j)
i
, (1)

where �i are Pauli matrices, 1 is the unit 2 ⇥ 2 matrix,
while the sums of the indices i, j run over the labels
representing any orthonormal reference frame in three-
dimensions. The real coe�cients Ai = Tr[⇢ (�i ⌦ 1)] and
Bj = Tr[⇢ (1⌦ �j)] represent the polarization of the two
spins, while the real matrix Cij = Tr[⇢ (�i ⌦ �j)] gives
their correlations. In the case of the top-quark pair sys-
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Correlations between the spins of top-quark pairs produced at a collider can be used to probe
quantum entanglement at energies never explored so far. We show how the measurement of a single
observable can provide a test of the violation of a Bell inequality at the 98% CL with the statistical
uncertainty of the data already collected at the Large Hadron Collider, and at the 99.99% CL with
the higher luminosity of the next run. Detector acceptance, e�ciency and migration e↵ects are taken
into account. The test relies on the spin correlations alone and does not require the determination
of probabilities—in contrast to all other tests of Bell inequalities.

Introduction.— A characteristic property of a quan-
tum system is the presence of quantum correlations (en-
tanglement) among its constituents not accounted for by
classical physics (for a review, see [1]), leading to the vi-
olation of specific constraints, the so-called Bell inequal-
ities [2, 3].The violation of Bell inequalities requires the
presence of the strongest version of quantum non-locality;
although weaker forms of non-classical correlations have
been identified, they play no role in our considerations.

Quantum correlations can readily be studied in a
bipartite system made of two spin-1/2 particles [4].
This physical system is routinely produced at collid-
ers and the spin correlations among quark pairs have
been shown [5, 6] to be a powerful tool in the physi-
cal analysis—limited aspects of which have been already
studied by the experimental collaborations at the LHC
on data at 7 [7], 8 [8] and 13 TeV [9] of center-of-mass
(CM) energy.

In this Letter, we focus on top-antitop pairs produced
at the Large Hadron Collider (LHC) and identify a single
observable probing the presence of quantum correlations
among their spins. The measurement of such an observ-
able provides a test of a (generalized) Bell inequality.
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ing photons and atoms [4, 10–13]. Similar tests in the
high-energy regime of particle physics have been sug-
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cays [18] and neutrino oscillations [19]. No test has so
far been performed at the high energies made available
by the LHC—even though some preliminary work has
been done in [5, 6] and more recently in [20]. In particu-
lar, we build on the results of [20] in which the entangle-
ment of the top-quark pairs and the kinematical regions
where it could be maximal were identified and explicitly
discussed.

Let us stress that all these tests involve the direct mea-
surement of the joint probabilities entering the various
inequalities and therefore might be a↵ected by the so-

called loopholes, depending on the specific characteristics
of the used setups. Our approach is quite di↵erent and
unexplored: the focus is not on the probabilities of joint
events, specifically top-quark pair spin projection mea-
surements, but rather on their mutual spin correlations.
Such a measurement of correlations will provide evidence
against a whole class of local completions of quantum
mechanics by explicitly exposing their internal inconsis-
tency. In order to be validated, these classical theories
will need to reproduce both the probabilities entering the
Bell inequality and the averages of the spin correlation
matrix through the presence of auxiliary stochastic vari-
ables and do that both at atomic energies and in the ex-
treme relativistic setting of proton collisions at the LHC.
Reformulating the actual determination of the selected

spin observable into a statistical test, we show how the
value of this observable can be extracted from the events
and the violation quantified at the confidence level (CL)
of 98% with the data already collected by the experimen-
tal collaborations at the LHC and 99.99% CL (4� signif-
icance) with the higher luminosity of the next run. De-
tector acceptance, e�ciency and migration e↵ects have
been taken into account.

Methods.— The quantum state of a two spin-1/2 pair,
as the one formed by a top-quark pair system, can be
expressed by the density matrix
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where �i are Pauli matrices, 1 is the unit 2 ⇥ 2 matrix,
while the sums of the indices i, j run over the labels
representing any orthonormal reference frame in three-
dimensions. The real coe�cients Ai = Tr[⇢ (�i ⌦ 1)] and
Bj = Tr[⇢ (1⌦ �j)] represent the polarization of the two
spins, while the real matrix Cij = Tr[⇢ (�i ⌦ �j)] gives
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Introduction.— A characteristic property of a quan-
tum system is the presence of quantum correlations (en-
tanglement) among its constituents not accounted for by
classical physics (for a review, see [1]), leading to the vi-
olation of specific constraints, the so-called Bell inequal-
ities [2, 3].The violation of Bell inequalities requires the
presence of the strongest version of quantum non-locality;
although weaker forms of non-classical correlations have
been identified, they play no role in our considerations.

Quantum correlations can readily be studied in a
bipartite system made of two spin-1/2 particles [4].
This physical system is routinely produced at collid-
ers and the spin correlations among quark pairs have
been shown [5, 6] to be a powerful tool in the physi-
cal analysis—limited aspects of which have been already
studied by the experimental collaborations at the LHC
on data at 7 [7], 8 [8] and 13 TeV [9] of center-of-mass
(CM) energy.

In this Letter, we focus on top-antitop pairs produced
at the Large Hadron Collider (LHC) and identify a single
observable probing the presence of quantum correlations
among their spins. The measurement of such an observ-
able provides a test of a (generalized) Bell inequality.

Many experiments have been performed to test anal-
ogous inequalities in various quantum systems involv-
ing photons and atoms [4, 10–13]. Similar tests in the
high-energy regime of particle physics have been sug-
gested by means of e
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� collisions [14], neutral me-

son physics [15, 16], Positronium [17], Charmonium de-
cays [18] and neutrino oscillations [19]. No test has so
far been performed at the high energies made available
by the LHC—even though some preliminary work has
been done in [5, 6] and more recently in [20]. In particu-
lar, we build on the results of [20] in which the entangle-
ment of the top-quark pairs and the kinematical regions
where it could be maximal were identified and explicitly
discussed.

Let us stress that all these tests involve the direct mea-
surement of the joint probabilities entering the various
inequalities and therefore might be a↵ected by the so-

called loopholes, depending on the specific characteristics
of the used setups. Our approach is quite di↵erent and
unexplored: the focus is not on the probabilities of joint
events, specifically top-quark pair spin projection mea-
surements, but rather on their mutual spin correlations.
Such a measurement of correlations will provide evidence
against a whole class of local completions of quantum
mechanics by explicitly exposing their internal inconsis-
tency. In order to be validated, these classical theories
will need to reproduce both the probabilities entering the
Bell inequality and the averages of the spin correlation
matrix through the presence of auxiliary stochastic vari-
ables and do that both at atomic energies and in the ex-
treme relativistic setting of proton collisions at the LHC.
Reformulating the actual determination of the selected

spin observable into a statistical test, we show how the
value of this observable can be extracted from the events
and the violation quantified at the confidence level (CL)
of 98% with the data already collected by the experimen-
tal collaborations at the LHC and 99.99% CL (4� signif-
icance) with the higher luminosity of the next run. De-
tector acceptance, e�ciency and migration e↵ects have
been taken into account.

Methods.— The quantum state of a two spin-1/2 pair,
as the one formed by a top-quark pair system, can be
expressed by the density matrix

⇢ =
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+
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where �i are Pauli matrices, 1 is the unit 2 ⇥ 2 matrix,
while the sums of the indices i, j run over the labels
representing any orthonormal reference frame in three-
dimensions. The real coe�cients Ai = Tr[⇢ (�i ⌦ 1)] and
Bj = Tr[⇢ (1⌦ �j)] represent the polarization of the two
spins, while the real matrix Cij = Tr[⇢ (�i ⌦ �j)] gives
their correlations. In the case of the top-quark pair sys-
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nitrogen vacancy centers [22], and in pairs of three-outcome measurements using photons [23].
Similar tests in the high-energy regime of particle physics have been suggested by means of e+e�

collisions [24], Kaon physics [25–27], Positronium [28], Charmonium decays [29, 30] and neutrino
oscillations [31]. No test has so far been performed at the high energies made available by the
Large Hadron Collider (LHC). Only very recently it was proposed to make such tests in entangled
t + t̄ decays at the LHC [32] and in the Higgs decay, h ! WW

⇤ ! `
+
`
�
⌫`⌫̄` [33]. These studies

are performed very recently and none of them includes proper backgrounds or investigate e↵ects of
cuts properly. We propose to examine the Bell’s inequality at the HL-LHC, including
full backgrounds and proper detector e↵ects with Delphes. A key is to reconstruct
the spin correlation matrix in the center-of-momentum (CM) frame, which is a topic
in one of PI’s expertise. We will begin with the top quark production first.

The quantum state of a two spin-1/2 pair, as the one formed by a top-quark pair system, can
be expressed by the density matrix

⇢ =
1

4

h
1 ⌦ 1 +

X

i

Ai(�i ⌦ 1) +
X

j

Bj(1 ⌦ �j) +
X

ij

Cij(�i ⌦ �j)
i
, (1)

where �i are Pauli matrices, 1 is the unit 2⇥ 2 matrix, while the sums of the indices i, j run over
the labels representing any orthonormal reference frame in three-dimensions. The real coe�cients
Ai = Tr[⇢ (�i⌦1)] and Bj = Tr[⇢ (1⌦�j)] represent the polarization of the two spins, while the real
matrix Cij = Tr[⇢ (�i ⌦ �j)] gives their correlations. In the case of the top-quark pair system, Ai,
Bj and Cij are functions of the parameters describing the kinematics of the quark pair production.

In the CM reference frame of the top-quark pair system as produced at a pp collider, the two
spin-1/2 quarks fly apart in opposite directions. One can then extract the probability P("n̂;�)
of finding the spin of one quark in the state "n̂, with the projection of the spin along the axis
determined by the unit vector n̂ pointing in the up direction. Similarly, one can consider double
probabilities, like P("n̂; #m̂), of finding the projection of the spin of the quark along the unit vector
n̂ pointing in the up state, while the companion antiquark has the projection of its spin along the
direction of a di↵erent unit vector m̂ pointing in the down state.

In classical physics, these probabilities involve averages over suitable distributions of variables
and obey the following (generalized) Bell inequality [34]:

P("n̂1 ; "n̂2)� P("n̂1 ; "n̂4) + P("n̂3 ; "n̂2) + P("n̂3 ; "n̂4)  P("n̂3 ;�) + P(�; "n̂2) , (2)

where n̂1, n̂2, n̂3 and n̂4 are four di↵erent three-dimensional unit vectors determining four spatial
directions along which the spins of the quark and antiquark can be measured. In quantum me-
chanics the same probabilities are computed as expectation of suitable spin-observable operators
(Eq. (1)), so that the previous inequality reduces to the following constraint

���n̂1 · C ·
�
n̂2 � n̂4

�
+ n̂3 · C ·

�
n̂2 + n̂4

����  2 , (3)

involving only the spin correlation matrix Cij and not the polarization coe�cients Ai and Bj .
In order to test the Bell inequality in Eq. (3), one needs to experimentally determine the matrix

C and then suitably choose four spatial directions n̂1, n̂2, n̂3 and n̂4 that maximize the left-hand
side of Eq. (3). In practice, there is no need to optimize the choice of n̂i: this maximization
process has already been performed in full generality in Ref. [35], for a generic spin correlation
matrix. Indeed, consider the matrix C and its transpose CT and form the symmetric, positive, 3⇥3
matrix M = C

T
C whose three eigenvalues m1, m2, m3 can be ordered by decreasing magnitude:

m1 � m2 � m3. The two-spin state density matrix ⇢ in Eq. (1) violates the inequality Eq. (3), or

3
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tem, Ai, Bj and Cij are functions of the parameters de-
scribing the kinematics of the quark pair production.

In the CM reference frame of the top-quark pair sys-
tem as produced at a pp collider, the two spin-1/2 quarks
fly apart in opposite directions. One can then extract the
probability P("n̂;�) of finding the spin of one quark in
the state "n̂, with the projection of the spin along the
axis determined by the unit vector n̂ pointing in the up
direction. Similarly, one can consider double probabili-
ties, like P("n̂; #m̂), of finding the projection of the spin
of the quark along the unit vector n̂ pointing in the up
state, while the companion antiquark has the projection
of its spin along the direction of a di↵erent unit vector
m̂ pointing in the down state.

In classical physics, these probabilities involve aver-
ages over suitable distributions of variables and obey the
following (generalized) Bell inequality [11]:

P("n̂1 ; "n̂2)� P("n̂1 ; "n̂4) + P("n̂3 ; "n̂2) + P("n̂3 ; "n̂4)

 P("n̂3 ;�) + P(�; "n̂2) , (2)

where n̂1, n̂2, n̂3 and n̂4 are four di↵erent three-
dimensional unit vectors determining four spatial direc-
tions along which the spins of the quark and antiquark
can be measured. In quantum mechanics the same prob-
abilities are computed as expectation of suitable spin-
observable operators in the state (1), so that the previous
inequality reduces to the following constraint

���n̂1 · C ·
�
n̂2 � n̂4

�
+ n̂3 · C ·

�
n̂2 + n̂4

����  2 , (3)

involving only the spin correlation matrix Cij and not
the polarization coe�cients Ai and Bj .

In order to test the Bell inequality in Eq. (3), one needs
to experimentally determine the matrix C and then suit-
ably choose four spatial directions n̂1, n̂2, n̂3 and n̂4 that
maximize the left-hand side of (3). In practice, there is
no need to optimize the choice of n̂i: this maximization
process has already been performed in full generality in
Ref. [12], for a generic spin correlation matrix. Indeed,
consider the matrix C and its transpose CT and form the
symmetric, positive, 3⇥3 matrix M = C

T
C whose three

eigenvalues m1, m2, m3 can be ordered by decreasing
magnitude: m1 � m2 � m3. The two-spin state density
matrix ⇢ in (1) violates the inequality (3), or equivalently
(2), if and only if the sum of the two greatest eigenvalues
of M is strictly larger than 1, that is

m1 +m2 > 1 . (4)

In other words, given a spin correlation matrix C of the
state ⇢ that satisfies (4), there are for sure choices for the
vectors n̂1, n̂2, n̂3, n̂4 for which the left-hand side of (3)
is larger than 2.

It should be stressed that the above formulation, based
on the relation (2), departs from the more standard ap-
proaches adopted in testing Bell inequalities, in particu-
lar in quantum optics. While in the standard, direct tests

one needs to experimentally determine the expectation
values of spin observables entering the Bell inequalities,
in the above, indirect approach the actual measure of
probabilities is avoided, in favor of the determination of
the spin correlation matrix C—the entries of which can
be measured by studying the kinematics of the quark-
antiquark decay products [6].
In the recent analysis [9], the spin correlations of the

top-quark pairs produced at the LHC are analyzed but
only after being averaged over a large portion of phase
space; the values obtained for the entries of C are in
agreement with the inequality (3), for any choice of the
four vectors n̂i. This agreement is the consequence of the
averaging procedure (mixing) that unavoidably reduces
the entanglement content of the density matrix ⇢.
On the other hand, the study in [20] suggests that by

focusing on specific, small regions of the phase space, the
entanglement of the top-quark pair state could be close to
maximal (see also [21]) and the Bell inequality in Eq. (2)
could be violated at the maximal level.

Results.— The sum of the eigenvaluesm1+m2 provides
an observable whose value, as extracted from the data,
tests whether the Bell inequality in Eq. (3) is violated or
not. To compute this observable we collect all the entries
of the correlation matrix C as given in the process

pp ! t+ t̄ ! `
±
`
⌥ + jets + E

miss
T , (5)

where ` = e, µ are taken only in di↵erent-flavor com-
binations, in order to better connect with experimental
measurements in this channel. Emiss

T stands for the trans-
verse missing energy.
We simulate full matrix elements for the top quark pro-

duction and decays through the decay chain formalism
built into MadGraph5 [22], which embeds full spin cor-
relations and Breit-Wigner e↵ects, thus excluding only
non-resonant diagrams. Within the Standard Model we
consider gluon (gg) and quark (qq̄) initiated top-quark
pair production at leading order in the strong and elec-
troweak couplings, using the NNPDF23 [23] leading order
parton distributions set and within the four flavor num-
ber scheme, thus fully taking into account for bottom
quark mass e↵ects. Next-to-leading order corrections in
the strong coupling are known to be small on the largest
entries of C: at the LHC energies their impact is less than
2% [5], and will be neglected in the following. We assume
a CM energy of 13 TeV, setting both the renormalization
and factorization scales to the sum of the transverse en-
ergies of the final state particles.

We follow [6] for the choice of orthonormal basis for the
matrix C of Eq. (1). The unit vectors r̂ and n̂ are built
starting from the direction of flight k̂ of the top quark in
the top pair CM frame with respect to one of the proton
beams directions in the laboratory frame p̂:

p̂ = (0, 0, 1), r̂ =
1

r
(p̂� yk̂), n̂ =

1

r
(p̂⇥ k̂) , (6)

Generalized Bell’s inequality or Clauser-Horne-Shimony-Holt (CHSH) inequality for spin-1/2
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