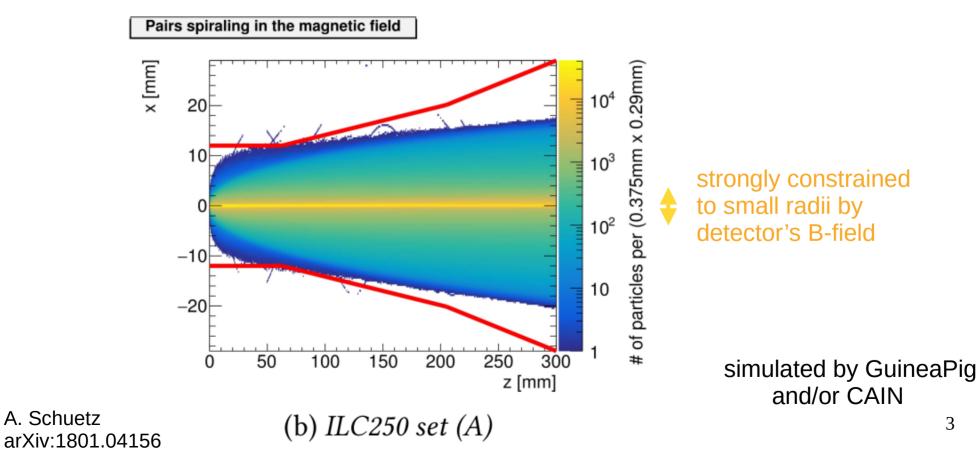
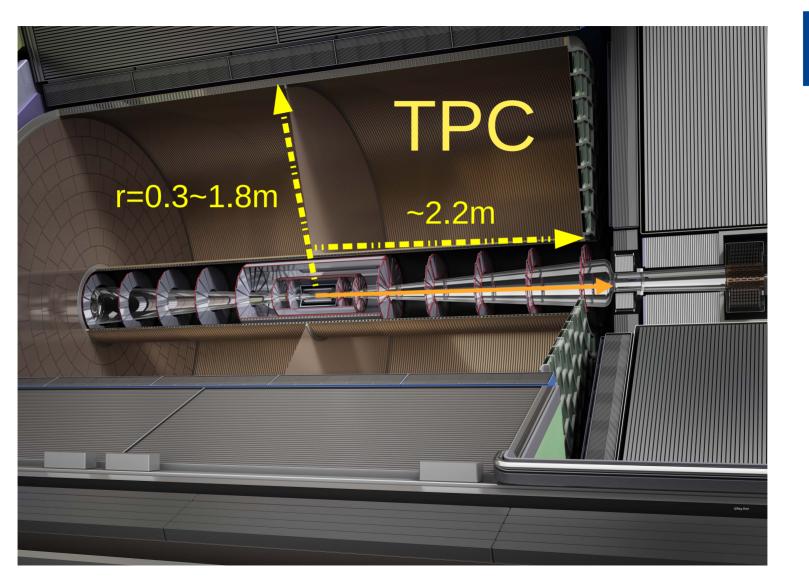
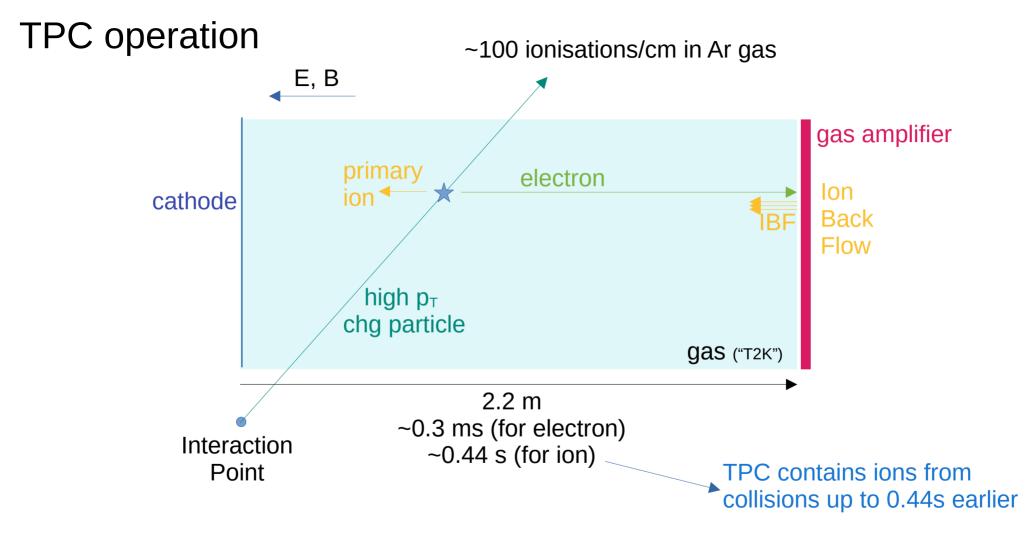


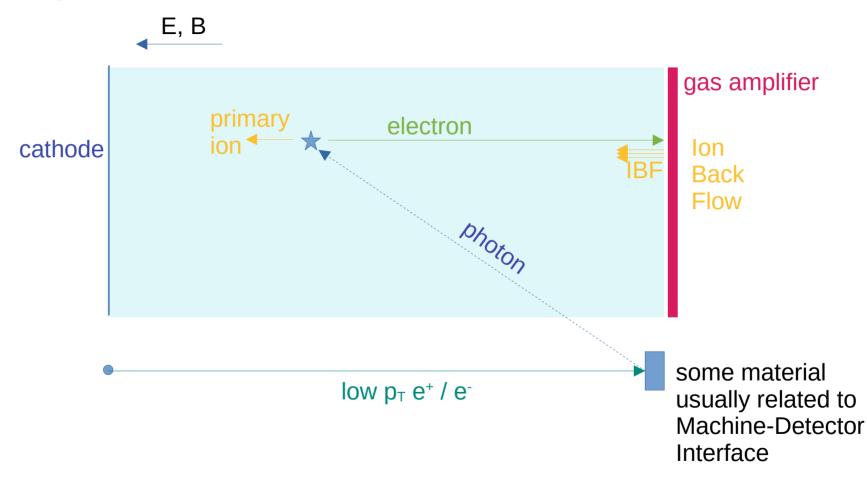
Beamstrahlung backgrounds in ILD at linear (ILC) and circular (FCCee) colliders

Daniel Jeans / KEK IPNS

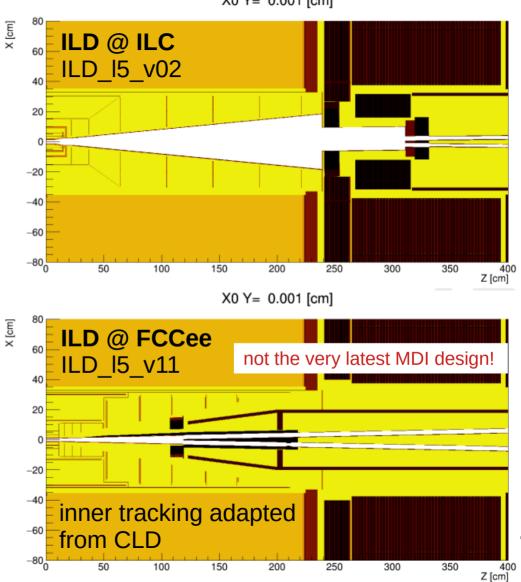

September 2024


1

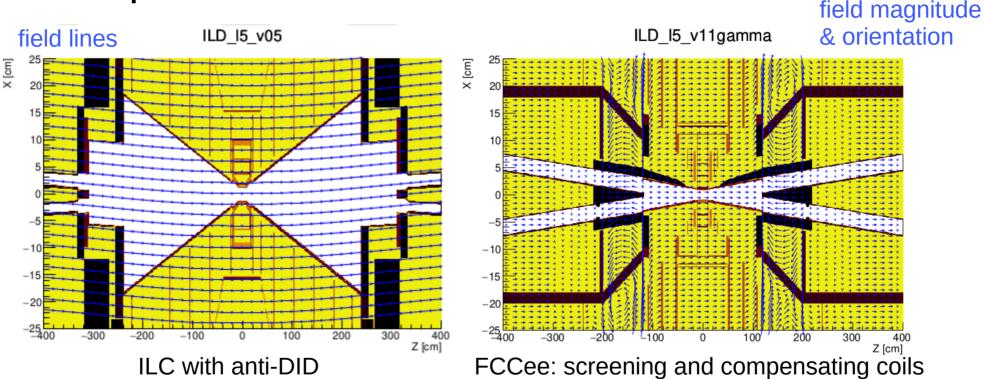



Beamstrahlung : many low $p_T e^+ e^-$ pairs produced in each bunch crossing

beam backgrounds : usually small $p_T \rightarrow$ particles do not reach TPC directly



X0 Y= 0.001 [cm]


Machine-Detector Interface

is significantly different @ **ILC and FCCee**

	ILC	FCCee
crossing angle	14 mrad	30 mrad
L* [distance from IP to last accel focusing quadupole magnet]	4.1 m	2.0 m
detector solenoid	3.5 T	2.0 T
additional B-fields	anti-DID (?)	 compensating screening

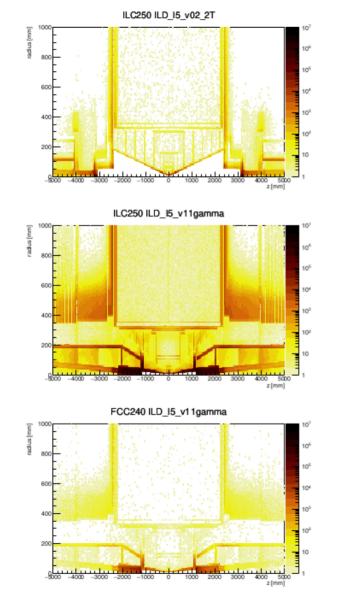
field maps

beamstrahlung: many very low $p_T e+e$ - created in bunch collisions

very different bunch structure, materials and fields in the forward region \rightarrow major effect on beamstrahlung backgrounds ?

GuineaPig : program to simulate beamstrahlung

beamstrahlung pairs @ ILC-250 (from ILD/Mikael Berggren) FCCee-91, FCCee-240 (from FCCee/Andrea Ciarma)


simulate in various DD4hep ILD detector models:

using ddsim/DD4hep/Geant4

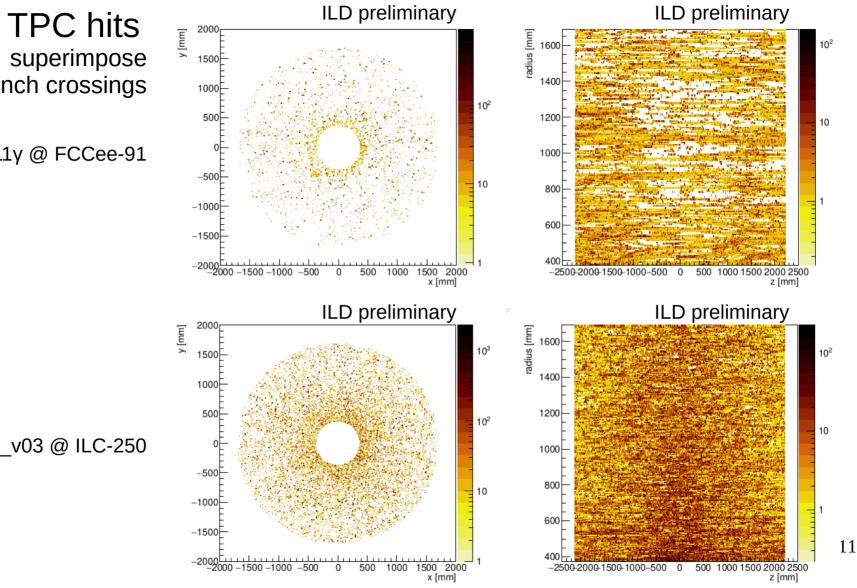
some special parameters to correctly track low p_T particles

ILD @ ILC : uniform 3.5T uniform 2.0T field map with and without anti-DID

ILD @ FCCee : uniform 2.0T field map for central region

MC particle endpoints in 100 BX

ILC250 beamstrahlung


ILC-like detector

ILC250 beamstrahlung

FCC-like detector

FCC-240 beamstrahlung

FCC-like detector

100 bunch crossings

ILD_I5_v11y @ FCCee-91

ILD 15 v03 @ ILC-250

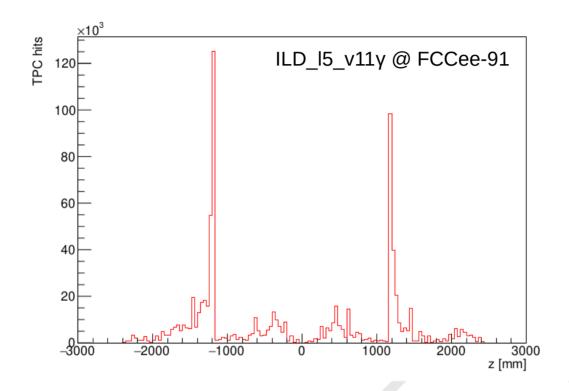


Figure 9: Distribution in z of the position of the first simulated interaction which gave rise to a TPC hit. ILD_15_v11 γ detector model, 100 BX of pair background at FCCee-91.

estimate number of **primary ions** produced in the TPC per bunch crossing \rightarrow geant4 energy deposit / effective ionisation potential of Ar [26 eV]

			FCCee-91	FCCee-240	ILC-250	
model	B-field [T]	MDI	thousa	nd ions / bunch	crossing	
			mean \pm RMS			
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150	

large variations between bunch crossings

beamstrahlung much weaker @ FCCee

 \rightarrow bunches less focused

estimate number of primary ions produced in the TPC per bunch crossing

			FCCee-91	FCCee-240	ILC-250	
model	B-field [T]	MDI	thousand ions / bunch crossing			
			mean \pm RMS			
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150	
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300	

reducing field to 2T has modest effect at FCCee, large effect at ILC estimate number of primary ions produced in the TPC per bunch crossing

			FCCee-91	FCCee-240	ILC-250		
model	B-field [T]	MDI	thousand ions / bunch crossing				
			mean \pm RMS				
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150		
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300		
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200		
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110		

anti-DID reduces TPC background by factor ~2 at ILC-250 4~10 at FCCee

			FCCee-91	FCCee-240	ILC-250			
model	B-field [T]	MDI	thousand ions / bunch crossing					
			mean \pm RMS					
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150			
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300			
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200			
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110			
ILD_15_v11β	2.0 (uniform)	FCCee	390 ± 120	1000 ± 170	110000 ± 2400			
ILD_15_v11γ	2.0 (map)	FCCee	270 ± 100	800 ± 140	100000 ± 1900			

FCCee MDI system induces ~50x increase in TPC activity compared to ILC

detailed description of field has modest effect with FCCee MDI

			FCCee-91	FCCee-240	ILC-250			
model	B-field [T]	MDI	thousand ions / bunch crossing					
			mean \pm RMS					
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150			
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300			
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200			
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110			
ILD_15_v11β	2.0 (uniform)	FCCee	390 ± 120	1000 ± 170	110000 ± 2400			
ILD_15_v11γ	2.0 (map)	FCCee	270 ± 100	800 ± 140	100000 ± 1900			

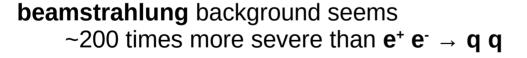
"realistic" situations : a few 100k \rightarrow 1M primary ions / BX

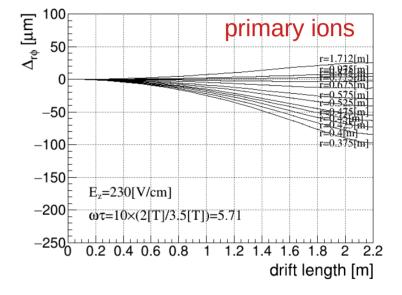
ILC and FCCee are similar

TPC integrates over many collisions; maximum ion drift time ~ 0.44 s

roughly estimate number of primary ions in the TPC volume (~42 m³) at any time, taking account of different collision rates

number of ions ~ primary ions/BX * BX freq * max drift time * 50% [some ions already reached cathode]


Collider	FCCee-91	FCCee-240	ILC-250
Detector model	ILD_15_v11γ	ILD_15_v11 γ	ILD_15_v05
average BX frequency	30 MHz	800 kHz	6.6 kHz
primary ions / BX	270 k	800 k	450 k
primary ions in TPC at any time	$1.8 imes 10^{12}$	1.4×10^{11}	$6.5 imes 10^{8}$
average primary ion charge density nC/m ³	6.8	0.54	0.0025


primary ion density in TPC: 2500 times higher at FCCee-91 than ILC-250 200 times higher at FCCee-240 than ILC-250 how does this compare to other sources of primary ionisation?

e⁺ e⁻ → q q @ 91 GeV : ~1 M primary ions per event @ ~50 kHz [FCCee]
 → 10¹⁰ primary ions in TPC at any time
 cf. 2x10¹² from beamstrahlung @ FCCee-91

 $e^+ e^- \rightarrow q q @ 91 \text{ GeV}$:

primary ions give rise to maximum drift distortions in R-phi of ~100 μm seem stable @ few-micron level

using naive scaling, maximum distortions due to beamstrahlung (primary ions only) \rightarrow 20 mm

n.b. only primary ions considered \rightarrow no ion backflow

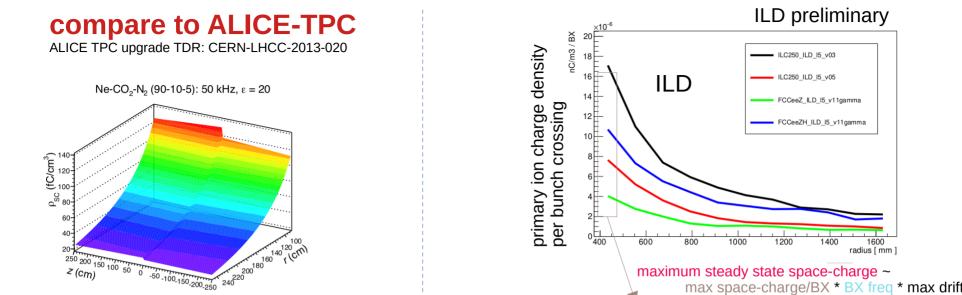
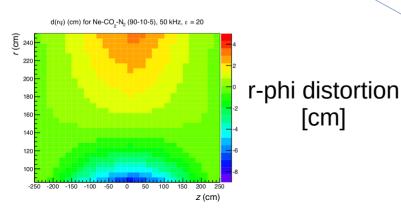
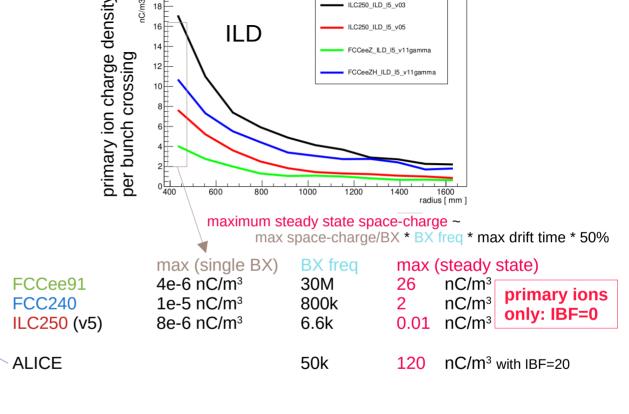




Figure 7.7: Average space charge density for Ne-CO₂-N₂ (90-10-5), $R_{int} = 50$ kHz and $\varepsilon = 20$. assumed ion back flow factor ε : 20 secondary ions / primary

```
20~120 fC/cm<sup>3</sup> \rightarrow cm-level distortions
```

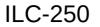

TPC at FCCee91 with IBF of 3~5 \rightarrow similar space-charge as at ALICE O(1~10) cm max distortions consistent with our "first-principles" estimate

Summary

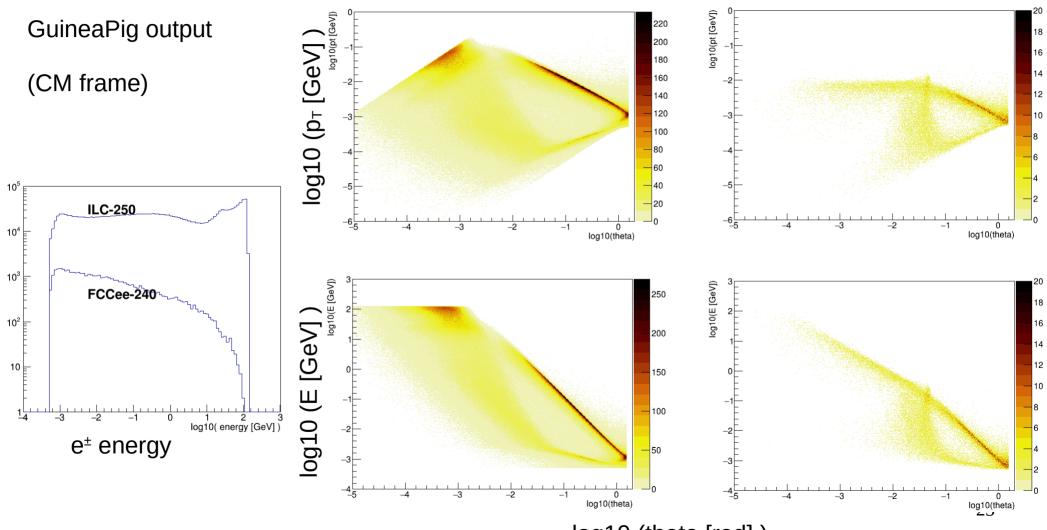
TPC background from beamstrahlung: same order **per BX** at ILC250 and FCCee

interplay between stronger beamstrahlung @ ILC more intrusive MDI @ FCCee

average BX frequency: **4.5k times higher at FCCee** \rightarrow TPC integrates over many more BX

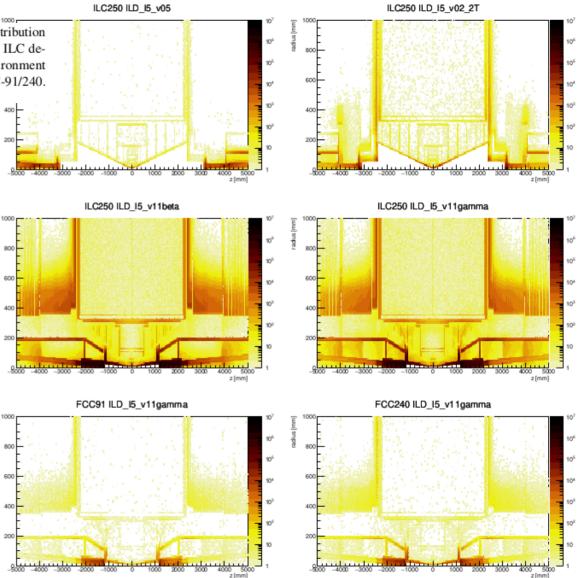

TPC ions from **beamstrahlung** dominate those from $ee \rightarrow qq$ @ FCCee-91

TPC at FCCee-91 with IBF~4 looks similar to ALICE-TPC


Current work/plans/suggestions: repeat study with CAD-level MDI design

how much possibility for shielding redesign/reduction?

backup


FCCee-240

log10 (theta [rad])

5: Pair backgrounds at ILC-250, FCC-91 and FCC-240 in different detector models: distribution in radius and z of the endpoint of all MC particles, integrated over 100 BX. Top row: ILC detector variants at ILC-250; middle row: FCC-ee detector variants in the ILC-250 environment (unrealistic, shown for comparison only); bottom row: FCC-ee detector variant at FCC-91/240.

adus

https://indico.cern.ch/event/1203316/timetable/#5-fcc-accelerator-status-and-r

○ FCC	FCC IS W	Vorkshop, December 5-9, 2022	FCC-e	e Para	meters	S		11	
	Ī	Beam energy	[GeV]	45.6	80	120	182.5		
	Ì	Layout			PA31	1-1.0			
		# of IPs			4	l.			
		Circumference	[km]		90.83	6848			
		Bending radius of arc dipole	[km]		9.9			ave collision f	roa
		Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0	ave comsion i	iey.
		SR power / beam	[MW]	\frown	5	0			
		Beam current	[mA]	1280	135	26.7	5.00		
		Bunches / beam		10000	880	248	40	1 / (90.8 km/#	bunch/c)
		Bunch population	$[10^{11}]$	2.43	2.91	2.04	2.37		
		Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49		
		Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98		$C \rightarrow V$
		Arc cell		Long	90/90	90	/90	33 MHz @ 91	Gev
		Momentum compaction α_p	$[10^{-6}]$	28		7.	33	2.9 MHz @ 16	30
		Arc sextupole families		7	5		46		
		$\beta^*_{x/y}$	[mm]	100 / 0.8	200 / 1.0		1000 / 1.6	810 kHz @ 24	10
		Transverse tunes/IP $Q_{x/y}$		53.563 /	53.600		/ 98.595	-	
		Energy spread (SR/BS) σ_{δ}	[%]	0.038 / 0.132	0.069 / 0.154	0.103 / 0.185		130 kHz @ 36	5
		Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	3.34 / 6.00	1.94 / 2.74	_	
		RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	2.1 / 9.2		
		Harmonic number for 400 MHz			121	648			
		RF freuquency (400 MHz)	MHz		400.79	93257			
		Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826		
		Long. damping time	[turns]	1168	217	64.5	18.5		
		RF acceptance	[%]	1.6	3.4	1.9	3.0		
		Energy acceptance (DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5		
		Beam-beam ξ_x/ξ_y^a		0.0023 / 0.135	0.011 / 0.125	0.014 / 0.131	0.093 / 0.140		
		Luminosity / IP	$[10^{34}/cm^2s]$	182	19.4	7.26	1.25		
		Lifetime $(q + BS + lattice)$	[sec]	840	-	< 1065	< 4062		
		Lifetime (lum)	[sec]	1129	1070	596	741		25
	-	^a incl. hourglass.	K.	Oide, Nov.	2022				

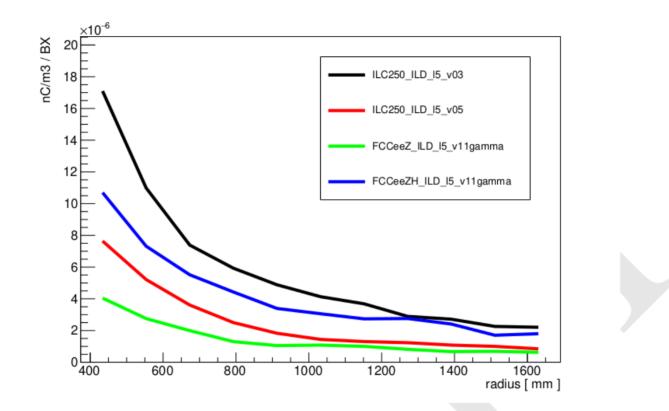
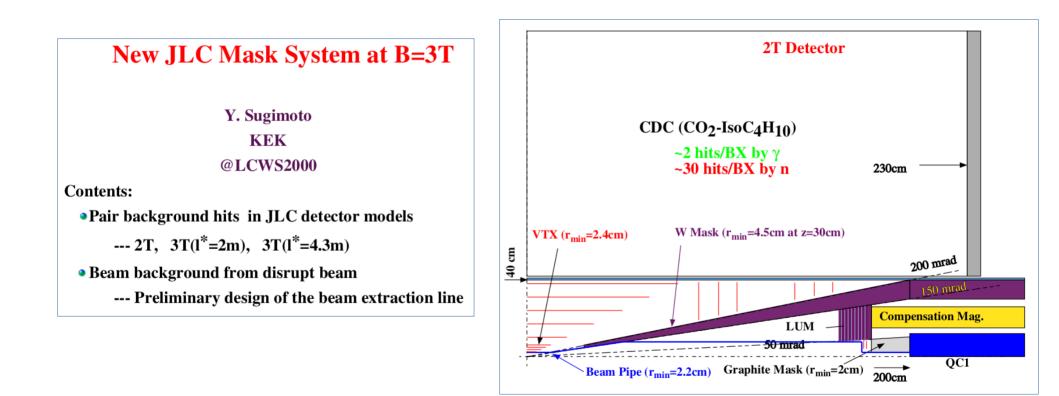
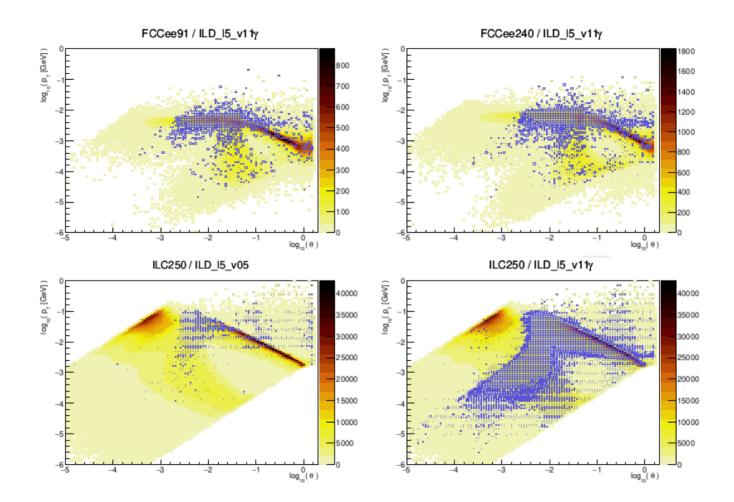


Figure 8: Radial dependence of the primary ion charge density induced by beamstrahlung in a single BX in the realistic collider/detector combinations.


			FCCee-91	FCCee-240	ILC-250	
model	B-field [T]	MDI	thous	and ions / bund	ch crossing	
				mean \pm RM	1S	
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150	
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300	
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200	
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110	
ILD_15_v11β	2.0 (uniform)	FCCee	390 ± 120	1000 ± 170	110000 ± 2400	
ILD_15_v11γ	2.0 (map)	FCCee	270 ± 100	800 ± 140	100000 ± 1900	
	removing E	BeamCal's	graphite lay	er		
ILD_15_v03	3.5 (map)	ILC			1300 ± 170	
ILD_15_v05	3.5 (map, anti-DID)	ILC			590 ± 120	
			bunch crossing frequency			
			30 MHz	800 kHz	6.6 kHz	

~20% effect


imagine we could use ILC-MDI at FCCee-91 (completely unrealistic...)

FCCee-91 Collider FCCee-91 FCCee-240 ILC-250 ILD 15 v05 Detector model ILD_ $15_v11\gamma$ ILD_15_v11 γ ILD_15_v05 30 MHz 800 kHz 6.6 kHz average BX frequency 30 MHz primary ions / BX 270 k 800 k 450 k 0.6 k $1.8 imes 10^{12}$ 1.4×10^{11} 6.5×10^{8} primary ions in TPC at any time 4 x 10⁹ average primary ion charge density nC/m^3 6.8 0.0025 0.015 0.54

"best case"

include a "W mask" ?

