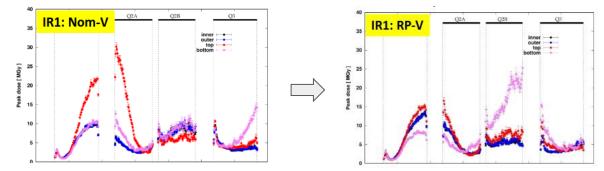
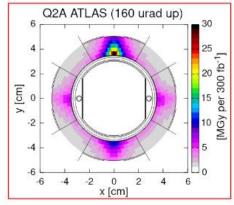
Status of the Accelerator

Michi Hostettler on behalf of the LHC team


159th LHCC Open Session - LHC Status

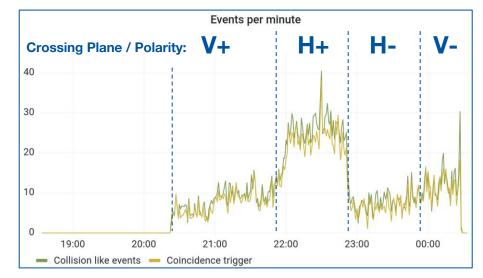

"reverse polarity" optics

- inner triplet magnets next to the high-lumi interaction points reaching their "life expectancy" of integrated radiation
- invert polarity of triplet quadrupoles (local optics change)
 - → re-distribute the radiation to less irradiated parts
 - → reduce the risk of failure until HL-LHC (IP1/5 triplets will be replaced)

• 2024: implemented in IR 1 (ATLAS) - most critical

options for 2025 and beyond being studied

LHC triplet task force and S. Fartoukh



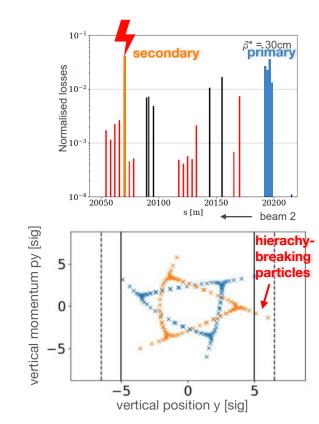
159th LHCC Open Session - LHC Status

FASER / SND background

consequence of RP optics: increased background in FASER and SND

- factor of ~2 w.r.t. 2023
- TeV muons from the IP
- requires more frequent emulsion exchanges (if available)
- accelerator side mitigations being studied for 2025
 - not straightforward to intercept with collimation system
 - deflection might be possible (crossing angle, bump, ...)

B. Lindstrom, J. Wenninger, J. Boyd, collimation team & FASER collaboration

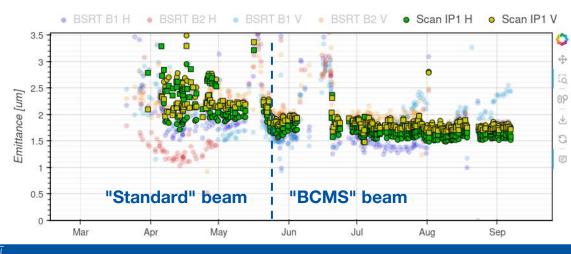


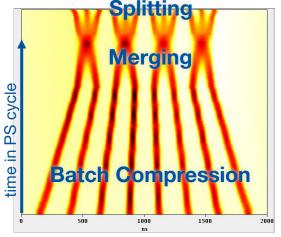
collimation hierarchy breakage at $\beta^* = 30$ cm

• "broken hierarchy" observed at $\beta^* = 30$ cm

- losses on one secondary collimator > primary
 - possible machine protection issue
- not observed during validation with single bunches
 - a beam-beam driven effect
- off-momentum particles lost in the secondary collimators: combination of contributions
 - beam-beam long range orbit effect
 - spurious vertical dispersion
 - beam-beam driven 3rd order resonance
 - → mitigation: dispersion correction, lower chromaticity

→ β^* levelling to 30cm restored!


beams from injectors: BCMS


• Batch Compression, Merging, Splitting ("BCMS") beam production scheme used since June

◦ use 8 instead of 6 bunches from PSB \rightarrow PS

~10% improvement in beam brightness

→ gains ~1-2h of time levelled at peak lumi

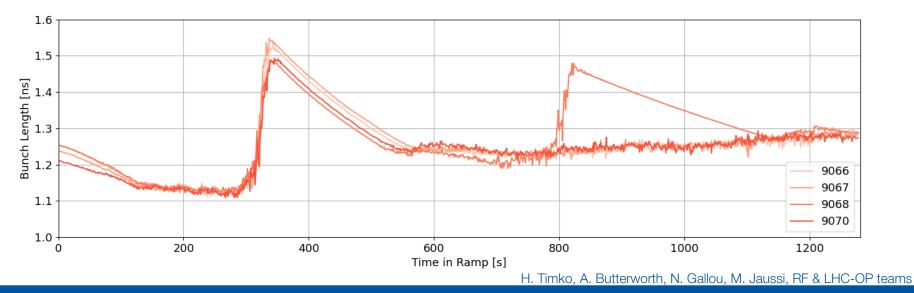
A. Lasheen, H. Damerau and the PS OP team

vacuum modules: intensity limitation

- 2023: RF fingers of warm vacuum interconnect module in cell 4L1 lost contact sparking
 - post mortem inspection showed plastification of spring due to localized heating > 500° C
 - → replacement needed, ~5 days lost
- heating due to high-intensity, short bunches
- consolidation ongoing
 - 47 modules replaced in EYETS 23/24
 - 24 still to be replaced in YETS 24/25

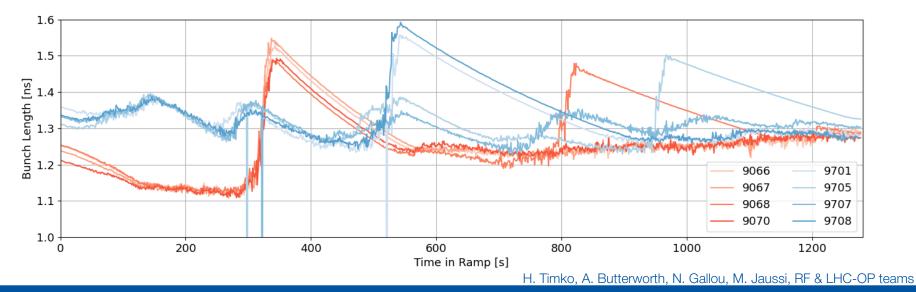
→ bunch intensity limitation to ~1.6 10^{11} ppb

• better bunch length control further limits the risk



improved bunch length control

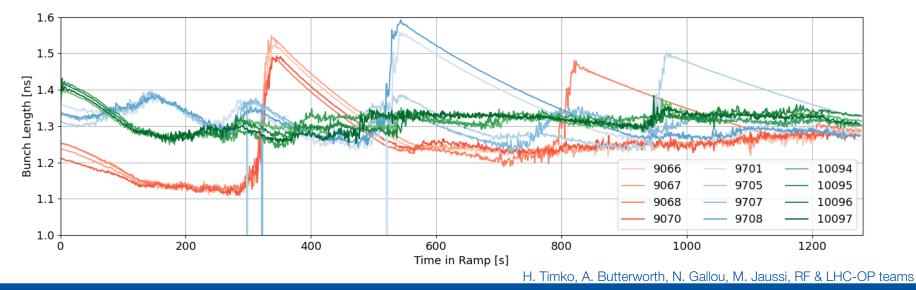
• adiabatic shrinking of bunch length during the ramp ($1/\sqrt{\gamma}$ - factor 4)


- counteracted by controlled longitudinal blow-up
- feedback control optimized in 2024 Machine Development

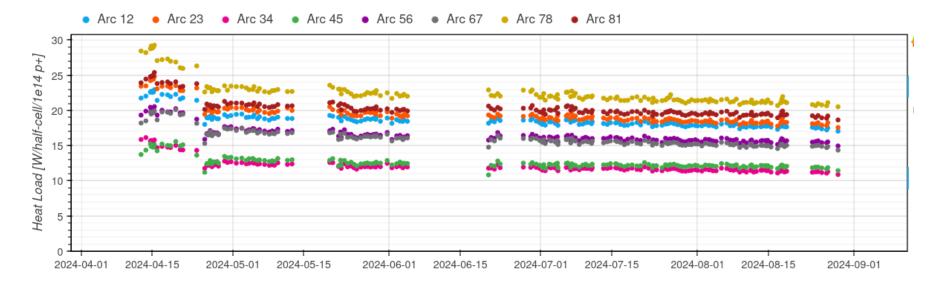
improved bunch length control

• adiabatic shrinking of bunch length during the ramp ($1/\sqrt{\gamma}$ - factor 4)

- counteracted by controlled longitudinal blow-up
- feedback control optimized in 2024 Machine Development

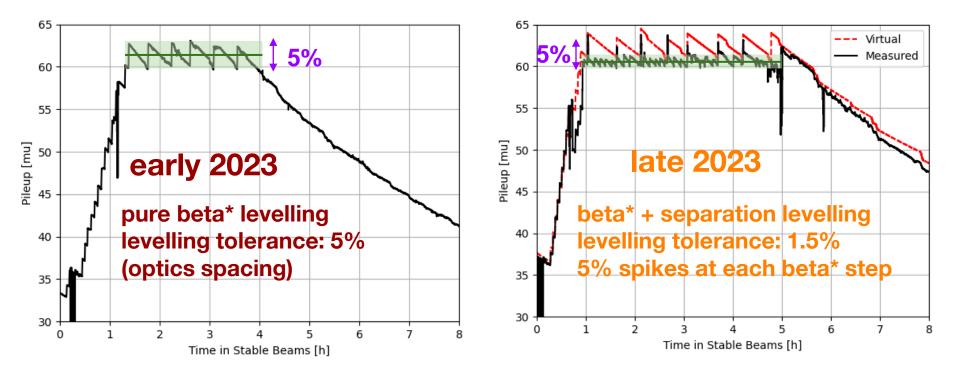


improved bunch length control


• adiabatic shrinking of bunch length during the ramp ($1/\sqrt{\gamma}$ - factor 4)

- counteracted by controlled longitudinal blow-up
- feedback control optimized in 2024 Machine Development

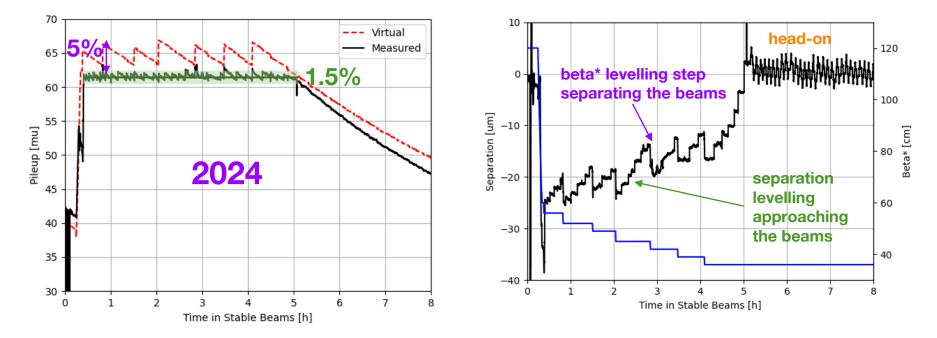
electron cloud and heat load

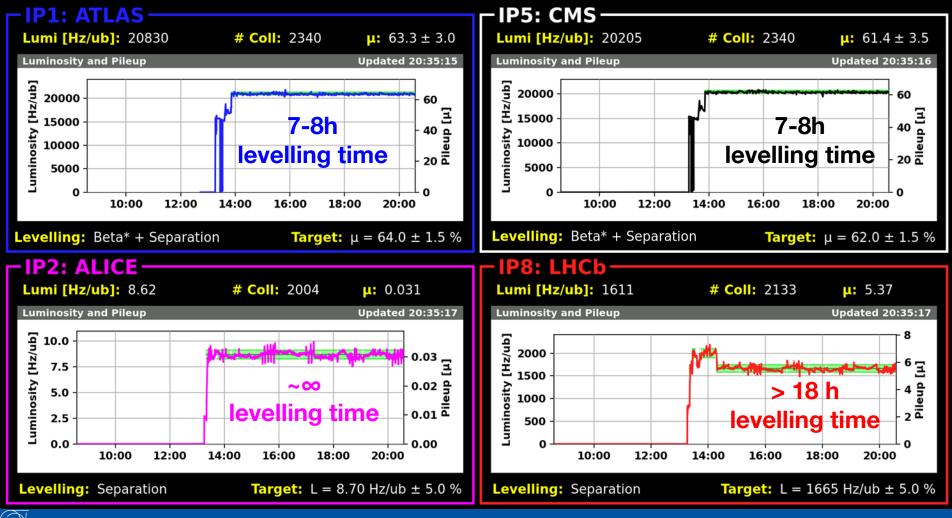

• electron cloud induced heat-load: sector 7-8 limiting

- limits the train length and total number of bunches
- 2024: 3x36b trains, 2352b total

→ conditioning over 2024 gained ~5-10% margin

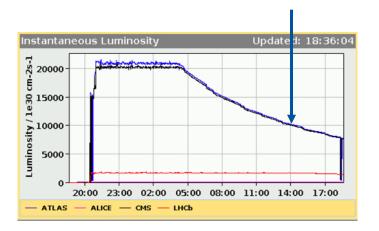
CÉRN

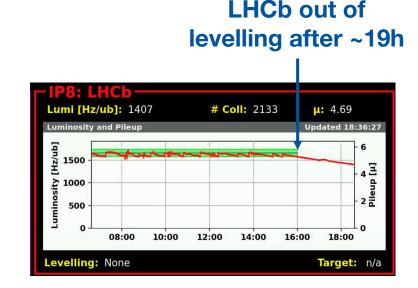

luminosity levelling: beta* and separation



luminosity levelling: beta* and separation

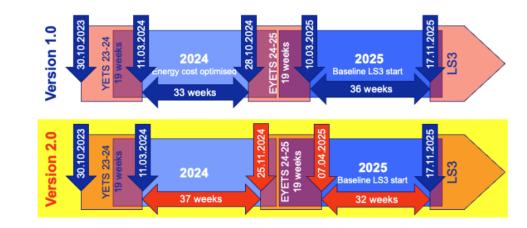
- 5% spikes flattened by increasing separation in parallel to beta* steps
- → experiments can approach pile-up limit no trigger issues due to spikes





what if ... we keep a fill longer?

LHC design luminosity 10³⁴ cm⁻² s⁻¹ reached after ~17h



fill 10084 kept for ~22h due to SPS injection kicker issue

2024 schedule 2.0

- injector YETS shifted by 5 weeks & reduced by 3 weeks
- LHC YETS 24/25 shifted by 4 weeks
 - 2024: 4 weeks longer
 - o 2025: 4 weeks shorter
 - 1 technical stop removed
- extra time in 2024 for proton physics
 - integrated lumi target for ATLAS & CMS: 90 fb⁻¹ \rightarrow 110 fb⁻¹
- 2024 + 2025: total 5.5 days gained for proton physics

2024 schedule - where we stand?

	Apr beams (Stable @ 6.8 TeV		ions with) bunches	May				Jun				
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	Easter 1	¥8	15	2	2 29	6	13	Whitsun 20	27	3	3 10	17	24
Tu		Interle					MD 1				_		
We		commis 8	sioning k		1st May						ź		ad-hoc MD
Th		intensity		¥	1	Ascension	VdM				iat Iat		
Fr		Cryo reconfig.					program			MD 2	iss Gr		
Sa					ļ		{				spare		
Su		Sci upping											

	Jul				Aug				Sep				Oct
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	1	8	15	22	29	5	12	19	26	2	9	16	23
Tu													
We								MD 3					
Th										Jeune G.			
Fr													
Sa	te	oward	ls the	end e	of a s	umm	er of	stable	phys	sics p	rodu	ction!	MD 4
Su													

steadily cruising ...

13-07-2024 22:59:00

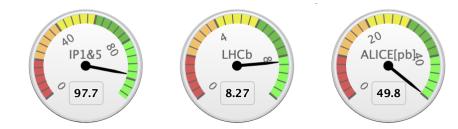
SHIFT SUMMARY:

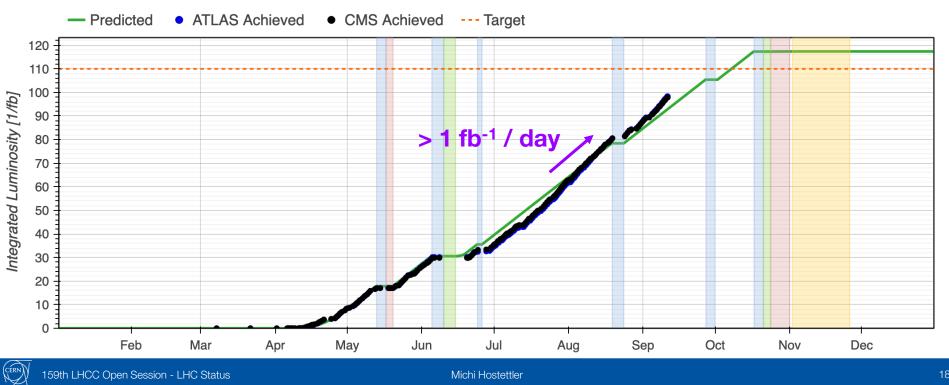
1	1		14:59:00	
SHIF	T SUMM	ARY:		
Stab	le bea	ms all	.shift.	

Arrived during the ramp, squeezed, brought to stable beams, and stayed there.

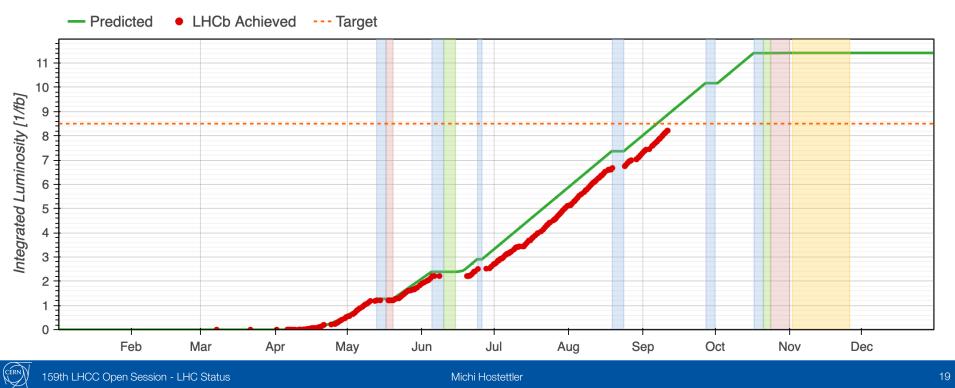
Arrived in stable beams, left in stable beams! : 24-08-2024 14:59:00 *** SHIFT SUMMARY *** Stable Beams, programmed dump, ~1h49 turnaround, Stable Beams. SHIFT SUMMARY: Quiet shift: filled machine, ramped, squeezed and brought to stable beams. : 14-07-2024 22:59:00 SHIFT SUMMARY: Stable Beams. Stable Beams. Stable Beams. Stable beams. SHIFT SUMMARY: Stable Beams. Stable Beams.

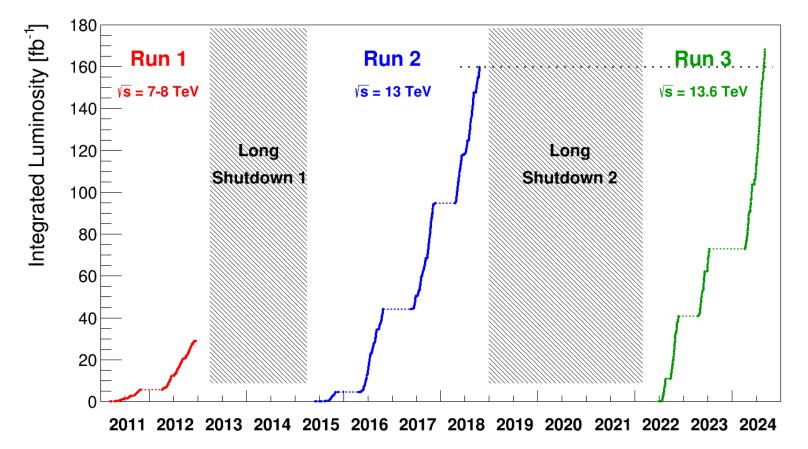
17-08-2024 06:59:00


SHIFT SUMMARY:

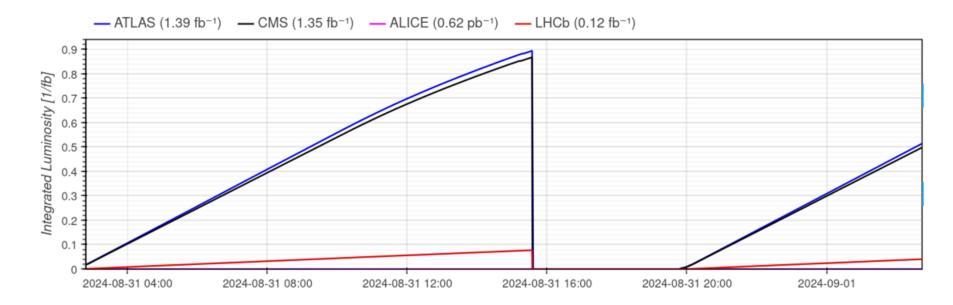

Arrived in stable beams, program dumped, refilled, ramped, squeezed and left the machine in stable beams.

00.05.0004.00.50.00	: 24-08-2024 06:59:00	07 07 0004 00 50 00				
: 30-05-2024 22:59:00	SHIFT SUMMARY:	£ 27-07-2024 22:59:00				
SHIFT SUMMARY:		*** SHIFT SUMMARY ***				
Quiet shift in stable beams.	Quiet Stable Beams shift All IPs on Target	An easy and productive shift of Stable Beams.				

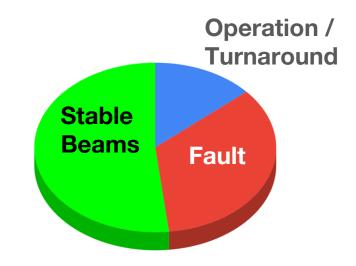

... on track to 110 fb⁻¹ ...



... to 8.5 fb⁻¹ in LHCb ...


... and exceeding run 2.

performance reach

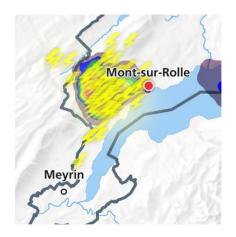

- ~1.4 fb⁻¹ / 24h in ATLAS / CMS possible with good availability
- ~7.5 fb⁻¹ / week achieved on average in "good" weeks

CERN

availability

- availability is key for performance!
- 2022 & 2023 dominated by long faults
 - 2022: RF burst disks
 - 2023: vacuum modules & triplet L8
- 2024: "good" weeks availability > 75%, stable beams > 60%

Michi Hostettler

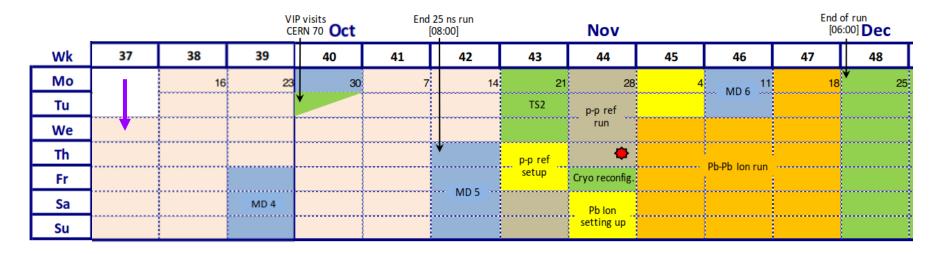

unplanned dumps: main causes

• electrical perturbations & thunderstorms (~20%)

- summer is the thunderstorm season
- power grid perturbations early in the morning
- typically trips RF power converters, exp. spectrometers, QPS of some quadrupoles

Quench Protection System: R2E (~10%)

- typically SEU / SEL on boards close to IP1 and IP5
 - running for hours with > 2x LHC design luminosity!
- consolidation in progress
- spurious trips (~25%)
 - e.g. instrumentation glitches on PC or RF
- → short faults, recovery typically < 4h



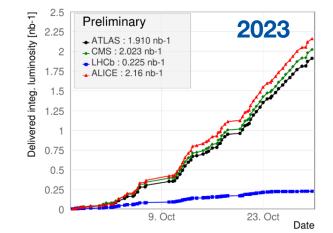
J. Steckert, R. Denz & QPS team

outlook

30.5 days remaining of proton run

- 6 days of 2x2.68 TeV p-p reference run
- 17 days of Pb-Pb ion run

2024 heavy-ion run



- 2.68 TeV per beam, equivalent of 6.8 Z TeV Pb-Pb
- luminosity targets:
 - ATLAS / CMS: ~300 pb⁻¹
 - ALICE: 4.5 pb⁻¹
 - LHCb: 100 pb⁻¹

• 17 days of Pb-Pb heavy ion run

- 6.8 Z TeV per beam same configuration for run 3
- luminosity target:
 - 5.3 nb⁻¹ in all run 3 (2 nb⁻¹ collected in 2023)
 - ~1.5 nb⁻¹ in 2024
- LHCb: full heavy-ions program
- mitigations in place for 2023 issues ("10 Hz" losses, QPS)

challenging targets - challenge accepted!

conclusions & outlook

• the LHC is steadily cruising in physics!

- \circ > 1 fb⁻¹ produced per 24h if all goes well
- ~60% of time in Stable Beams
- faults: mostly short glitches

• until the end of the year:

- protons: well on track to 110 fb⁻¹ in ATLAS / CMS
- ions: a challenging run ahead!

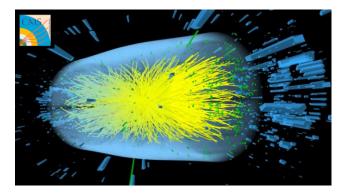
next year (and beyond):

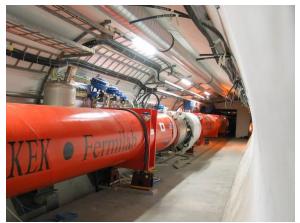
- "Reverse Polarity" optics full, half, or none?
- protons: gentle increase of bunch intensity beyond 1.6 10¹¹ ppb?
- ions: oxygen in LHC (and another Pb ion run)
- limit changes continue cruise production!

thanks for your attention

CERN

instantaneous luminosity: levelling IP1 & IP5


• ATLAS and CMS pile-up


- processing power for event reconstruction
- data taking efficiency & dead-time
- limit on the average pile-up
 - → single-bunch instantaneous luminosity limit

• IR1 & 5 inner triplet cooling

- heating due to luminosity debris
- cooling capacity different per triplet-side
 - risk of losing cryo conditions (helium overflow)
 - slow processes: ~15 minutes "inertia"
- limit on the total triplet heat load

→ total instantaneous luminosity limit

