Five-flavour scheme predictions for $t\bar{t}bb$ at next-to-leading order accuracy in MG5_aMC@NLO

Rikkert Frederix (Lund University), <u>Tetiana Moskalets</u> (Southern Methodist University)

based on: EPJC 84, 763 (2024)

LHC Top WG meeting 11–13 November 2024

Role of the *ttbb* process in the physics analyses

• $t\bar{t}H(\rightarrow bb)$ analyses

latest $t\bar{t}H(\rightarrow b\bar{b})$ from ATLAS <u>PLB 849 (2024)</u> and CMS arXiv:2407.10896

- $t\bar{t}b\bar{b}$ is the dominant background
- modelling uncertainty is currently a limitation

latest $t\bar{t}t\bar{t}$ from ATLAS EPJC 83 (2023) 6, 496 and CMS PLB 847 (2023) 138290

- 4-top analyses
 - $t\bar{t}$ +jets (with additional *b*-jets) is the main source of fake/non-prompt and charge-misidentification backgrounds

m

$t\bar{t}bb$ represents a significant background in measurements probing the top Yukawa coupling

LHC Top WG meeting

Simulation of the *ttbb* process

- **Two primary theoretical frameworks:** four-flavour scheme (4FS) and five-flavour scheme (5FS)
- Alternative: "fusion" method (or variable flavor number scheme)
 - Merges aspects of both the 4FS and 5FS calculations
 - Currently, the additional jets in the 5FS component are only computed at LO

Höche, Krause, Siegert (2019) Ferencz, Höche, Katzy, Siegert (2024)

4FS	5FS		
nassive	massless		
no	yes		
on-shell	MS		
clusively <i>tībb</i>	inclusive <i>tī</i> + jets		

11–13 November 2024

LHC Top WG meeting

Simulation of the *tībb* process in the 4FS

- 4FS calculations are usually the most precise <u>at fixed order</u>
 - *b*-quark mass effects taken into account
 - The processs can be generated down to any energies
- Calculation with a certain number of jets at fixed order is <u>reliable only if there are no scale hierarchies</u>
 - $t\bar{t}bb$ production is a <u>multi-scale process</u>

 - Difficult to choose optimal renormalisation and factorisation scales
- Challenges arise when matching to a parton shower:
 - Parton shower radiation can produce additional b-quarks
 - Jets generated by the shower can be harder than the matrix-element-level bottom quarks
 - We need only the subleading b-quarks to come from the parton shower, but not the leading ones
 - Not fully understood how the parton shower radiation should be constrained

Buccioni, Kallweit, Pozzorini, Zoller (2019)

Large mass difference between the top and bottom quarks \rightarrow large logarithms $(\log(m_b/p_{T,b}))$ or $\log(p_{T,b}/\sqrt{\hat{s}})$

see the discussion in the LHC Higgs Xsec WG report arXiv:1610.07922

> Cascioli, Maierhöfer, Moretti, Pozzorini, Siegert (2014) <u>Ježo, Lindert, Moretti, Pozzorini (2018)</u>

Simulation of the *tībb* process in the 5FS

- Generate an inclusive tt + jets sample, select b-jets after parton showering
- Massless b-quarks \rightarrow large logarithms do not arise in the matrix element
- - For example, FxFx merging in MadGraph5_aMC@NLO

Accurate parton-shower approximation for all softer jets

hardest parton shower jets are always softer than the softest matrix element jets, which is not always the case in the 4FS

b-quark mass effects:

- Important in the collinear/IR region \leftarrow incorporated into parton shower splitting fuctions
- Missing in the matrix element, but they are less relevant for the hard b-quarks

Frixione, Nason, Webber (2003) Frixione, Nason, Ridolfi (2007) Hoeche, Krauss, Maierhoefer, Pozzorini, Schonherr, Siegert (2015) Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi (2022)

Large scale hierarchies between the top quarks and the jets can be resummed by a multi-jet merging procedure

Frederix, Frixione (2012)

 $p_{\rm T}({\rm PS \ jets}) < \mu_Q < p_{\rm T}({\rm ME \ jets})$

except for jets coming from the higher-multiplicity sample

Simulation of the *tībb* process in the 5FS

But generating $t\bar{t}$ + 0,1,2 jets @ NLO accuracy requires substantional computing resources

- $gg \rightarrow t\bar{t}gg$ dominates

5FS approach is computationally demanding!

- This will become even more relevant when producing Monte-Carlo for the HL-LHC era

number of instructions to calculate a process in MadGraph5_aMC@NLO

	$gg ightarrow tar{t}$	$gg ightarrow tar{t}gg$	$gg \rightarrow t \bar{t} g g g$	
madevent	13G	470G	11T	0.1
matrix1	3.1G (23%)	450G (96%)	11T (>99%)	
\vdash ext	450M (3.4%)	3.3G (<1%)	7.3G (<1%)	
	1.9G (14%)	160G (35%)	2T (19%)	
$ \sqsubseteq amp $	530M (4.0%)	210G (44%)	5.5T (51%)	

LHC Top WG meeting

b-flavour enhancement in the matrix element

 \checkmark We proposed a novel method to enhance the b-jet selection efficiency in the 5FS approach

- Augment the generation probability of bottom quark flavour in the short-distance event generation
 - During phase-space integration and unweighting, multiply the weight of each contribution containing external *b*-quarks by w_{enh}
 - For bottom quarks can be generated in the initial or final state
 - $gg \to t\bar{t}bb(g)$
 - $gb \to t\bar{t}bg(\to b\bar{b})$
 - $bb \to t\bar{t}q\bar{q}(g)$

. . .

To compensate for this and to preserve the cross-section, multiply the weight of events with external *b*-quarks by $1/w_{enh}$

R. Frederix, TM EPJC 84, 763 (2024)

examples of the enhanced subprocesses

b-flavour enhancement in the matrix element

 \checkmark We proposed a novel method to enhance the b-jet selection efficiency in the 5FS approach

- This procedure is implemented in the MadGraph5_aMC@NLO

 - The new feature will become part of an upcoming release
- * NB: hard processes like $gg \rightarrow t\bar{t}gg$ which can yield a $t\bar{t}bb$ event after a $g \rightarrow b\bar{b}$ splitting in the parton shower will not get enhanced \Rightarrow the fraction of $t\bar{t}b\bar{b}$ events is increased by a factor smaller than W_{enh}
 - also, too high enhancement factors (>100) cause instabilities which result in large statistical fluctuations

R. Frederix, TM EPJC 84, 763 (2024)

- enhancement factor w_{enh} can be set by a new parameter, bflav_enhancement, in the runcard file

this diagram is not enhanced - can we enhance it in the PS?

b-flavour enhancement in the parton shower?

- A similar biasing strategy can be potentially applied in the parton shower
- Pythia8 has a built-in mechanism for <u>enhancing splitting probabilities</u>, in particular $g \rightarrow bb$ ones
 - In versions ≥ 8.311
- In practice:
 - Even moderate enhancement in the PS causes significant widening of the event weight distribution
 - Large weights deteriorate the statistics \rightarrow cancels the improvement from the b-enhancement completely

event weights w/o enhancement in the PS

Tetiana Moskalets

LHC Top WG meeting

Generation setup for the 5FS sample and comparison to the 4FS

5FS $t\bar{t}$ + jets sample with *b*-enhancement in the ME

- ▶ MadGraph5_aMC@NLO $t\bar{t} + 0, 1, 2$ jets @NLO sample, FxFx merged
- Enhancement factor $w_{enh} = 100$
- **Renormalisation/factorisation scales:** central values for are taken from the FxFx merging - 7-point variations
- Merging scale: 40 GeV
 - variations: 70 and 100 GeV
- Shower starting scale: $H_T/2$
 - variation: $H_{\rm T}/4$
- Generation-level cut of 20 GeV on jet $p_{\rm T}$

Matched to the Pythia8 parton shower

- Not including:
 - hadronisation
 - underlying events
 - top quark decay

to reduce the generation time and to simplify the analysis, and because we focus on the differences in the ME

taking an envelope as a total uncertainty

Truth-level analysis in Rivet:

- anti- $k_{\rm T}$ jets (R > 0.4)
 - $p_{\rm T} > 25 \, {\rm GeV}$
 - $|\eta| < 2.5$
- jets containing at least one bottom quark are identified as b-jets
- consider two scenarios:
 - at least 1 b-jet
 - at least 2 b-jets

4FS *tībb* sample

- MadGraph5_aMC@NLO+Pythia8 NLO+PS ttbb sample
- **Renormalisation/factorisation scales**:
 - central values:

$$\mu_{\rm R} = (E_{{\rm T},t} E_{{\rm T},\bar{t}} E_{{\rm T},\bar{b}} E_{{\rm T},\bar{b}})^{1/4}$$
$$\mu_{\rm F} = \frac{1}{2} (E_{{\rm T},t} + E_{{\rm T},\bar{t}} + E_{{\rm T},\bar{b}} + E_{{\rm T},\bar{b}})$$

7-point variations

- Shower starting scale: $H_T/2$
- Generation-level cut of 20 GeV on jet $p_{\rm T}$
- Matched to the Pythia8 parton shower
- Not including:
 - shower starting scale uncertainty
 - matching scheme uncertainty
 - hadronisation
 - underlying events
 - top quark decay

R. Frederix, TM EPJC 84, 763 (2024)

following the recommendations in the LHC Higgs Xsec WG report arXiv:1610.07922

expected to be sizeable, (see the LHC HXS WG report) but is non-trivial to assess exactly

Truth-level analysis in Rivet:

- anti- $k_{\rm T}$ jets (R > 0.4)
 - $p_{\rm T} > 25 \, {\rm GeV}$
 - $|\eta| < 2.5$
- jets containing at least one bottom quark are identified as *b*-jets
- consider two scenarios:
 - at least 1 b-jet
 - at least 2 *b*-jets

5FS vs 4FS: at least 1 *b*-jet scenario

- For most of the variables, 4FS and 5FS predictions are compatible within the uncertainty bands
- 5FS uncertainty is more reliable than the 4FS one, since the 4FS matching uncertainty is expected to be significant but is not included
- $p_{\rm T}^{tt}$: 5FS predicts a much harder spectrum than 4FS (but this difference is expected to be covered by the full 4FS uncertainty)
 - ➡ We investigated it further, see next slides

LHC Top WG meeting

5FS vs 4FS: at least 2 *b*-jets scenario

- Similar picture as for the \geq 1 *b*-jet selection
- Difference in the $p_{\rm T}^{tt}$ spectrum (expected to be covered by the full 4FS uncertainty)
- The rest of the variables are in agreement

LHC Top WG meeting

11–13 November 2024

5FS vs 4FS: differences in the $p_{\rm T}^{tt}$ distribution

- At large p_{T}^{tt} , it is kinematically most-likely that the $t\bar{t}$ pair recoils agains a single hard jet
- If the hardest jet is a light jet:
 - **5FS:** described at NLO (most likely it is a gluon jet)
 - 4FS: described at LO or by the PS
 - No $t\bar{t}gg$ events from the ME
 - There is no hard gluon to recoil from
- For high $p_{\rm T}^{tt}$, the fraction of events with the hardest jet being light-flavoured is indeed larger in the 5FS
- But after $p_{\rm T}^{tt} \sim 500$ GeV the situation is opposite – why?
 - Let's look again at the jet $p_{\rm T}$ distributions...

at least 1 *b*-jet selection

LHC Top WG meeting

5FS vs 4FS: differences in the $p_{\rm T}^{tt}$ distribution

Tetiana Moskalets

5FS vs 4FS: differences in the $p_{\rm T}^{tt}$ distribution

The difference in the fraction of the hardest light jets in even more pronouced in the \geq 2 *b*-jet selection

Expected 5FS–4FS difference between the fraction of events with the hardest jet being light-flavoured

What about a comparison to data?

- Not done yet
- A study is planned within the ATLAS Physics Modelling Group
- sample (5FS, FxFx, with enhancement) and check:
 - data/MC comparison using the ATLAS $t\bar{t}b\bar{b}$ Rivet routine
 - performance of the enhancement feature

Once the new MadGraph5_aMC@NLO release is out, the idea is to produce an "official"

- ttbb production serves as a significant background process across various high-energy physics phenomena
- 5FS calculation of $t\bar{t}bb$ at NLO yields the most accurate prediction for this process to date - no large logarithms appearing in the matrix element calculation

 - no complications when matching to a parton shower
- We compute the $t\bar{t}$ + jets process with up to 2 jets at NLO using the FxFx merging prescription and match it to the Pythia8 shower
- \blacktriangleright To improve the efficiency of selecting events with additional b-jets we enhance the probability of producing short-distance events with additional b-quarks using a newly implemented feature in the MadGraph5_aMC@NLO generator
 - This makes producing the $t\bar{t}b\bar{b}$ in the 5FS at NLO more viable, given the computational demands of the 5FS approach

* Similar heavy-flavour enhancement could also be applied to the "fusion" method in Sherpa

