Hadronic Top-quark Polarimetry with ParticleNet

LHCTopWG meeting, Nov 12, 2024

Alberto Navarro

Based on arXiv:2407.01663 and arXiv:2407.07147

with Z. Dong, D. Gonçalves, K. Kong, and A. J. Larkoski

Motivation

- > Spin correlation studies in top quark physics plays an important role in new physics searches (e.g., resonant or non-resonant searches), observation of entanglement, etc.
- > Polarization is a valuable tool when studying top-quark physics.

> The top polarization can be probed from the kinematics of its decay products.

> The direction of the top decay products correlates with the top polarization axis

$$rac{1}{\Gamma}rac{d\Gamma}{d\cos heta_i}=rac{1}{2}(1+peta_i\cos heta_i)$$

> The direction of the top decay products correlates with the top polarization axis

$$rac{1}{\Gamma}rac{d\Gamma}{d\cos heta_i} = rac{1}{2}(1+poldsymbol{eta_i}\cos heta_i)$$

Spin analyzing power

$\ell^+/ar{d}$	u/u	$oldsymbol{b}$
1	-0.32	-0.41

> The direction of the top decay products correlates with the top polarization axis

$$rac{1}{\Gamma}rac{d\Gamma}{d\cos heta_i} = rac{1}{2}(1+poldsymbol{eta_i}\cos heta_i)$$

$$rac{\ell^+/ar{d}}{1} \hspace{0.5cm} |\hspace{0.2cm}
u/u \hspace{0.5cm} |\hspace{0.2cm}
ldot \ 1 \hspace{0.5cm} |\hspace{0.2cm} -0.41$$

Spin analyzing power

> The charged lepton and down quark have the largest spin analyzing power.

> The direction of the top decay products correlates with the top polarization axis

$$rac{1}{\Gamma}rac{d\Gamma}{d\cos heta_i} = rac{1}{2}(1+poldsymbol{eta_i}\cos heta_i)$$

Hadronic decaying top offers higher statistics so fully recovering its polarization is crucial.

Alberto Navarro

Entanglement with semileptonic tops

> very recent application of hadronic top polarization in measuring entanglement with semileptonic top quarks

Dong, Gonçalves, Kong and **AN** (2023) See also Han, Low, WU (2023) Alberto Navarro

CMS (2024)

Hadronic top polarimetry

> Identifying a down-quark in a collider environment is challenging.

Hadronic top polarimetry

- > Identifying a down-quark in a collider environment is challenging.
- > An alternative approach is to use the light jet that is softest in the top rest frame.
- This choice gives a spin analyzing power equals to 0.5 Jeżabek (1994)

Hadronic top polarimetry

- > Identifying a down-quark in a collider environment is challenging.
- > An alternative approach is to use the light jet that is softest in the top rest frame.
- This choice gives a spin analyzing power equals to 0.5 Jeżabek (1994)

 \succ Look at the top decay from the W-rest frame and define the helicity angle $\hat{q}_{
m hard}$

> Look at the top decay from the w-rest frame and define the helicity and

$$p(d
ightarrow q_{ ext{hard}}|c_W) = rac{p(|c_W|)}{p(|c_W|) + p(-|c_W|)}$$

$$p(d
ightarrow q_{ ext{soft}}|c_W) = rac{p(-|c_W|)}{p(|c_W|) + p(-|c_W|)}$$

> Look at the top decay from the w-rest frame and define the helicity

$$p(d o q_{
m hard}|c_W) = rac{p(|c_W|)}{p(|c_W|) + p(-|c_W|)} iggr\}$$
 down-quark emitted in forward hemisphere

$$p(d o q_{
m soft}|c_W) = rac{p(-|c_W|)}{p(|c_W|) + p(-|c_W|)} iggr\}$$
 down-quark emitted in backward hemisphere

> Look at the top decay from the w-rest frame and define the helicity

$$p(d o q_{
m hard}|c_W) = rac{p(|c_W|)}{p(|c_W|) + p(-|c_W|)} egin{displays l} ext{down-quark emitted in} \ ext{forward hemisphere} \end{cases}$$

$$p(d o q_{ ext{soft}}|c_W) = rac{p(-|c_W|)}{p(|c_W|) + p(-|c_W|)} egin{cases} ext{down-quark emitted in} \ ext{backward hemisphere} \end{cases}$$

$$>$$
 Define the optimal hadronic direction through kinematics as $ec{q}_{
m opt}^{
m \, kin}=p(d o q_{
m hard}|c_W)\hat{q}_{
m hard}+p(d o q_{
m soft}|c_W)\hat{q}_{
m soft}$

> Look at the top decay from the w-rest frame and define the helicity

$$p(d o q_{
m hard}|c_W) = rac{p(|c_W|)}{p(|c_W|) + p(-|c_W|)} iggr\}$$
 down-quark emitted in forward hemisphere

$$p(d o q_{
m soft}|c_W)=rac{p(-|c_W|)}{p(|c_W|)+p(-|c_W|)} egin{cases} ext{down-quark emitted in} \ ext{backward hemisphere} \end{cases}$$

> Define the optimal hadronic direction through kinematics as

$$ec{q}_{ ext{opt}}^{ ext{ kin}} = p(d
ightarrow q_{ ext{hard}} | c_W) \hat{q}_{ ext{hard}} + p(d
ightarrow q_{ ext{soft}} | c_W) \hat{q}_{ ext{soft}}$$

> The length of this vector is the spin analyzing power and equals 0.64.

Tweedie (2014)

Going beyond kinematics

> At particle level, there's more information available from the jets.

Going beyond kinematics

> At particle level, there's more information available from the jets.

Assume some set of observables $\{\mathcal{O}\}$ is measured and generalized the optimal hadronic direction to

$$ec{q}_{ ext{opt}} = p(d
ightarrow q_{ ext{hard}} | \{\mathcal{O}\}) \hat{q}_{ ext{hard}} + p(d
ightarrow q_{ ext{soft}} | \{\mathcal{O}\}) \hat{q}_{ ext{soft}}$$

Dong, Gonçalves, Kong, Larkoski and AN (2024) Dong, Gonçalves, Kong, Larkoski and AN (2024)

The analytical approach

Start by considering "global jet observables" such as kinematics, jet charge and particle multiplicity.

$$p(ar{d}
ightarrow q_{ ext{hard}} | c_W, \mathcal{Q}_{\kappa,h}, N_h, \mathcal{Q}_{\kappa,s}, N_s) = rac{1}{p(ar{d}
ightarrow q_{ ext{hard}} | c_W) + rac{p(\mathcal{Q}_{\kappa,h} | u
ightarrow q_{ ext{hard}}, N_h)}{p(\mathcal{Q}_{\kappa,h} | ar{d}
ightarrow q_{ ext{hard}}, N_h)} \, p(u
ightarrow q_{ ext{hard}} | c_W) \ imes rac{1}{rac{p(\mathcal{Q}_{\kappa,s} | ar{d}
ightarrow q_{ ext{soft}}, N_s)}{p(\mathcal{Q}_{\kappa,s} | u
ightarrow q_{ ext{soft}}, N_s)} \, p(ar{d}
ightarrow q_{ ext{soft}} | c_W) + p(u
ightarrow q_{ ext{soft}} | c_W) \ imes p(ar{d}
ightarrow q_{ ext{hard}} | c_W) \, .$$

Dong, Gonçalves, Kong, Larkoski and AN (2024)

The analytical approach

> Start by considering "global jet observables" such as kinematics, jet charge and particle multiplicity.

$$p(\bar{d} \rightarrow q_{\mathrm{hard}}|c_{W}, \mathcal{Q}_{\kappa,h}, N_{h}, \mathcal{Q}_{\kappa,s}, N_{s}) = \frac{1}{p(\bar{d} \rightarrow q_{\mathrm{hard}}|c_{W}) + \underbrace{\frac{p(\mathcal{Q}_{\kappa,h}|u \rightarrow q_{\mathrm{hard}}, N_{h})}{p(\mathcal{Q}_{\kappa,h}|\bar{d} \rightarrow q_{\mathrm{hard}}, N_{h})}} p(u \rightarrow q_{\mathrm{hard}}|c_{W})}_{\text{Likelihood ratio of the down of the down and up being the soft jet}} \times \underbrace{\frac{1}{p(\mathcal{Q}_{\kappa,s}|\bar{d} \rightarrow q_{\mathrm{soft}}, N_{s})}} p(\bar{d} \rightarrow q_{\mathrm{soft}}|c_{W}) + p(u \rightarrow q_{\mathrm{soft}}|c_{W})}_{\text{the hard jet}}}_{\text{the hard jet}}$$

Dong, Gonçalves, Kong, Larkoski and AN (2024)

- > Jet charge distributions conditioned on multiplicity are Gaussians.

 Kang, Larkoski and Yang (2023)
- Compute the spin analyzing power as the square root of the mean squared-vector length

$$\langle |ec{q}_{ ext{opt}}|^2
angle = \int dc_W \, p(c_W) \int d\mathcal{Q}_{\kappa,h} \, d\mathcal{Q}_{\kappa,s} \, p(\mathcal{Q}_{\kappa,h},\mathcal{Q}_{\kappa,s}|c_W,N_h,N_s) \, |ec{q}_{ ext{opt}}|^2$$

- > Jet charge distributions conditioned on multiplicity are Gaussians.

 Kang, Larkoski and Yang (2023)
- Compute the spin analyzing power as the square root of the mean squared-vector length

$$\langle |ec{q}_{ ext{opt}}|^2
angle = \int dc_W \, p(c_W) \int d\mathcal{Q}_{\kappa,h} \, d\mathcal{Q}_{\kappa,s} \, p(\mathcal{Q}_{\kappa,h},\mathcal{Q}_{\kappa,s}|c_W,N_h,N_s) \, |ec{q}_{ ext{opt}}|^2$$

Better discrimination for low $N_{\rm s}$ and $N_{\rm h}$

 $Q_{K,S}$

 $Q_{\kappa,h}$

 $|c_W|$

The ML approach

- Could improve result further by incorporating information of jet constituents such as charge, momenta and ID.
- > Train network to identify the down jet within the top jet.
- > Using a simple DNN may not be ideal due to complexity of data and number of features.

Dong, Gonçalves, Kong, Larkoski and AN (2024)

ParticleNet

- Idea is to represent a jet as an unordered, permutation invariant set of particles (a particle cloud).
- > Analogous to the point cloud representation of 3D shapes used in computer vision.
- > Has been successfully used for top and quark-gluon tagging.
- > need to modify for our purpose.

Qu, Gouskos (2019)

See also Gong et al. (2022)

Alberto Navarro

Bogatskiy, Hoffman, Miller, Offermann (2022)

ParticleNet

Alberto Navarro

Bogatskiy, Hoffman, Miller, Offermann (2022)

Variable	Definition	
$\Delta \eta_t$	difference in pseudorapidity between	
	the particle and the top jet axis	
$\Delta\phi_t$	difference in azimuthal angle between	
	the particle and the top jet axis	
$\Delta \eta_j$	difference in pseudorapidity between	
	the particle and the subjet axis	
$\Delta\phi_j$	difference in azimuthal angle between	
	the particle and the subjet axis	
$\log p_T$	logarithm of the particle's p_T	
$\log E$	logarithm of the particle's Energy	
q	electric charge of the particle	
isElectron	if the particle is an electron	
isMuon	if the particle is a muon	
isPhoton	if the particle is a photon	
is Charged Hadron	if the particle is a charged hadron	
isNeutralHadron	if the particle is a neutral hadron	

Variable	Definition	
$\Delta \eta_t$	difference in pseudorapidity between	
	the particle and the top jet axis	
$\Delta\phi_t$	difference in azimuthal angle between	
:	the particle and the top jet axis	
$\Delta\eta_j$	difference in pseudorapidity between.	
•	the particle and the subjet axis	
$\Delta\phi_j$	difference in azimuthal angle between	
	the particle and the subjet axis	
• $\log p_T$	logarithm of the particle's p_T	
$\log E$	logarithm of the particle's Energy	
q	electric charge of the particle	
isElectron	if the particle is an electron	
isMuon	if the particle is a muon	
isPhoton	if the particle is a photon	
is Charged Hadron	if the particle is a charged hadron	
is Neutral Hadron	if the particle is a neutral hadron	

Variable	Definition	
$\Delta \eta_t$	difference in pseudorapidity between	
1	the particle and the top jet axis	
$\Delta\phi_t$	difference in azimuthal angle between	
i	the particle and the top jet axis	
$\Delta\eta_j$	difference in pseudorapidity between	
	the particle and the subjet axis	
$\Delta\phi_j$	difference in azimuthal angle between	
	the particle and the subjet axis	
$\log p_T$	logarithm of the particle's p_T	
$\log E$	logarithm of the particle's Energy	
q	electric charge of the particle	
is Electron	if the particle is an electron	
isMuon	if the particle is a muon	
isPhoton	if the particle is a photon	
is Charged Hadron	if the particle is a charged hadron	
is Neutral Hadron	if the particle is a neutral hadron	

Variable	Definition
$\Delta \eta_t$	difference in pseudorapidity between
	the particle and the top jet axis
$\Delta\phi_t$	difference in azimuthal angle between
	the particle and the top jet axis
$\Delta\eta_j$	difference in pseudorapidity between
	the particle and the subjet axis
$\Delta\phi_j$	difference in azimuthal angle between
	the particle and the subjet axis
\logp_T	logarithm of the particle's p_T
$\log E$	logarithm of the particle's Energy
q	electric charge of the particle
isElectron	if the particle is an electron
isMuon	if the particle is a muon
isPhoton	if the particle is a photon
isChargedHadron	if the particle is a charged hadron
is Neutral Hadron	if the particle is a neutral hadron

Improvements with ML approach

- > Use network score as the probability of the down-type jet being the soft jet.
- Apply cuts on the network score to enhanced the results as long as total rate is still larger than in di-leptonic case.

Improvements with ML approach

- > Use network score as the probability of the down-type jet being the soft jet.
- Apply cuts on the network score to enhanced the results as long as total rate is still larger than in di-leptonic case.

Summary

- > Hadronic top-quark polarization can be improved by incorporating information of global jet dynamics and constituents.
- > Owing to the larger rate (factor of for semileptonic w.r.t dileptonic case), the spin analyzing power in hadronic decays can improve by approximately 20% (40%) compared to the kinematic approach, assuming an efficiency of 0.5 (0.2) for the GNN.
- This results could be used to further improve studies were the top polarization is relevant such as new physics searches, spin correlations, etc.

Backup

Path for further improvements

- Performance can be improved with pion/kaon discrimination.
- They are not well distinguished at the LHC. This may change with future detectors, though.
- > Charm tagging can also be incorporated.
- > Any extra information should further improve our current results.

GNN score

- > Total of 77k trainable parameters.
- > Trained on 200k unpolarized sample.
- > Tested on 50k right-hand and left-hand polarized samples.

DNN score

- Using jets momenta as input.
- > Total of 20k trainable parameters.
- > Trained on 200k unpolarized sample.
- > Tested on 50k right-hand and left-hand polarized samples.

Jet charge

Energy fraction of jet constituent

Parametric form of jet charge distributions Kang, Larkoski and Yang (2023)

> Assume hadrons in the jet are produced through identical independent processes and the multiplicity is large

$$p(\mathcal{Q}_{\kappa}|u,N) = rac{1}{\sqrt{2\pi\sigma^2}}\,e^{-rac{(\mathcal{Q}_{\kappa}-\mu_u)^2}{2\sigma^2}} \qquad p(\mathcal{Q}_{\kappa}|ar{d},N) = rac{1}{\sqrt{2\pi\sigma^2}}\,e^{-rac{(\mathcal{Q}_{\kappa}-\mu_{ar{d}})^2}{2\sigma^2}}$$

> Assume particles in the jets are pions and the SU(2) isospin of the pions is exact

$$\mu_u = rac{2}{3}N^{-\kappa}\left(1+rac{\kappa}{2}(\kappa-1)\sigma_z^2N^2+\cdots
ight) \quad \mu_{ar{d}} = rac{1}{3}N^{-\kappa}\left(1+rac{\kappa}{2}(\kappa-1)\sigma_z^2N^2+\cdots
ight) \quad \sigma^2 = rac{2}{3}N^{1-2\kappa}\left(1+\kappa(2\kappa-1)\sigma_z^2N^2+\cdots
ight)$$

The discrimination power

$$\eta = rac{(\langle Q_{\kappa}
angle_u - \langle Q_{\kappa}
angle_{ar{d}})^2}{\sigma^2} \sim rac{1}{N}ig(1-\kappa^2\sigma_z^2N^2+\ldotsig)$$

Data preparation

- > we generate 14 TeV $pp \to t\bar{t} \to \ell^\pm \nu 2b2j$ events using MG5, with no cuts except for pT(t) > 200 GeV.
- > Three sets of samples where the top quark is unpolarized, left hand polarized and right hand polarized in the $t\overline{t}$ rest frame.
- > Parton shower and hadronization are done with PYTHIA8 without MPI.
- > Identify the top jet using CA algorithm with R=1.5, and pT>250 GeV. And decluster to find the subjets with m < 30 GeV.
- > Keep the three subjets that satisfy 165 GeV < m(top) < 195 GeV.
- \succ Match the hadron level jets with true parton level momenta, by using the smallest ΔR between the two.

EdgeConv block

- Represents a point cloud as a graph, whose vertices are the points themselves, and the edges are constructed as connections between each point to its k nearest neighboring points
- A local patch needed for convolution is defined for each point as the k nearest neighboring points connected to it.
- > Can be viewed as a mapping from a point cloud to another point cloud with the same number of points.

