

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Bundesministerium für Bildung und Forschung

Search for pair production of heavy particles decaying to a top quark and a gluon in the lepton+jets final state in proton-proton collisions at √s = 13 TeV at CMS

Finn Labe (Universität Hamburg) on behalf of the CMS collaboration

arXiv:2410.20601 (submitted to EPJC)

12.11.2024 | LHC TOP WG meeting

The particle in question: t*

- Top partner characterized by its decays:
- Predicted in composite top models
- Same signature can appear for VLQ in little Higgs, extra dimensions...
 - Assuming low mixing with SM top
- This work: search for $t^* \bar{t}^* \rightarrow t g \bar{t} g$ (1 ℓ)

 $t\bar{t}$ + two jets

- Run 1 CMS analysis, 8 TeV (CMS Collaboration, JHEP 06 (2014) 125.)
 - Excluded spin-1/2 t* up to 521 GeV*
 - Excluded spin-3/2 t* up to 803 GeV
- Run 2 CMS analysis, 13 TeV (2016 data) (CMS Collaboration. Phys.Lett.B 778 (2018) 349-370.)
 - t* mass reconstruction approach
 - Assumed resolved jets from top quark
 - Excluded spin-3/2 t* up to 1200 GeV
- No ATLAS results on $t^* \bar{t}^*$ searches

Current limits on a spin 3/2 t* by CMS (CMS Collaboration. Phys.Lett.B 778 (2018) 349-370.)

Analyzed processes

- Signal processes: **spin-1/2 and spin-3/2** $t^* \overline{t}^*$
 - Included in simulations with EFT approach:
 - Only added particle beyond SM: t*
 - Couplings described by EFT operators
 - Main spin difference: total momentum
 - Difference gets smaller for higher m_{t*}
- SM backgrounds: tt
 t
 , W+jets, single top (ST), QCD, Diboson (VV) & Drell-Yan (DY)

Finn Labe | LHC TOP WG 2024

5

- Previous analysis: mass reconstruction approach
 - Problem: many objects, difficult combinatorics
 - Alternative: simple variable, enrich signal with DNN

Search variable

 $S_T = p_T^{\ell} + p_T^{\text{miss}} + \sum p_T^{\text{jets}}$

09.07.24

Cut-based event selection

- Standard single lepton tt
 selection:
 Lepton, p_T^{miss}, jets (one b-tagged)
- Variable-radius jets used: HOTVR algorithm (T. Lapsien, R. Kogler, J. Haller, <u>Eur.Phys.J.C 76 (2016) 11, 600</u>.)
 - Reconstruct top quarks in a single jet for different top quark p_T
 - Provides jet substructure information
 - Can also reconstruct gluon jets, cover splitting
 - → Good algorithm for this analysis!

Event classification DNN

- Train DNN to discriminate signal from $t\bar{t}$
 - Outputs "signal-likeness score": s_{DNN}

33 input variables

- Leading lepton p_T , η , φ , I_{rel}
- 3 HOTVR jets p_T , η , φ , N_{subjets} , $\tau_{1,2,3}$
- 1 AK4 jet (highest *b*-tag)
 p_T, η, φ, DeepJet score
- $p_T^{
 m miss}$, $ec{p}_T^{
 m miss} \, arphi$
- N_{AK4}, N_{HOTVR}

- Problem: many input variables strongly correlated with S_T
- Decorrelation procedure needed

ST

Remove S_T difference between signal and tt with weights

Designing Decorrelated Taggers (DDT)

Removing remaining correlations by S_T-dependent DNN score threshold

Signal region (SR)

 $s_{\rm DDT} > 0$

Signal eff.: 55 – 75%

Statistical analysis

 $t\bar{t}$ eff.: 30%

9

- Analysis region overview
- Three main regions, each split into muon and electron channel
 - Control region: invert b-tagging requirement (no s_{DDT} condition)
 - Only signal region used in statistical analysis

Control region (CR) b-jet veto

Low in signal, rich in non-t backgrounds

Background estimate

Validation region (VR) $s_{\rm DDT} < 0$

Low in signal, similar SM composition as SR

Validation

Estimating non-top backgrounds from control region with transfer function

 $N_{SR}(\text{non-t bkg}) = g_{TF}(S_T) (N_{CR}(\text{data}) - N_{CR}(\text{top bkg}))$

Background estimation: validation region

Pre-fit S_T distributions in low $S_{DDT} < 0$ VR:

- Good data / SM agreement in VR
- VR and SR are identical except for DNN cut
 - Nuisance accounts for any shape diff.

Signals scaled to theory prediction

09.07.24

- Binned maximum likelihood fit of both lepton channels simultaneously
 - Combining SR templates from all data-taking eras
- Including nuisance parameters for systematic uncertainties from
 - ... data / MC scale factors
 - ... background estimation
 - ... theory (μ_r, μ_f, top p_T reweighting, PDFs)

Dominant experimental uncertainties: b-tagging and DNN decorrelation

Dominant theoretical uncertainty: Renormalization scale (μ_r) and factorization scale (μ_f) variations

Improved simulation accuracy could help here!

•

SR post-fit distributions

Signals scaled to theory prediction

No deviation from SM predictions observed, background-only fit agrees well:

Exclusion limits (spin 3/2)

- Exclusion limits for spin 3/2 t*
- Significant improvement over 2016 CMS result
 - More data: $\sqrt{N} \approx 2$
 - Signal efficiency: x5
 - Background efficiency: x1.1
- Mass exclusion limit:
 - 1700 GeV observed
 - 1690 GeV expected

09.07.24

Exclusion limits (spin 1/2)

- Exclusion limits for spin 1/2 t*
- Worse than spin 3/2 limits, especially for low m(t*)
- Mass exclusion limit:
 - 1050 GeV (observed)
 - 990 GeV (expected)
- First ever 13 TeV exclusion limits for this spin scenario

Summary and outlook

- Search for pair production of heavy quarks $t^* \bar{t}^* o t g \bar{t} g$ (1 ℓ)
 - Substantially improved spin-3/2 limits, first ever 13 TeV spin-1/2 limits
- Opportunities for future analyses:
 - Larger dataset (Run 3, HL-LHC...)
 - Higher accuracy $t\bar{t}$ + 2 jets simulation
 - Analyzing the $t^* \bar{t}^* \rightarrow t g \bar{t} \gamma$ decay
 - Adding the t*t process

Backup

Cut-based event selection

- Single lepton trigger (μ or e)
- Exactly one lepton (μ or e)
- ≥ 4 small-radius (AK4) jets
- ≥ 1 variable-radius (HOTVR) jet
- $p_T^{\text{miss}} > 50 \text{ GeV}$
- ≥ 1 medium DeepJet b-tag
- Custom lepton isolation
- $S_T > 500 \, \text{GeV}$

Feynman diagram of $t^*t^* \rightarrow tgtg \rightarrow bbqqgg\ell v$

