Versal ACAP processing for ATLAS-TileCal signal reconstruction

2nd Computing Challenges Workshop (COMCHA), A Coruña October 2nd - 4th, 2024

Francisco Hervas, Luca Fiorini, Alberto Valero, Héctor Gutiérrez, Francesco Curcio

HIGH-LOW TED2021-130852B-100

INDEX

1.Introduction

2.Methods

3.Results

4.Summary

1 Introduction - LHC TileCal Read-out

- In the LHC, Bunch Crossings (BC) happen at 40 MHz (25 ns)
- The processing happens after the Level-1 Trigger, at 100 kHz (10 us)
- Signals are processed online using the Optimal Filtering (OF) algorithm
	- \circ The processing is made using Digital Signal Processors (DSPs)

1

- o Therefore, it is sequential
- Fixed point arithmetic

DOI: [10.1109/RTC.2007.4382840](https://doi.org/10.1109/RTC.2007.4382840)

- In the HL-LHC, signals will be reconstructed for every BC at 40 MHz (25 ns) before the trigger
	- \circ Signals need to be processed by FPGAs due to their low and deterministic latency for signal synchronization
	- o Multiple simultaneous signals will produce pile-up
- There is a need for more sophisticated algorithms for signal reconstruction
	- o Deep learning algorithms (Neural Networks)

FPGA implementation of a deep learning algorithm for real-time signal reconstruction in particle detectors under high pile-up conditions

J.L. Ortiz Arciniega¹, F. Carrió² and A. Valero² Published 2 September 2019 . © 2019 IOP Publishing Ltd and Sissa Medialab

Journal of Instrumentation, Volume 14, September 2019

Citation J.L. Ortiz Arciniega et al 2019 JINST 14 P09002

DOI 10.1088/1748-0221/14/09/P09002

DOI: 10.1088/1748-0221/14/09/P09002

 0.8 0.6 0.4 0.2 -80

Arbitrary units

1 Introduction - Device Comparison

CPU (DSP):

- **•** Sequential
- Fixed circuits
- Programming language

SoC:

- Parallel and concurrent
- Configurable circuits
- Hardware description language (HDL)

FPGA:

- Fixed + Configurable • Programming + HDL
- Sequential + Parallel

1 Introduction - Setup

- Setup
	- o Computer
		- **Mother board: Gigabyte Technology Co., Ltd Z690 UD** DDR4
		- CPU: 13th Gen Intel Core i7-13700 x 24
		- GPU: NVIDIA GeForce RTX 3050
		- Memory: 64 GB
		- Disk: 2 TB
	- Evaluation board
		- **VCK190, VC1902**
		- DDR4 (8 GB) and LPDD4 (8 GB)
		- **PCIe Gen4 x8**
		- **JTAG and QSPI**
		- MicroSD
		- **SYSMON**
		- UART, CAN, SFP28 and QSFP28
	- o System on Chip
		- x400 AI Engines, x1968 DSP slices, x1968 Logic cells, x899840 LUTs
		- APU A72, RPU R5F
		- x4 Memory controllers
		- \bullet x770 I/O pins

4

PCIe Gen4 x8

+

2 Methods - Complete System Implementation

- Driver implementation in host CPU for communication with XDMA
- Driver implementation in device CPU for managing internal DMAs
- NoC configuation for internal communication
- Interrupt system development
- Multiple cores executing algorithms

2 Methods - AXI4 Memory Map and Lite

- The AXI4 Memory Map is transactions-based and defines five independent channels
- Multiple Outstanding Transactions (OT)
- Most common protocol in FPGA + \bullet CPU based devices

2 Methods - AXI4 Stream Interface

- The AXI4 Stream interface is a point to point link where the transmitter is known as a master or manager, and the receiver a slave or subordinate
- Basic handshake
- There are 4 important signals

2 Methods - Modified Perceptron

- Read-out window of 9 BC o Sliding 1 BC for each new window
- Target the true amplitude of the central BC in the window
- Hidden layer and the output layer
- Hyperbolic Tangent

- DSP58 Highlights:
	- 27-bit x 24-bit multiplier

- 1968 DSP58 engines
- 1070 MHZ max frequency
-
- 58-bit adder/accumulator
- 116-bit wide XOR function
- 4 registers for full pipeline VC1902:
-
-
-

• The DSP58 can be instantiated with a primitive, or coded with RTL.

2 Methods - DSP58 Multiply-Accumulate

vs.

- With instantiation more complex structures can be implemented
- With RTL more flexibility between devices is achieved

2 Methods - RTL Level Hidden Layer and Output Layer

RTL Design of the two layers of the Neural Nework VHDL-2008 standard

• Activation function $tanh(x)$ quantized over 5000

FPGA implementation of a deep learning algorithm for real-time signal reconstruction in particle detectors under high pile-up conditions

J.L. Ortiz Arciniega¹, F. Carrió² and A. Valero² Published 2 September 2019 · @ 2019 IOP Publishing Ltd and Sissa Medialab of Instrumentation, Volume 14, September 2019 Citation J.L. Ortiz Arciniega et al 2019 JINST 14 P09002 DOI 10.1088/1748-0221/14/09/P09002

-
-
- Fixed point arithmetic
- Synthesis and implementation in Vivado
- values

Hidden Layer

Output Layer

2 Methods - RTL Level Modified Perceptron

3 Results - Accuracy Comparison CPU vs. FPGA

- CPU (Floating point)
- FPGA (Fixed point)
- Maximum difference -> 5 ADC Counts
- FPGA amplitude > CPU amplitude due to the fixed point implementation

- The number of cores is dependent of:
	-
	-
	- PL resources used for each core (LUTs, FFs,
		-

if (Processing_BW > (NoC and DDR_BW)) then

3 Results - Time Comparison CPU vs. FPGA

- -
-

• For less than 10⁶ events, the CPU is better than the FPGA due to the fixed minimum time for transmission and setup • For more than 10⁶ events, the FPGA has a better performance than the CPU

 \bullet The speed up factor remains stable $(x3.2)$ for more than $10⁸$ events • For 10¹² events, the FPGA is 7.17 hours faster

-
- - than the CPU

4 Summary

Summary:

FPGA implementation of deep learning algorithms improves the efficiency over traditional CPU.

Future work:

- More complex deep learning algorithms will be implemented.
- Power consumption will be measured and monitored.
- AI Engines utilization and optimization.
- Optimization in terms of latency and power consumption

"This work is supported by Ministerio de Ciencia, Innovación y Universidad con fondos Next

Generation y del Plan de Recuperation, Transformacionales y Resiliencia (project -

TED2021-130852B-100)"

17

Versal ACAP processing for ATLAS-TileCal signal reconstruction

2nd Computing Challenges Workshop (COMCHA), A Coruña October 2nd - 4th, 2024

Francisco Hervas, Luca Fiorini, Alberto Valero, Héctor Gutiérrez, Francesco Curcio

HIGH-LOW TED2021-130852B-100

Backup

AI Engines

- 400 AI Engine Tiles
- Frequency
	- o 1.25 GHz working
	- 312.5 MHz transport
- Latency
	- o Input net: 12 cycles
	- o Output net: 8 cycles

BEAM System Controller

XILINX

Board Evaluation & Management Too

Welcome & Get Started with Versal AI Core Evaluation Kit

Fixed point vs. Floating point

Floating-Point Format

Fixed-Point Format

- fractional part -

Complete RTL

