
Versal ACAP processing for ATLAS-
TileCal signal reconstruction 

2nd Computing Challenges Workshop (COMCHA), A Coruña
October 2nd - 4th, 2024

Francisco Hervas, Luca Fiorini, Alberto Valero,
Héctor Gutiérrez, Francesco Curcio

HIGH-LOW
TED2021-130852B-100



INDEX

Introduction1.

Methods2.

Results3.

Summary4.



1 Introduction - LHC TileCal Read-out

In the LHC, Bunch Crossings (BC) happen at 40 MHz (25 ns)
The processing happens after the Level-1 Trigger, at 100 kHz (10 us)
Signals are processed online using the Optimal Filtering (OF) algorithm

The processing is made using Digital Signal Processors (DSPs)
Therefore, it is sequential
Fixed point arithmetic

1

 DOI: 10.1109/RTC.2007.4382840

https://doi.org/10.1109/RTC.2007.4382840


1 Introduction - HL-LHC TileCal Signal Reconstruction

In the HL-LHC, signals will be reconstructed for every BC at 40 MHz (25 ns) before the
trigger

Signals need to be processed by FPGAs due to their low and deterministic latency
for signal synchronization
Multiple simultaneous signals will produce pile-up

There is a need for more sophisticated algorithms for signal reconstruction
Deep learning algorithms (Neural Networks)

2

 DOI: 10.1088/1748-0221/14/09/P09002



1 Introduction - Device Comparison

CPU (DSP):
Sequential
Fixed circuits
Programming language

SoC:
Sequential + Parallel
Fixed + Configurable
Programming + HDL

FPGA:
Parallel and concurrent
Configurable circuits
Hardware description
language (HDL)

3



1 Introduction - Setup

4

Setup
Computer

Mother board: Gigabyte Technology Co., Ltd Z690 UD
DDR4
CPU: 13th Gen Intel Core i7-13700 x 24
GPU: NVIDIA GeForce RTX 3050
Memory: 64 GB
Disk: 2 TB

Evaluation board
VCK190, VC1902
DDR4 (8 GB) and LPDD4 (8 GB)
PCIe Gen4 x8
JTAG and QSPI
MicroSD
SYSMON
UART, CAN, SFP28 and QSFP28

System on Chip
x400 AI Engines, x1968 DSP slices, x1968 Logic cells,
x899840 LUTs
APU A72, RPU R5F
x4 Memory controllers
x770 I/O pins

PCIe Gen4 x8

+

+



2 Methods - Complete System Implementation

5

Driver implementation in
host CPU for
communication with XDMA
Driver implementation in
device CPU for managing
internal DMAs
NoC configuation for
internal communication
Interrupt system
development
Multiple cores executing
algorithms



2 Methods - AXI4 Memory Map and Lite

6

The AXI4 Memory Map is
transactions-based and defines
five independent channels
Multiple Outstanding
Transactions (OT)
Most common protocol in FPGA +
CPU based devices



2 Methods - AXI4 Stream Interface

7

The AXI4 Stream interface is a
point to point link where the
transmitter is known as a master
or manager, and the receiver a
slave or subordinate
Basic handshake
There are 4 important signals



2 Methods - Modified Perceptron

8

Read-out window of 9 BC
Sliding 1 BC for each new window

Target the true amplitude of the central BC in the window
Hidden layer and the output layer
Hyperbolic Tangent

x0 x1 x2

x3

x4

x5

x6
x7 x8

y



2 Methods - DSP58 Multiply-Accumulate

9

DSP58 Highlights:
27-bit x 24-bit multiplier
58-bit adder/accumulator
116-bit wide XOR function
4 registers for full pipeline

VC1902:
1968 DSP58 engines
1070 MHZ max frequency

vs.

The DSP58 can be instantiated with a
primitive, or coded with RTL.

With instantiation more complex
structures can be implemented
With RTL more flexibility between devices
is achieved



2 Methods - RTL Level Hidden Layer and Output Layer

10

RTL Design of the two layers of the Neural Nework
VHDL-2008 standard
Fixed point arithmetic
Synthesis and implementation in Vivado
Activation function tanh(x) quantized over 5000
values

Hidden Layer

Output Layer



2 Methods - RTL Level Modified Perceptron

11

Input: 9 BC (Samples) shift register sliding window
Output: True amplitude of the central BC of the input window
DSP Engine based implementation
FSM to control the accumulator counter
TANH implemented as a ROM of 5000 quantized values

x0 x1 x2

x3

x4

x5

x6
x7 x8

y



Resource Utilization Available Utilization %

LUT 2099 899840 0.23

FF 531 1799680 0.03

DSP 6 1968 0.30

IO 228 692 32.95

BUFG 1 980 0.10

2 Methods - Modified Perceptron Resource Utilization

12



3 Results - Accuracy Comparison CPU vs. FPGA

13

CPU (Floating point)
FPGA (Fixed point)
Maximum difference -> 5 ADC Counts
FPGA amplitude > CPU amplitude due
to the fixed point implementation



3 Results - Time Comparison Between Different Cores

The number of cores is dependent of:

NoC and DDR bandwidth

NoC OT transactions

PL resources used for each core (LUTs, FFs,

BRAMs, DSPs, ...)

14



3 Results - Time Comparison CPU vs. FPGA

15

For less than 10⁶ events, the CPU is better
than the FPGA due to the fixed minimum
time for transmission and setup
For more than 10⁶ events, the FPGA has a
better performance than the CPU

The speed up factor remains stable (x3.2)

for more than 10⁸ events
For 10¹² events, the FPGA is 7.17 hours faster
than the CPU



4 Summary

Summary:

FPGA implementation of deep learning

algorithms improves the efficiency over

traditional CPU.

Future work:

More complex deep learning algorithms will

be implemented.

Power consumption will be measured and

monitored.

AI Engines utilization and optimization.

Optimization in terms of latency and power

consumption

16



Funding

“This work is supported by Ministerio de Ciencia, Innovación y Universidad con fondos Next

Generation y del Plan de Recuperation, Transformacionales y Resiliencia (project -

TED2021-130852B-100)”

17



Versal ACAP processing for ATLAS-
TileCal signal reconstruction 

2nd Computing Challenges Workshop (COMCHA), A Coruña
October 2nd - 4th, 2024

Francisco Hervas, Luca Fiorini, Alberto Valero,
Héctor Gutiérrez, Francesco Curcio

HIGH-LOW
TED2021-130852B-100



Backup



AI Engines

400 AI Engine Tiles
Frequency

1.25 GHz working
312.5 MHz transport

Latency
Input net: 12 cycles
Output net: 8 cycles



BEAM System Controller



Fixed point vs. Floating point



Complete RTL


