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Summary

● CMS Level-1 Trigger System
● Phase-2 Upgrade
● OMTF Algorithm Status

○ Purpose
○ HLS approach
○ Firmware build pipeline
○ Board integration

● ML for triggering particles
● GNN Tracking
● GNN in OMTF
● Test case

What is this about?
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CMS Level-1 Trigger System
Today

Input 
Data

Physics Objects 
Reconstruction

Final decision

● @40 MHz
● Short amount of time :         

< 3.8 us (latency)
● Large data volume

Selecting physics with simple criteria
implementable in hardware
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Phase-2 upgrade

● Increase bandwidth 100 kHz → 750 kHz
● Increase latency 3.8 us → 12.5 us
● Include high-granularity information
● Include tracking information
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Key parameters

● Cutting-edge hardware 
○ FPGA VU13P, 28 Gb/s links

● Advanced Architecture
○ ATCA standard, flexible & modular design

Requirements

Firmware

● Algorithm developed mostly in High Level 
Synthesis (HLS)

○ Used successfully, much faster turn-around
● Many tools available for Machine Learning 

inference
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OMTF Algorithm
Overlap Muon Track Finder

https://iopscience.iop.org/article/10.1088/1748-0221/11/03/C03004

● Designed to reconstruct muon trajectories in the 
barrel-endcap transition region of the detector.

● The algorithm evaluates how well the stubs 
correspond to expected patterns of muon tracks with 
specific pT.

● By calculating a similarity score between the 
observed stubs and these reference patterns, the 
algorithm identifies the most probable track 
candidate.

For Phase-2, we want to achieve a modular and 
maintainable design that can be easily adapted for 
future upgrades and more complex detector 
conditions.
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Phase-2 OMTF

● Use of Vitis HLS to design 
each module.

● A direct adaptation from 
emulator code is made.

● Optimization techniques 
such as pipelining and 
memory arrangement.

● Individual testing for each 
module.

● Emulator - Hardware 
matching.

● Building pipeline.

HLS approach

● Manage streamed data.
● Parse data frames.

● Parallel “golden pattern” 
processing.

● Stored weights reshaped for 
simultaneous availability.

Input converting modules
Main processor

General scheme
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Phase-2 OMTF
Firmware build pipeline
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https://app.diagrams.net/?page-id=139tbvdGNyHHGl5ISL4o&scale=auto#G1vwMTWyK-kWIUb3QQ5kpu47eNIblW7LqV


Board integration
Easy integration in vivado

-Combination of 
bash, make and 
TCL scripts are 
used to build the 
algorithm BD 
and framework 
auto..
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Expanded main processor block

- Big designs take long 
to synthesise.

- Split your problem in 
smaller projects.

- Each project can be 
exported in IP format 
and then linked in a 
chain.

- Saves lots of 
synthesis time
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HLS
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Extras

● You can use C++11 and higher constructs. Nice paper 
● Read the list of pragmas and experiment a lot with them.
● HLS likes ternary operators !!

● Using C++ classes and template does 
not affect resource usage while 
improving code flexibility and ease of 
use. HLS-Classes-Templates

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9839291
https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
https://docs.amd.com/r/en-US/ug1399-vitis-hls/C-Classes-and-Templates


ML  for track finding

● Machine learning is growing in 
popularity, and the fields of HEP 
and LHC are no exceptions.

● In HEP, there is a growing trend 
towards utilizing larger and more 
complex machine learning models, 
along with increasing demands for 
computational power.

● Availability of modern hardware.

Why is that?

https://arxiv.org/pdf/2203.15823
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GNN Tracking

● Tracking is an extremely challenging problem.
● The combinatorial complexity is vast and will 

only intensify over time.
● Graph Neural Networks (GNNs) offer 

promising solutions for tracking in the 
High-Luminosity Large Hadron Collider 
(HL-LHC).

● FLOPs and power efficiency are critical 
factors to consider.

● Pruning is a potential strategy to reduce 
complexity and resource demands.

LHCb exploring the use of GNNs

https://arxiv.org/abs/2407.12119

Level-1 Trigger Level - O(μs) Latency.
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GNN in OMTF
INTREPID project 

INnovativeTRiggEr techniques for beyond the 
standard model PhysIcsDiscovery at the LHC

● LLP signals might be easily overlooked or 
misinterpreted in LHC data.

● Enhancing muon triggers within the current 
architecture focuses on optimizing algorithms 
and refining data processing techniques to 
improve detection efficiency without requiring 
significant hardware upgrades.

Explore alternative technologies 
and ideas which could not be 
otherwise investigated that 
could potentially lead to a 
significant breakthrough.
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Software implementation

● Using fully connected graphs for the moment.
● Using pyTorch geometric libraries.
● Current architecture based on two Graph Attention Layer 

(GAT) [arXiv:1710.10903] to process graph data, making use 
of the edge information. After each GAT layer, ReLU 
activation is applied. The model combines global mean and 
average pooling to aggregate node-level features into a 
graph-level representation.

Designing a basic network

Stub detected in a station
Stub coordinates

Stub number
Stub type

Connection between two 
stubs

Difference in phi
DIfference in eta

G
N

N

Loss function pT regression

● Muon gun phase-II sample, using only negative muons (symmetry)
● Batches of 64 graphs (events)
● Learning rate = 0.0005
● Weight decay = 0.75
● Epochs = 1000

Current training:

Output: Regress muon pTInput: Single event stubs graph
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Hardware implementation
First steps to design with versal architecture

● Build specific kernels, each processing a different layer of the net.
● This would  require a direct implementation on C++, to build HLS kernels.
● The high-computational cost operations would be run in the versal AI cores.

○ Implement the model in C++ using vectorized operations that can leverage the parallel computing capabilities 
of the cores. 

○ Develop AI Engine kernels for the most compute-intensive parts of your model. The AI Engine kernels are 
designed to run on the AI Engines, which are optimized for high-throughput, low-latency vector processing.

○ Integrate your AI Engine kernels with the rest of the system.
○ Profile the application to identify bottlenecks
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Test case

● Graph Convolutional Networks extend the 
concept of convolution from grid-like data 
(like images) to graph-structured data.

Implementing a simple GCNConv layer

Aggregates feature information from a node's neighbors 
(including itself) and transforms it using learnable weights.

In             the conv layer is called GCNConv

Feat transform

Norm Linear

Message Passing

Aggreg. Update

Bias Act.
Funct.

We dissect the layer into its main subfunctions:
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Test case

● We need C++ to import the layer into our device w/HLS!!

Implementing a simple GCNConv layer

Aggregate example

torch_geom_doc 16

https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/message_passing.html#MessagePassing


Test case
Implementing a simple GCNConv layer
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● After converting all the main elements, 
we test the performance of the layer and 
do profiling, so we can check the 
metrics and see what are the 
high-computational cost zones.

Then we build the 
HLS-like version
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Test case : next steps

Implement the kernel cores 
into the versal device.

Experiment with different 
architectures for the matrix 
computations.

Implementing a simple GCNConv layer
Matrix computation in the PL.

Matrix computation using AIE cores.

● The main idea is to develop an 
hybrid system that allows us to 
achieve maximum performance 
for the GNN inference.
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To conclude…

● The main ideas behind the CMS Level-1 trigger and its upgrade.
● The Overlap Muon Track Finder behaviour and some ways of implementing it 

on hardware.
● The increase of use of ML algorithms for tracking purposes.
● Some steps in the quest of developing a trackfinder by using a GNN 

architecture.
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What have we seen so fart?



Thanks for your attention, see you tonight :)
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Backup slides
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HLS design flow

● We want to design a build framework that 
allows us to follow the usual HLS design 
flow.

● While this is easy for a single module, it 
becomes dirtier once your system grows:

○ Lots of HLS projects.
○ Lots of different testbenches for similar 

payloads.
○ Reusable code.

CIND 2024 - Pelayo Leguina
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C test - Algorithm test library

Class TestData

Class CLIUtils
● Passes args:

(Bx, Processor, Events 
file, module)

Class iResult

Class iCheck

Class iModule

HLS 
Module

Module

Results

Check

run()

conv()

log()

compare()
1 || 0

1. Parse args
2. Load testData
3. addModule
4. runModule
5. logResults
6. checkResults

Maybe some modules require a previous module result as an Input **

Test structure

● For each new module, new class is created.
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HLS Synthesis - Design Flow

● Vitis HLS library.
● HLS global params.

○ FPGA part
○ Clk period
○ CSIM/COSIM/EXP

● Export path
● Flow

COMMON SYNTH PARAMS.
Module Sources

Apply params

Make target

CoSIM + Flow

Export IP+Token

Parallel Vitis HLS process execution is possible **

To IP catalog

Timing check
Unzip

Build TCL script
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Vivado Synthesis

CIND 2024 - Pelayo Leguina

● Check vivado environment
● Check framework token
● Set global params:

○ Project name
○ Payload file y or n

COMMON VIVADO CMAKE
FW Framework

Build framework cores

Add to IP catalog

Token

or
All HLS 
modules 
tokens

Build framework

IP catalog

Algo tcl lib

Add payload

Build BD

Generate top

Implement design


