
Development of the Phase-2 CMS
Overlap Muon Track Finder
Advancing Muon Reconstruction with HLS and Graph
Neural Networks

Pelayo Leguina, Clara Ramón, Pietro Vischia, Santiago Folgueras

Summary

● CMS Level-1 Trigger System
● Phase-2 Upgrade
● OMTF Algorithm Status

○ Purpose
○ HLS approach
○ Firmware build pipeline
○ Board integration

● ML for triggering particles
● GNN Tracking
● GNN in OMTF
● Test case

What is this about?

2

CMS Level-1 Trigger System
Today

Input
Data

Physics Objects
Reconstruction

Final decision

● @40 MHz
● Short amount of time :

< 3.8 us (latency)
● Large data volume

Selecting physics with simple criteria
implementable in hardware

3

Phase-2 upgrade

● Increase bandwidth 100 kHz → 750 kHz
● Increase latency 3.8 us → 12.5 us
● Include high-granularity information
● Include tracking information

N
ew

 a
rc

hi
te

ct
ur

e
N

ew
 h

ar
dw

ar
e

Key parameters

● Cutting-edge hardware
○ FPGA VU13P, 28 Gb/s links

● Advanced Architecture
○ ATCA standard, flexible & modular design

Requirements

Firmware

● Algorithm developed mostly in High Level
Synthesis (HLS)

○ Used successfully, much faster turn-around
● Many tools available for Machine Learning

inference

4

OMTF Algorithm
Overlap Muon Track Finder

https://iopscience.iop.org/article/10.1088/1748-0221/11/03/C03004

● Designed to reconstruct muon trajectories in the
barrel-endcap transition region of the detector.

● The algorithm evaluates how well the stubs
correspond to expected patterns of muon tracks with
specific pT.

● By calculating a similarity score between the
observed stubs and these reference patterns, the
algorithm identifies the most probable track
candidate.

For Phase-2, we want to achieve a modular and
maintainable design that can be easily adapted for
future upgrades and more complex detector
conditions.

5

https://iopscience.iop.org/article/10.1088/1748-0221/11/03/C03004

Phase-2 OMTF

● Use of Vitis HLS to design
each module.

● A direct adaptation from
emulator code is made.

● Optimization techniques
such as pipelining and
memory arrangement.

● Individual testing for each
module.

● Emulator - Hardware
matching.

● Building pipeline.

HLS approach

● Manage streamed data.
● Parse data frames.

● Parallel “golden pattern”
processing.

● Stored weights reshaped for
simultaneous availability.

Input converting modules
Main processor

General scheme

6

Phase-2 OMTF
Firmware build pipeline

7

https://app.diagrams.net/?page-id=139tbvdGNyHHGl5ISL4o&scale=auto#G1vwMTWyK-kWIUb3QQ5kpu47eNIblW7LqV

Board integration
Easy integration in vivado

-Combination of
bash, make and
TCL scripts are
used to build the
algorithm BD
and framework
auto..

t
xr
xt
xr
xt
xr
xt
xr
x

t
xr
xt
xr
xt
xr
xt
xr
x

algo

de
se

ria
liz

e

se
ria

liz
e

pr
ot

oc
ol

pr
ot

oc
ol

Expanded main processor block

- Big designs take long
to synthesise.

- Split your problem in
smaller projects.

- Each project can be
exported in IP format
and then linked in a
chain.

- Saves lots of
synthesis time

8

HLS

9

Extras

● You can use C++11 and higher constructs. Nice paper
● Read the list of pragmas and experiment a lot with them.
● HLS likes ternary operators !!

● Using C++ classes and template does
not affect resource usage while
improving code flexibility and ease of
use. HLS-Classes-Templates

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9839291
https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
https://docs.amd.com/r/en-US/ug1399-vitis-hls/C-Classes-and-Templates

ML for track finding

● Machine learning is growing in
popularity, and the fields of HEP
and LHC are no exceptions.

● In HEP, there is a growing trend
towards utilizing larger and more
complex machine learning models,
along with increasing demands for
computational power.

● Availability of modern hardware.

Why is that?

https://arxiv.org/pdf/2203.15823

10

https://arxiv.org/pdf/2203.15823

GNN Tracking

● Tracking is an extremely challenging problem.
● The combinatorial complexity is vast and will

only intensify over time.
● Graph Neural Networks (GNNs) offer

promising solutions for tracking in the
High-Luminosity Large Hadron Collider
(HL-LHC).

● FLOPs and power efficiency are critical
factors to consider.

● Pruning is a potential strategy to reduce
complexity and resource demands.

LHCb exploring the use of GNNs

https://arxiv.org/abs/2407.12119

Level-1 Trigger Level - O(μs) Latency.

11

https://arxiv.org/abs/2407.12119

GNN in OMTF
INTREPID project

INnovativeTRiggEr techniques for beyond the
standard model PhysIcsDiscovery at the LHC

● LLP signals might be easily overlooked or
misinterpreted in LHC data.

● Enhancing muon triggers within the current
architecture focuses on optimizing algorithms
and refining data processing techniques to
improve detection efficiency without requiring
significant hardware upgrades.

Explore alternative technologies
and ideas which could not be
otherwise investigated that
could potentially lead to a
significant breakthrough.

12

Software implementation

● Using fully connected graphs for the moment.
● Using pyTorch geometric libraries.
● Current architecture based on two Graph Attention Layer

(GAT) [arXiv:1710.10903] to process graph data, making use
of the edge information. After each GAT layer, ReLU
activation is applied. The model combines global mean and
average pooling to aggregate node-level features into a
graph-level representation.

Designing a basic network

Stub detected in a station
Stub coordinates

Stub number
Stub type

Connection between two
stubs

Difference in phi
DIfference in eta

G
N

N

Loss function pT regression

● Muon gun phase-II sample, using only negative muons (symmetry)
● Batches of 64 graphs (events)
● Learning rate = 0.0005
● Weight decay = 0.75
● Epochs = 1000

Current training:

Output: Regress muon pTInput: Single event stubs graph

13

Hardware implementation
First steps to design with versal architecture

● Build specific kernels, each processing a different layer of the net.
● This would require a direct implementation on C++, to build HLS kernels.
● The high-computational cost operations would be run in the versal AI cores.

○ Implement the model in C++ using vectorized operations that can leverage the parallel computing capabilities
of the cores.

○ Develop AI Engine kernels for the most compute-intensive parts of your model. The AI Engine kernels are
designed to run on the AI Engines, which are optimized for high-throughput, low-latency vector processing.

○ Integrate your AI Engine kernels with the rest of the system.
○ Profile the application to identify bottlenecks

14

Test case

● Graph Convolutional Networks extend the
concept of convolution from grid-like data
(like images) to graph-structured data.

Implementing a simple GCNConv layer

Aggregates feature information from a node's neighbors
(including itself) and transforms it using learnable weights.

In the conv layer is called GCNConv

Feat transform

Norm Linear

Message Passing

Aggreg. Update

Bias Act.
Funct.

We dissect the layer into its main subfunctions:

15

Test case

● We need C++ to import the layer into our device w/HLS!!

Implementing a simple GCNConv layer

Aggregate example

torch_geom_doc 16

https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/message_passing.html#MessagePassing

Test case
Implementing a simple GCNConv layer

P
ro

fil
in

g

● After converting all the main elements,
we test the performance of the layer and
do profiling, so we can check the
metrics and see what are the
high-computational cost zones.

Then we build the
HLS-like version

17

Test case : next steps

Implement the kernel cores
into the versal device.

Experiment with different
architectures for the matrix
computations.

Implementing a simple GCNConv layer
Matrix computation in the PL.

Matrix computation using AIE cores.

● The main idea is to develop an
hybrid system that allows us to
achieve maximum performance
for the GNN inference.

18

To conclude…

● The main ideas behind the CMS Level-1 trigger and its upgrade.
● The Overlap Muon Track Finder behaviour and some ways of implementing it

on hardware.
● The increase of use of ML algorithms for tracking purposes.
● Some steps in the quest of developing a trackfinder by using a GNN

architecture.

19

What have we seen so fart?

Thanks for your attention, see you tonight :)

20

Backup slides

21

22

HLS design flow

● We want to design a build framework that
allows us to follow the usual HLS design
flow.

● While this is easy for a single module, it
becomes dirtier once your system grows:

○ Lots of HLS projects.
○ Lots of different testbenches for similar

payloads.
○ Reusable code.

CIND 2024 - Pelayo Leguina

23

C test - Algorithm test library

Class TestData

Class CLIUtils
● Passes args:

(Bx, Processor, Events
file, module)

Class iResult

Class iCheck

Class iModule

HLS
Module

Module

Results

Check

run()

conv()

log()

compare()
1 || 0

1. Parse args
2. Load testData
3. addModule
4. runModule
5. logResults
6. checkResults

Maybe some modules require a previous module result as an Input **

Test structure

● For each new module, new class is created.

24

HLS Synthesis - Design Flow

● Vitis HLS library.
● HLS global params.

○ FPGA part
○ Clk period
○ CSIM/COSIM/EXP

● Export path
● Flow

COMMON SYNTH PARAMS.
Module Sources

Apply params

Make target

CoSIM + Flow

Export IP+Token

Parallel Vitis HLS process execution is possible **

To IP catalog

Timing check
Unzip

Build TCL script

25

Vivado Synthesis

CIND 2024 - Pelayo Leguina

● Check vivado environment
● Check framework token
● Set global params:

○ Project name
○ Payload file y or n

COMMON VIVADO CMAKE
FW Framework

Build framework cores

Add to IP catalog

Token

or
All HLS
modules
tokens

Build framework

IP catalog

Algo tcl lib

Add payload

Build BD

Generate top

Implement design

