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Complex experimental apparata

e 2020 European Strategy (EUSUPP): "New large, long-term projects, pushing technological skills to the limit"

Complex phenomena Complex experiments and
: reconstruction

Complex accelerators

Skeich of a proton—proton collision
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Existing CERN accelerator complex with Large Hadron Collider (LHC), Super Proton Synchrotron (SPS), Proton
Synchrotron (PS), Antiproton Decelerator (AD), Low Energy lon Ring (LEIR), Linear Accelerators (LINAC), CLIC
Test Facility (CTF3), CERN to Gran Sasso (CNGS), Isotopes Separation on Line (ISOLDE), and neutrons Time
of Flight (n-ToF).
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Complex experimental apparata

e 2020 European Strategy (EUSUPP): "New large, long-term projects, pushing technological skills to the limit"

Complex phenomena Complex experiments and
reconstruction

Skeich of a proton—proton collision
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12 Linear operator In Detector
We collide protons and that ~ Hamiltonian response,
is a mess formalism, describes experimental
the physics process  efficiencies

e Stochastic processes — intractable likelihood (matrix element, parton shower, detector simulation... result in latent variables)

e Costly MonteCarlo simulators to generate  ~ p(x|0)

Image from 10.1103/PhysRevSTAB.16.054801 and from the CMS Collaboration

(for each event, several thousand randomized choices)
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Typical analysis pipeline

z ~ f(a)

Multidimensional
stochastic variable
(often latent variables)

z ~ p(z|z,0)
Sensor readouts

\
\
Y
¢(0) = R[z,0,v(0)]
High-level features ™ ™= —) ¢ = A[C(Q)]

Low-dim summary
for inference
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https://arxiv.org/abs/2203.13818

Can we go beyond histograms?

e Histograms are likelihood-free (count events, assume Poisson per bin, global likelihood as product)

e Can we optimize inference procedures through intractable problems?
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From Neurons to Perceptrons
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Empirical Risk Minimization

1 o . . 0I(W
IW) == LFEED;W),g""), W' =argminyJ(W), W« W+ nﬁ
1=1

e Efficient matrix multiplication in
> dedicated hardware (GPUs, FPGASs)

(a) Forward pass

Input Weights Output
n
k n
m=1_ | = m}
X
K n
-—r n

€ - - - (b) Backward pass
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Derive

Manual

o Error prone, unfeasible

Symbolic

o Expression swell, despite

improvements

Numerical

o Truncation and rounding

Automatic
differentiation

o Algorithmic
differentiation

o AD

o Autodiff

o Algodiff

o Autograd

Image from Guines Baydin et al, JMLR 18 (2018) 1--43

h==x
b1 = 4ln(1 = 1)

flz) =1y = 64x(1—2)(1 —22)%(1 — 8z +8z2)?

f(x):
V=X
fori=1to3
v = dxyx(1l - v)
return v

or, in closed-form,

£f(x):
return 64*xk(1-x)*((1-2%x)"2)

* (1-8*x+8*x*x) "2

Manual
Differentiation

Automatic
Differentiation

Numerical
Differentiation

2 (x):
(v,dv) = (x,1)
fori=1to3
(v,dv) = (d*v*(1-v), 4d*dv-8*yv*dv)
return (v,dv)

f? (x0) f (zn)

Exact

b AVE

Symbolic
Differentiation
of the Closed-form

f(z) = 1282(1 — 2)(—8 + 162)(1 — 22)2(1 —
8z +872)+64(1 —x)(1—2x)%(1 — 8z +8x%)% —

64z(1 —22)*(1— 8z +82%)* — 256z(1 —z)(1 —
2z)(1 — 8z + 8z?)?

Coding

£7(x):
return 128*x*(1 - x)*(-8 + 16%x)

*((1 - 2%x) "2)*(1 - 8*x + B*x*x)
+64x% (1 - x)*((1 - 2%x)"2)*((1

- B*x + B#x*x)"2) - (64xx*x (1 -
2%x) "2)%(1 - B*kx + Skx*x) "2 -
256%x*(1 — x)*(1 - 2%x)*(1 - 8*x

+ B*xx*x) "2
1 \ Xo :' f [x0)
Exact
—
w7 (0
h = 0.000001
return (f(x +h) - f(x)) / h
f7( Xp ) &= f [zq)
Approximate
———
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Autodiff powers most of
modern ML

Fwd Primal Trace
Atomic
] : 1 operation
e Bydesign, simple in software

Vg = Xy
import torch, math n

x0 = torch.tensor(l., requires grad=True) Zzziffl(m)
x1 = torch.tensor (2., requires grad=True) va = vov3
p = 2*x0 + x0*torch.sin(xl) + x1**3 vs = v}

. v6 = V2 + V4 +
print (p) vs
p.backward/ () .

= Vg
print (x0.grad, xl.grad)
Fwd Primal Trace
A g Atomic
yie l d I ng operation
Primal: tensor (10.9093, grad fn=<AddBackward0>) Zoziﬂ
Adjoint: tensor (2.9093) tensor(l11.5839)
vy = 20
» Computational cost of calculating J s (x) inR™ x R™ for ~ »~ ="
& n m vs = V3
fR — R UGZU;+U4+
(%3
o O(n time(f))
o O(m time(f)) Y=

Image by P. Vischia, book in preparation
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Fwd Tangent Trace (set 2y — 1 to compute

=)
dzo
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’U.O - (E.O
U1 = T1
¥y = 24
U3 = v1cos(v1)
U4 = VoV3 + VoU3

U5 = 3v10]
U6 = V2 + U4 + Us

Y=g
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)
8y)
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21_70 - ﬁo
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vy = Vg + 1726’!]2/67}0
U0 = 040v4/Ovo
v =01+ ﬁgavg/a’l}]
U1 = U50vs5/Ov1
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U3 = 040v4/Ov3
V4 = 17(581)6/8174
U5 = De0vs /Ovs

Vg =Y

Valuein (1, 2)
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0 x —0.41
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0
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24 0.9093 4+ 0
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Valuein (1,2)
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Bo + Ty X 2 = 2.9093
74 X v3 = 0.9093
01 + U3 X cos(v1) =

11.5839
U5 x 3vi =12
g x1=1
g Xvg =1
e x1=1
g x1=1
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RooFit

e Clang/LLVM plugin run at compilation time

¢ Produces C++ code (readable, explainable)

Clad as RooFit’s AD Engine

/" RooFit Compute Graph /" Standalone Simplified Compute Graph C++

e
i double gauss(double *x) {
using namespace RooFit::Detail;

! CodeGen/Flatten AD

R SRS SR return gEvaluate(x[3], (x[0] + x[1]), : A
: i (x[2] * 1.5)) / 1
! gIntegral(-10., 10., (x[0] +
i x[1]), (x[2] * 1.5)); Optimize
v}
FCN

pdf.fitTo(data, RooFit::EvalBackend ("codegen"))
pdf.createNLL(data, RooFit::EvalBackend("codegen"))

Plot by Vassil Vassilev at Fourth MODE Workshop

¢ Huge gains in ATLAS and CMS open data benchmarks
e Faster gradient

e Numerically stable gradient

e Readable and shareable

CMS Open Data Higgs Model - single minimization

JIT Time m Minimization time ® Seeding time

50
40
30

20

Time (seconds)

10

Legacy CPU
(ROOT 6.30 default)

CPU

Codegen + AD
(ROOT 6.32 default)
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https://indico.cern.ch/event/1380163/contributions/6057868/

Differentiable Programming (2018) cccuteditterentiabie functions

Screenshot of Yann LeCun's facebook post

(programs)
via automatic differentiation

Yann LeCun @
January 5, 2018 -

OK, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Programming!

Yeah, Differentiable Programming is little more than a rebranding of the modern collection Deep Learning
techniques, the same way Deep Learning was a rebranding of the modern incarnations of neural nets with
more than two layers.

But the important point is that people are now building a new kind of software by assembling networks of
parameterized functional blocks and by training them from examples using some form of gradient-based
optimization.

An increasingly large number of people are defining the networks procedurally in a data-dependent way
(with loops and conditionals), allowing them to change dynamically as a function of the input data fed to
them. It's really very much like a regular progam, except it's parameterized, automatically differentiated, and
trainable/optimizable. Dynamic networks have become increasingly popular (particularly for NLP), thanks to
deep learning frameworks that can handle them such as PyTorch and Chainer (note: our old deep learning
framework Lush could handle a particular kind of dynamic nets called Graph Transformer Networks, back in
1994. It was needed for text recognition).

People are now actively working on compilers for imperative differentiable programming languages. This is
a very exciting avenue for the development of learning-based Al.

Important note: this won't be sufficient to take us to "true" Al. Other concepts will be needed for that, such
as what | used to call predictive learning and now decided to call Imputative Learning. More on this later....

o 1.8K 186 Comments 464 Shares
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The usual suspect, in 1990

Making the World Differentiable: On Using Self-Supervised Fully
Recurrent Neural Networks for Dynamic Reinforcement Learning
and Planning in Non-Stationary Environments

Jiirgen Schmidhuber*
Institut fir Informatik
Technische Universitat Miinchen
Arcisstr. 21, 8000 Miinchen 2, Germany
schmidhu@tumult.informatik.tu-muenchen.de.
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The usual suspect, in 1990

Photo from Juergen

Concluding Remarks

Program Inputs Differentiable with Respect to Programs

Let us view a network with a fixed topology as a computer. Its program is the weight matrix. One of the
most interesting aspects of many connectionist algorithms is that program outputs are differentiable with
respect to programs. A simple program generator (the gradient descent procedure) produces increasingly
successful programs if the desired outputs are known.

In typical reinforcement learning situations, the environment is not a priori represented in a differ-
entiable form. So the main reason for building connectionist world models in the style above is to ‘make
the wold differentiable’. Thus even program inputs can become differentiable with respect to programs.
World models thereby close the gap between outputs and inputs. A differentiable world model allows
the program generator to perform an informed search for better goal directed programs.

The degree of informedness of this search for suitable programs is a principle difference between
the approach presented in this paper and the reinforcement learning algorithms for recurrent nets in

Pietro Vischia - Differentiable Programming for the Frontiers of Computation - 2nd COMCHA Workshop, A Coruia - 2024.10.04 ---
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Lot of efforts, plus several works in i tefoliowing, 1will describe some

recent developments and then focus on

th iS SESSiOn ! work with my students and collaborators

INFERNO Local generative surrogates CP-optimal observables MadJax (10.1088/1742-

(10.1016/j.cpc.2019.06.007)  (2002.04632) (2405.13524, Cruz et al. 6596/2438/1/012137)
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https://arxiv.org/abs/2002.04632
https://arxiv.org/abs/2401.05815
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https://arxiv.org/abs/2405.07944

Short-term solution: differentiable surrogate models

Subset of relatively simple class of functions (but they must be able to reproduce F() well)

Learn by training (hic sunt leones), (but N (eval F') > O(dim(0)))

Automatically get AD out of the box even if original F'(+) is not differentiable

Evaluation of surrogate (for optimization) much faster than evaluation of F'(+)

A ————————————— T ———————————————————————————————— - -

i i

Inputs : ir?a:t]sp I:r?d > =Ll 1 Outputs i
P H P “| (Non differentiable) P I

- rameter :
---------------------------------------------------- 1

Train
.Sampled _| Simulator surrogate . L
Parameters inputs and *|" (Differentiable) »  Outputs »| Objective
’ parameters |, )
VR (}’1[1)

Figure 1: Simulation and surrogate training. Black:
forward propagation. Red: error backpropagation.

Image from Shirobokoy,..., Kagan, ... et al. Pietro Vischia - Differentiable Programming for the Frontiers of Computation - 2nd COMCHA Workshop, A Corufia - 2024.10.04 --- 14 / 40
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Long-term solution: make everything differentiable

e Multi-channel integration speed up in e Detector simulation: GATE/GEANT4 numerically
MadGraph(MadNIS) differentiable (in small ranges) (2202.05551)
MadJax (2203.00057) e Differentiable electromagnetic showers for GEANT4

(2405.07944)

o Derivgrind: insert AD logic into the program (a sort of debugger):

(differentiable matrix element computation)

ey
le-22 e*e —Higgs—ZZ-4l le-23 cannot support tricky cases
2.50 - — M 0.0 o CoDiPack: operator overloading (e.g. replace double type): can
5 25 ' run out of memory when storing the real-arithmetic evaluation
0.2 graph (tape)
2.00 o Clad: compiler-based source transformation tools: could use
-0.4 smaller tapes, more advanced optimization
—_— N
EN 1.75 A %
& -0.6 =
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1.25 - = 200 ——AD
-1.0 g —DQ
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https://arxiv.org/abs/2405.07944

Measurement-aware detector opt.!

e Joint optimization of design parameters w.r.t. inference made with data

e MODE White Paper, 10.1016/j.revip.2023.100085 (2203.13818), 117-page document, physicists + computer scientists

z ~ f(x)

Multidimensional
stochastic variable
(often latent variables) \ 5 A (E(COSt))

Gl p(Z|$, 9)

L = L(physics output)

Sensor readouts

\
\

Y
¢(6) = Rl[z,06,v(0)]
High-level features ™= ™= —) &= A[C(B)]

Low-dim summary
for inference

Formulas from our white paper Pietro Vischia - Differentiable Programming for the Frontiers of Computation - 2nd COMCHA Workshop, A Corufa - 2024.10.04 --- 16 / 40
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Feasibility within constraints

: Cost of the layout with
Depends on z and nuisances parameters theta

Closed form
A

0 = arg ming | L[A(C), c(0)]p(z|z, 0)'f(z)dzdz ,

)

Weight desirable goals while obeying cost constraints

e Costs can be monetary but also any case-specific technical constraint
o Local, specific to the technology used (e.g. active components material)

o Global, describing overall detector conception (e.g. number, size, position of detector modules)

e Fixed costs can be added separately to the loss function

From our white paper and internal TomOpt presentation Pietro Vischia - Differentiable Programming for the Frontiers of Computation - 2nd COMCHA Workshop, A Corufia - 2024.10.04 --- 17 / 40
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Assist the physicist with a landscape of solutions

e Results are as good as your parameterization: cannot parameterize everything!
¢ "The optimal solution" is unrealistic: provide feasible solutions near optimality

e The physicist will fine tune

Image from Li et al (taken as pictorial representation out of its original context) Pietro Vischia - Differentiable Programming for the Frontiers of Computation - 2nd COMCHA Workshop, A Corufia - 2024.10.04 --- 18 / 40


https://arxiv.org/abs/1712.09913

Method of choice depends on scale

oy 0 [ @
~Tomography

Time 2
per (Not to scale)

I
sample Ik 3

Parameters

Giles Strong at QCHS 2022

1. Grid/random search
2. Bayesian opt, simulated annealing, genetic algos, ...

3. Gradient-based optimization (Newton, BFGS, gradient descent, ...)

Pietro Vischia - Differentiable Programming for the Frontiers of Computation - 2nd COMCHA Workshop, A Corufia - 2024.10.04 --- 19 / 40



Muon tomography

e Muons from high-energy primary cosmic rays that impact with the atmosphere

e Infer properties (e.g. 3D map of elemental composition X ) of unknown volume: stochasticity!

e Tomography by absorption (measure missing flux, e.g. pyramids, volcanes) or scattering (measure deflection, e.g. containers, furnaces, statues)

Muon production geometry

Images from uncw.edu, Guan et al. (2015), and the TomOpt project

Muon
Trajectory

Production

[ e

High X,
materigil

v y

1 T

High X, = low Low X, = high
scattering scattering

X, = average distance between
scatterings



https://uncw.edu/phy/documents/cosmicraymuons.pdf
https://arxiv.org/abs/1509.06176

TomOpt

¢ Differential optimization of muon-tomography detectors
o 10.1088/2632-2153/ad52e7 (Mach. Learn.: Sci. Technol. 5 035002)
o Modular design in python, autodiff via PyTorch

¢ Inference chain as differentiable pipeline

o Cancompute [ Muons J
p(Aoutput|Adetector parameters)

r

1187

e Task as loss function

o Including target (e.g. prediction uncertainty),
costs, constraints

e Backpropagate and optimize as usual

o Gradient descent

{L-

Known
volumes Backwards pass

Figure from the TomOpt project Pietro Vischia - Differentiable Programming for the Frontiers of Computation - 2nd COMCHA Workshop, A Coruia - 2024.10.04 --- 21 / 40


https://doi.org/10.1088/2632-2153/ad52e7

Optimize a parametric design under constraints

| fit_epoch(n_volumes, state) | |
[

i=0 |
loss =0 | |
j== I i 1 |
I | fit(n_epochs) | I n_vlolumes — . |
epoch =0 Load/generate | m— 1 I o T- 1
loss/=i|Y volume i [ JI 1
T | T 1 ]
. i | Jo |
n_epochs '
!
fit_epoch in |
Y training state == loss += volume Igss \
mode training |
T===T - '
T loss [ rJ | 1
fit_epoch in .‘—/ i‘, [ ] | ¥ — |
mode params I 1 '.'
End epoch +=1 End

(a) Complete fit loop. (b) Sean loop for a batch of passive volumgs.

| | scan_volume(n_muons, mu_bs) | ‘

Example I: Example 2:

. Muons Muons
inf = Volumelnferer
N measured measured less
rmuonsimi.bs == precisely but precisely but
mu_bs muon: .
Y i less efficiently more
Pass muons
pedeion o Lomnin. || efficiently
(=]
Compute Add inferred
volume loss tracks to inf

=1
(c) Scan loop for muons over a single passive vol-
ume.

Figure 6: Breakdown of the fitting procedure of detectors in ToMOPT
Figure from the TomOpt project and 10.1088/2632-2153/ad52e7
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Make things differentiable

¢ Panels made differentiable only during training

¢ Associate to a muon hit a distribution based on resolution and efficiency

Detector modeling

max

> 0.6 -
v
c
o
9
& 0.4
(hit =0.3
0.2
. —— Differentiable
0.0 1 Physical

-1.0 -05 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [a.u]

Figure 2: Example of detector panel modeling with sigmoid function used during optimisation
(blue) and with rectangle function used during validation (orange).

Figures from 10.1088/2632-2153/ad52e7

Both muons
recorded, but
with different
resolutions

0 1 2
Plot: Max Lamparth
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Heavy-Metal Benchmark

Figure from



https://doi.org/10.1088/2632-2153/ad52e7

Heavy-Metal Benchmark

Figure from


https://doi.org/10.1088/2632-2153/ad52e7

Optimized design is more performant

Above, z

Below, z

(a) Initial detector configuration.

\ /

Above, z

05
04
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01

Below, z

00

-05 0.0 05 10 15

(b) Detector configuration after stage one optimi-

sation process.

Figure from 10.1088/2632-2153/ad52e7
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(Blue: true steel level. Red: prediction. Green: bias-corrected
prediction)
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Extension: hodoscopes

e Setup from European plan for border control: hodoscope structure already decided, only placement can be changed

M09876543210 MNW9876543210 N09876543210 1109876543210

NW9876543210

01234

01234

01234

01234

01234

True

-0200

-0175

- 0125

- 0075

0050

- 0025

e Scan alorry: significant code restructuring to account for hodoscope structure

—

Pl

/

gap

o Accepted by the MARESEC conference for paper publication

o Zaher, Lagrange, Alvarez Lueje et al. (PV.), 2024 (BSc thesis of Samuel Alvarez Lueje)
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Neutron Tomography

¢ See the excellent talk by Maria Pereira Martinez, in this session!!!

OILERS

o Asummary is in backup

Image from timesofindia.com


https://timesofindia.indiatimes.com/entertainment/english/hollywood/news/deadpool-and-wolverine-ryan-reynolds-and-hugh-jackman-put-out-no-spoilers-request-as-leaked-stills-and-movie-scenes-flood-social-media/articleshow/112029198.cms

Thrive in asymmetries or lack thereof

2006: genetic algorithms

Figures from doi:10.2514/6.2006-7242 and 2310.01857

2024: SWGO tanks placement optimization

SPPETTETY PPVITFYUT IVVEPPIVL [VPIT RPPLRPPRTITNY
2000-1500-1000-500 0 500 1000 1500 2000

AR IEERN

4000f- .

3000/
4000,

Figure 14: Convergence of three initial layouts (top to bottom: packed ball, wide random ball, two
annuli) during a 500-epochs training. From left to right, the configurations of 126 units (129 in the
bottom one) are shown at epoch 1,50,150,300, 500. See the text for more detail.
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Experimental design: present and future

¢ Gradient descent applied to experiment design works!!!

o Discreteness and stochasticity mostly solvable or avoidable

e Canwe make it scale?

~LHC
~Tomography

Time 2
per (Not to scale)

I
sample I\ 3

Parameters

Giles Strong at QCHS 2022
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Paradigm shift

From perceptrons and matrices...

Input Weights Output
-l n .
K . 5 n
m=1 - | -~ 1
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k - . >
-— n “.
m
X
Y
Y

Figures by Gilles Louppe and bioserver
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Realistic models for biological nheurons

¢ Spherical neuron with four channels (different thresholds and time constants) for Gymnotus Omarorum

o Vischia, Caputi 2023: computational model compared with data from " [4] " (J Exp Biol (2006) 209 (6): 1122-1134.)

- The amplitude of the stimulus step drives the spike latency
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Observations exhibit the same behaviour
- Further turning needed for the spike shape
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P. Vischia, A. Caputi, 10.5281/zenod0.8394819, paper in preparation

- Early subthreshold responses
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https://doi.org/10.5281/zenodo.8394819
https://doi.org/10.1242/jeb.02080
https://doi.org/10.5281/zenodo.8394819

Spiking networks

e Neuronal model vastly simplified: the (Leaky) Integrate-and-fire Model

C dV(t) 77 Training strategies (e.g. Remote Supervised Method)
Bl iy g T
at Si(t) S|(t) _
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Images from Zheng, Mazumder (Wiley, 2019) Pietro Vischia - Differentiable Programming for the Frontiers of Computation - 2nd COMCHA Workshop, A Coruiia - 2024.10.04 --- 32 / 40



Event-driven computation

e Event-driven computations
o "when a spike occurs, compute something": realtime operations by reducing bus width (Nazons — (092 Nazons) in CMOS or memristors

o Work in progress on various applications

o Q-Pix (see talk by Shion Kubota) uses same natural representation: maybe synergies?

)
'

High time resolution,

low redundancy

Few binary events

Figures by Fredrik Sandin


https://indico.cern.ch/event/1291157/contributions/5893301/

Image from Zheng, Mazumder (Wiley, 2at&@)highfighted in bold.

Input spike queue

Si.

Sig

Sig,

Housekeeping
Resting potential
Action potential
Transmission
Single neuron

Full brain

Energy-efficient architectures

Sparser inputs — less time and energy

Weight memory

l

—
-
Scheduler
—
Brain Spikey
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Processing element 1

Processing element 2

<« Neuron
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SpiNNaker

1.66E-04
8.99E-05
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Output spike queue
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Intel mobile RTX2070
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3.37E-04 3.18E-05
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Values for the simulation of 1s of model time are reported in Joule. The single neuron and full brain estimates assume a fan-out of 2,000 synapses and a spike rate of 4Hz. R2600X: AMD
Ryzen 2600X. Intel mobile: Intel Core i7-47100MQ. RTX2070: NVIDIA RTX 2070. Both CPUs are measured using a PeakTech power meter. The lowest values from simulators/emulators
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Calorimetry with AD and neuromorphic computing

e Starting work in Oviedo (also within DRDé6) to expand first MODE studies

e Particle ID at high granularity

o Towards integrated tracking-calorimeter ID

¢ Detailed shower profile

T T T e e e e i

£27

¢ 3788 2630 3550

uuuuu

Predicted

Classification based on shower properties

o Planned: 3D profile combining BDTs, CNNs, RNNs

BN e

[ 7000

sssss

rrrrr

eeeee

i 3788 2630

sssss

pppppp

e Neuromorphic readout via network of nanowires
o Fast, energy-efficient local computation

o Generate informative high-level primitives

P . “ ” Segmented readout: 10 X 10 light sensors grid
The detector is divided into blocks called “cubelets”: 4 o e

> z on the upper face of each cubelet.
« Arranged in a 10 x 10 x 10 matrix Sensors are blind to the light coming from other
« Size:3cmx3cmx12cm cubelets (all other sides are reflective)
Here is a schematic view of one cubelet...

Material of choice: PWO I 1
« Light Yield = 220 ph/MeV Q‘\

« Refraction index = 2.2

g AC e )
Incoming particle: p,n:)rk \*
at 100 GeV

Simple assumption:

All deposited energy is converted
into photons which travel
isotropically in all directions

e Time evolution accessible via spiking networks

Photons are collected for a total of 20 ns and the signal is discretized into 100
bins. Here is how one example event looks like:
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Signal integrated over t, zand
x coordinates respectively.
Different interactions produce
multiple signals across time.
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Successive frames that show how the photons produced in the first
two interactions in the event above propagate inside the detector.
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Differentiable quantum optimization

® 0

@1

Classical Bit

e Quantum
representation can
have advantages

o Lower dimensional, and
achieving high
efficiency with small
datasets

o BSc thesis of Manuel
Uria Garcia (paper in
preparation M.U.G. and
José M. Uria (UriaXait
SL)

Image by prateekvjoshi and M. Schuld, F. Petruccione (2018)
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e Natural representation of neural networks by qubit
operations

[in)(in| = |q1, 92, 93){(q1, 92, g3]-

Full unitary operations, U_i,
(preserve information)

|h1) (b1 |h2)(h2|

Tracing operations U2
(information loss)

A\

u_1

|h) (Al

|in) (in| |out) (out|

e Gradient descent exploits intrinsic analytic
differentiability of quantum circuits

3, (Y (x,0)]0,|¥(x,0)) = (0]...0,e7“ ...0,...e'" ...|0)
+(0]...e7™ ..o, ...9,e" ...]0)
=(0]...(—io)e " .. . o,...e" ...|0)
+(0]...e7 " .. o,...(i0)e" ...|0)

=(0]...(1 —io)e ™ ... 0,...(1+io)e"" ...|0)
+(0]...(1 +io)e " .. . o,...(1 —io)e" ...|0)
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Need for new paradigma

e Ifyou are interested in Neuromorphic computing or Quantum computing, drop me aline!

Conventional Quantum
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Technology readiness?

Image by Fredrik Sandin, Lulea University
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The M ODE COI Ia bora ti on https://mode-collaboration.github.io/

e Joint effort e Last week we had our Fourth
Workshop!!!

o Particle physicists, Nuclear physicists, Astrophysicists, Computer scientists, Mathematicians

e Ifyou are interested, join us!!!

o Estremely loose statute, we mostly strive to talk regularly and collaborate in projects

At INFN and Universita of Padova Dr. Tommaso Dorigo, Dr. Pablo De Castro Manzano, Dr. Federica Fanzago, Dr. Lukas Layer, Dr. Giles Strong,
Dr. Mia Tosi, and Dr. Hevjin Yarar

At Université catholique de Louvain Dr. Andrea Giammanco, Prof. Christophe Delaere, and Mr. Maxime Lagrange
At Universidad de Oviedo and ICTEA Dr. Pietro Vischia

At Université Clermont Auvergne, Prof. Julien Donini, and Mr. Federico Nardi (joint with Universita di Padova)

At the Higher School of Economics of Moscow, Prof. Andrey Ustyuzhanin, Dr. Alexey Boldyrev, Dr. Denis Derkach, and Dr. Fedor Ratnikov
At the Instituto de Fisica de Cantabria, Dr. Pablo Martinez Ruiz del Arbol

At CERN, Dr. Sofia Vallecorsa

At Karlsruher Institut fir Technologie, Dr. Jan Kieseler

At University of Oxford Dr. Atilim Gunes Baydin

At New York University Prof. Kyle Cranmer

At Université de Liége Prof. Gilles Louppe

At GSI/FAIR Dr. Anastasios Belias

At HEPHY Vienna (OeAW) Dr. Claudius Krause

At Uppsala Universitet Prof. Christian Glaser

At TU-Miinchen, Prof. Lukas Heinrich and Mr. Max Lamparth

At Durham University Dr. Patrick Stowell

At Lebanese University Prof. Haitham Zaraket

At University of Kaiserslautern-Landau Mr. Max Aehle, Prof. Nicolas Gauger, Dr. Lisa Kusch

At University of Applied Sciences Worms Prof. Ralf Keidel

At Princeton University Prof. Peter Elmer

At University of Washington Prof. Gordon Watts

At SLAC Dr. Ryan Roussel

At Lulea University of Technology Prof. Fredrik Sandin and Prof. Marcus Liwicki

At IGFAE and Universidad de Santiago de Compostela Prof. Xabier Cid Vidal

The Scientific Coordinator of the MODE Collaboration is Dr. Tommaso Dorigo, INFN-Sezione di Padova
The Steering Board of the MODE Collaboration includes:

o Prof. Julien Donini, UCA

« Dr. Tommaso Dorigo, INFN-PD

+ Dr. Andrea Giammanco, UCLouvain
 Dr. Fedor Ratnikov, HSE

« Dr. Pietro Vischia, UniOvi
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European Al structures

e European initiative for advancing the use of Al in Fundamental Physics: https://eucaif.org
o The First EuCaif conference took place in Amsterdam beginning of May

o Work Package 2: Experiment Design

EUROPEAN COALITION FOR Al IN
FUNDAMENTAL PHYSICS

JENAA

Joint ECFA-NUPECC-APPEC Activities
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https://eucaif.org/
https://indico.nikhef.nl/event/4875/

Thank you!
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Backup
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From POCA to extended POCA

e POCA (PQint of Closest Approach) assumes one scattering in one point — bias

o invert model to compute X, then average X, per voxel

e Extend to nearby bins within uncertainty

o Extrapolated from track uncertainty from analytical fit

e Assume one scattering — bias!
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Neutron Tomography

e GEANT4 model ofa1l0 x 10cm? O-PPAC (Parallel-Plate Avalanche Counter with Optical Readout) from Neutron Insights

o Parallel electrodes with 3mm gap filled with low-pressure scintillating gas mixture (CF4) with high electroluminescent light yield

o Readout via array of small silicon photomultipliers SiPMs
e Parametric neural network surrogate of the GEANT4 simulation
o p: higher pressure — higher electroluminescence yield (up to a threshold), but larger voltage (energy expenditure)

o L:collimator length: tradeoff between accurate light localization (high L) and higher photon statistics (low L)
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Neutron Tomography: optimization

e Results for L give the same result as traditional studies from 10.1088/1748-0221/13/10/P10006

e Remarkably stable regardless of initial configuration

e MSc thesis of Maria Pereira Martinez
o Paper in preparation (w/ M.P.M., Xabier Cid Vidal)
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Neutron Tomography: optimization

e Results for L give the same result as traditional studies from 10.1088/1748-0221/13/10/P10006

e Remarkably stable regardless of initial configuration

¢ MSc thesis of Maria Pereira Martinez
o Paper in preparation (w/ M.P.M., Xabier Cid Vidal)
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