
Lumi Counters
Throughput and testing improvements

Sergio Andrés Estrada



The issues

 Kernels working with Luminosity counters took a great portion of running

time:

 Velo + Calo + SciFi Lumi counters -> 25,2% running time

(hlt1_pp_matching_no_ut_1000KHz sequence and MEP_dumps_09_04_24/bu_289232* data)

 Not detected by tests as simulation data does not include luminosity events.

 Tests for Lumi counters were unstable both in CPU and GPU:

 Hard to test if improvents done to kernels were properly implemented.



Fixing tests

 Tests worked by running the sequence over a fixed set of events, and printing

the Lumi counters for a single event every X events (usually 100).

 To check whether a test passed or not, the output of the run was compared to

the reference.

 It was found that the events being printed varied across executions.

 The approach:

 Instead of printing the Lumi counters when the event was processed, they are

stored in a sorted map where key = event ID.

 At the end, follow the original method and print the desired number of events ->

printing all events would create outputs bigger than desired.

 With this change, the test were stable in CPU, but not in GPU.



Obtaining stability

 There were two stability issues to be solved after tests’ changes:

 PV Lumi counters were non-deterministic on GPU:

 The kernel that selected unique PVs (pv_beamline_cleanup) obtained the index to save

the PV using atomic operations, which order of execution can vary.

 The PV Lumi counters kernel later uses one of the selected PVs pseudo-randomly (actually,

it uses the PV at position [eventID % nº of PVs]). This, make it difficult to test/reproduce

the same case if the PVs order can vary.

 To solve this, selected PVs are now ordered by their Z position (we are sure no two PV

with the same Z position are selected) before returning from the kernel.

 Calo Lumi counters are floats and updated from different threads using atomic

operations -> again, order is not guaranteed.



Improving throughput

 Main issue: kernels were being launched with a
fixed number of blocks:

 CaloLumiCounters -> 2

 VeloLumiCounters and SciFicLumiCounters -> 4

 Parallelism was only exploited at event level and
not inside them. Each event was processed by a
single thread.

 First changes:

 Number of blocks launched = number of events
being processed at run time.

 Parallelize event processing across block threads.

 Use shared memory within block with atomic
operations and reduce as much as possible the
number of writes to global memory.

https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming)



Solution

 Velo and SciFi Lumi counters were unsigned -> with the previous changes, this

kernel already performed better and in a determinic way.

 Calo counters were floating point values -> again, atomic operations lead to

non-deterministic behaviour.

 The approach:

 Use unsigned long long shared memory counters as a middle step.

 In order to keep a significant amount of precisión -> multiply values by 1e8 before

adding them as unsigned long long (i.e. 12,34567890 would be stored as 1234567890).

 Divide the final result by the same factor before writing results to global memory.

 Need to split counters in two, positive and negative values, and make the

subtration at the end, since GPU do not support atomic operations on signed long

long values.



Results

 All tests are stable once a newly obtained reference is used.

 Throughput improvements:

 % of running time:

 Average single run time (in nanoseconds):

 Overall sequence throughput gain ~14%

 Included in Allen v4r8.

Kernel Original Modified Speed-up

Calo 12.9 1.9 6.79

SciFi 7.8 0.3 26.00

Velo 4.5 0.5 9.00

Kernel Original Modified Speed-up

Calo 3,118,894 374,132 8.34

SciFi 1,887,643 64,614 29.21

Velo 1,086,362 100,209 10.84



Future work

 Currently, a block is created for each event, but there are many which are 

not Lumi events. Those blocks just check that condition and end.

 Implement a mechanism to know in runtime, how many events are Lumi ones, and 

only create and launch a block for them.



Future work II

 This is already work in progress:

 Allen MR 1461 “Prefer filters over selections” by Saverio Mariani (merged)

 Creates the possibility to make the luminosity event mask

https://gitlab.cern.ch/lhcb/Allen/-/merge_requests/1461

 Allen MR 1628 “Lumi line under filter” by Shu Xian (WIP)

 Will use the mask as the event list in the luminosity algorithms in order to get the desired

shown behaviour and resource usage.

https://gitlab.cern.ch/lhcb/Allen/-/merge_requests/1628


	Slide 1: Lumi Counters Throughput and testing improvements
	Slide 2: The issues
	Slide 3: Fixing tests
	Slide 4: Obtaining stability
	Slide 5: Improving throughput
	Slide 6: Solution
	Slide 7: Results
	Slide 8: Future work
	Slide 9: Future work II

