
Lumi Counters
Throughput and testing improvements

Sergio Andrés Estrada



The issues

 Kernels working with Luminosity counters took a great portion of running

time:

 Velo + Calo + SciFi Lumi counters -> 25,2% running time

(hlt1_pp_matching_no_ut_1000KHz sequence and MEP_dumps_09_04_24/bu_289232* data)

 Not detected by tests as simulation data does not include luminosity events.

 Tests for Lumi counters were unstable both in CPU and GPU:

 Hard to test if improvents done to kernels were properly implemented.



Fixing tests

 Tests worked by running the sequence over a fixed set of events, and printing

the Lumi counters for a single event every X events (usually 100).

 To check whether a test passed or not, the output of the run was compared to

the reference.

 It was found that the events being printed varied across executions.

 The approach:

 Instead of printing the Lumi counters when the event was processed, they are

stored in a sorted map where key = event ID.

 At the end, follow the original method and print the desired number of events ->

printing all events would create outputs bigger than desired.

 With this change, the test were stable in CPU, but not in GPU.



Obtaining stability

 There were two stability issues to be solved after tests’ changes:

 PV Lumi counters were non-deterministic on GPU:

 The kernel that selected unique PVs (pv_beamline_cleanup) obtained the index to save

the PV using atomic operations, which order of execution can vary.

 The PV Lumi counters kernel later uses one of the selected PVs pseudo-randomly (actually,

it uses the PV at position [eventID % nº of PVs]). This, make it difficult to test/reproduce

the same case if the PVs order can vary.

 To solve this, selected PVs are now ordered by their Z position (we are sure no two PV

with the same Z position are selected) before returning from the kernel.

 Calo Lumi counters are floats and updated from different threads using atomic

operations -> again, order is not guaranteed.



Improving throughput

 Main issue: kernels were being launched with a
fixed number of blocks:

 CaloLumiCounters -> 2

 VeloLumiCounters and SciFicLumiCounters -> 4

 Parallelism was only exploited at event level and
not inside them. Each event was processed by a
single thread.

 First changes:

 Number of blocks launched = number of events
being processed at run time.

 Parallelize event processing across block threads.

 Use shared memory within block with atomic
operations and reduce as much as possible the
number of writes to global memory.

https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming)



Solution

 Velo and SciFi Lumi counters were unsigned -> with the previous changes, this

kernel already performed better and in a determinic way.

 Calo counters were floating point values -> again, atomic operations lead to

non-deterministic behaviour.

 The approach:

 Use unsigned long long shared memory counters as a middle step.

 In order to keep a significant amount of precisión -> multiply values by 1e8 before

adding them as unsigned long long (i.e. 12,34567890 would be stored as 1234567890).

 Divide the final result by the same factor before writing results to global memory.

 Need to split counters in two, positive and negative values, and make the

subtration at the end, since GPU do not support atomic operations on signed long

long values.



Results

 All tests are stable once a newly obtained reference is used.

 Throughput improvements:

 % of running time:

 Average single run time (in nanoseconds):

 Overall sequence throughput gain ~14%

 Included in Allen v4r8.

Kernel Original Modified Speed-up

Calo 12.9 1.9 6.79

SciFi 7.8 0.3 26.00

Velo 4.5 0.5 9.00

Kernel Original Modified Speed-up

Calo 3,118,894 374,132 8.34

SciFi 1,887,643 64,614 29.21

Velo 1,086,362 100,209 10.84



Future work

 Currently, a block is created for each event, but there are many which are 

not Lumi events. Those blocks just check that condition and end.

 Implement a mechanism to know in runtime, how many events are Lumi ones, and 

only create and launch a block for them.



Future work II

 This is already work in progress:

 Allen MR 1461 “Prefer filters over selections” by Saverio Mariani (merged)

 Creates the possibility to make the luminosity event mask

https://gitlab.cern.ch/lhcb/Allen/-/merge_requests/1461

 Allen MR 1628 “Lumi line under filter” by Shu Xian (WIP)

 Will use the mask as the event list in the luminosity algorithms in order to get the desired

shown behaviour and resource usage.

https://gitlab.cern.ch/lhcb/Allen/-/merge_requests/1628


	Slide 1: Lumi Counters Throughput and testing improvements
	Slide 2: The issues
	Slide 3: Fixing tests
	Slide 4: Obtaining stability
	Slide 5: Improving throughput
	Slide 6: Solution
	Slide 7: Results
	Slide 8: Future work
	Slide 9: Future work II

