

Quantum Computing and Track Reconstruction

Miriam Lucio Martínez

Quantum Computing in a nutshell

- Instead of **bits** we use **qubits**, the fundamental units of quantum information
 - Not 0 or 1, but a two-state quantum system \rightarrow coherent superposition of both
 - They can be **measured** \rightarrow probabilistic results
- There are **quantum logic gates** that operate on these qubits
 - Unitary transformations
 - Quantum gates can be **single** or **multiple**

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

Quantum Computing in a nutshell

A sequence of gates acting on a register of qubits is called a quantum circuit

Some computational problems can profit from **Quantum Computing** using the principles of **superposition** and **interference**.

https://quantumalgorithmzoo.org/

Quantum Computing - Hardware

Several technologies are being explored as physical qubits:

Superconducting

IBM Google

Superconducting electric circuits at 10mK behave as quantum systems with discrete energy levels

Trapped ions

Charged atoms constrained in electromagnetic traps and manipulated with laser

Annealing

Ising-chain qubits interacting with a customizable Hamiltonian

Quantum Computing - Noise

All the previous technologies are far from being perfect. Current qubits are **noisy**:

- Measurement errors
- 1-qubit and 2-qubit gates fidelities
- T1 and T2 decoherence time
- Calibration
- → Noise Error Mitigation

HEP use-cases

• <u>Summary of the QC4HEP WG</u>

- Focused mostly in projects concerning experimental particle physics at LHC and LHCb
- Events are **quantum** in nature, but measurements are **classical**
- Quantum sensing not covered in this talk

The LHCb detector

Single forward-arm spectrometer

7

How does an event look like?

How does an event look like?

Reconstruct events 40 Million times per second.

Motivation for QC

New algorithms and architectures needed to deal with the increased luminosity & limited bandwidth @ HL-LHC

Courtesy of Robbert Geertsema

Track reconstruction

- Recover the original trajectories from signals left by **charged particles**
 - Signals are converted into 3D points called **hits**
 - Need efficient distinction between the combinations of hits that are of interest and those that aren't
- A typical HEP event contains a large number of **tracks**
- Tracks are modelled by a collection of **segments**

Track Reconstruction

- Local tracking methods: steps are performed sequentially. Some studies exist on QC for local tracking methods [arXiv:2104.11583]
- <u>Global tracking methods</u>: all hits are processed by the algorithm in the same way. Global algorithms are **clustering** algorithms. E.g.: QAOA, quantum annealing, Hopfield Networks, Hough transform

→ Focus of this talk: global algorithms

Local tracking methods [arXiv:2104.11583]

- 1. Seeding
- 2. Track building
- 3. Cleaning
- 4. Selection

Tracking stages	Input size	Output size	Classical complexity	Quantum complexity	
Sording	O(n)	k .	$O\left(n^{c} ight)$	$ ilde{O}\left(\sqrt{k_{ ext{seed}}\cdot n^c} ight)$	
Seeding		∿seed	(Theorem 2)	(Theorem 3)	
Track Building	$k_{\text{seed}} + O(n)$	$k_{ m cand}$	$O(k_{ ext{seed}} \cdot n)$	$ ilde{O}\left(k_{ ext{seed}}\cdot\sqrt{n} ight)$	
Hack Dunding			(Theorem 4)	(Theorem 5)	
Cleaning (original)	$k_{ m cand}$	$O(k_{ m cand})$	$O(k_{ m cand}^2)$	-	
Cleaning (original)			(Theorem 6)		
Cleaning (improved)	$k_{ m cand}$	$O(k_{ m cand})$	$ ilde{O}(k_{ ext{cand}})$		
Cleaning (improved)			(Theorem 7)	1275	
Selection	$O(k_{ m cand})$	$O(k_{ m cand})$	$O(k_{ m cand})$		
Belection			(Theorem 8)		
Full Deconstruction	n	$O(n^c)$	$O\left(n^{c+1} ight)$	$ ilde{O}\left(n^{c+0.5} ight)$	
Full Reconstruction			(Theorems 2, 4, 7, 8)	(Theorems 3, 5, 7, 8)	
Full Reconstruction with	20	O(n)	$O\left(n^{c+1} ight)$	$ ilde{O}\left(n^{(c+3)/2} ight)$	
O(n) reconstructed tracks	11	O(n)	(Theorems $2, 4, 7, 8$)	(Theorem 9)	

n: number of particles, c: number of hits, $k_{\rm seed}$: total number of generated seeds, $k_{\rm cand}$: number of track candidates

QC for Track Reconstruction

- QC has very interesting prospects of improvements in algorithm **complexity/timing**
- This talk: two track reconstruction algorithms
- Define **Ising-like** H^{TrackReco}(hits):

$$H = -\frac{1}{2} \sum_{ij} \omega_{ij} \sigma_z^i \sigma_z^j - \sum_i \omega_i \sigma_z^i$$

 $\rightarrow H_{min}^{TrackReco}$ == solution with the correct reconstructed tracks

HHL for Track Reconstruction [arXiv:2308.00619]

Differentiable Hamiltonian:

$$\nabla \mathcal{H} = 0 \Rightarrow A\mathbf{S} = \mathbf{b}$$

HHL: QC algorithm to solve the **system of linear equations**

Segment [S_{ab}]: combination of hit a and hit b \rightarrow in consecutive layers - for now

Hamiltonian accounts for **all** possible segments

HHL for Track Reconstruction [arXiv:2308.00619]

$$\begin{aligned} \mathcal{H}(\mathbf{S}) &= -\frac{1}{2} \left[\sum_{abc} f(\theta_{abc}, \varepsilon) S_{ab} S_{bc} + \gamma \sum_{ab} S_{ab}^2 + \delta \sum_{ab} (1 - 2S_{ab})^2 \right] \\ & \text{angular term} \qquad (a) \qquad (b) \\ f(\theta_{abc}, \varepsilon) &= \begin{cases} 1 & \text{if } \cos \theta_{abc} \ge 1 - \varepsilon \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

- (a) regularization term: makes the spectrum of A positive
- (b) gap term: ensures gap in the solution spectrum

Validation with a classical linear solver

LHCb MC event $B_s \rightarrow \phi \phi$ 1 collision event Half of the VELO

Validation with a classical linear solver

LHCb MC event $B_s \rightarrow \phi \phi$ 1 collision event Half of the VELO

Tracking performances with classical solver

• Very good performance **with LHCb MC**, but **high** circuit depth.

HHL on a quantum simulator

6 particles, 4 detector layers

 \rightarrow very complex, deep circuit

 \rightarrow 2 days to complete

- Validate with classical baseline 🔽
- Toy simulation on qiskit
- Integrate within Allen 🔽 (*)
- Scalability & Hamiltonian simulation ongoing

The Quantum Circuit for HHL

Updates since publication

Work ongoing to improve circuit depth (Xenofon)

• original \rightarrow 1-bit phase estimation + Suzuki-trotter decomposition

Layers	Particles	n	Qubits	Depth	Depth*	2-qubit gates	2-qubit gates [*]
3	2	8	8	12 071	306	5 538	217
3	3	18	12	1 665 771	4 001	834 417	2 813
3	4	32	12	901 255	719	442 694	525
3	5	50	14	14 515 229	11 547	7 107 317	8 402
4	2	12	10	185 817	1 336	93 213	827
4	3	27	12	1 714 534	7 746	840 780	4 929
4	4	48	14	14 197 046	2 905	$7\ 110\ 044$	2 090

Updates since publication

Talk with current results accepted at **CHEP**

Updates since publication

PV location using track segments from HHL:

Track reconstruction with QAOA

Quantum Approximate Optimization Algorithm [arXiv:1411.4028, tutorial]

$$\mathcal{H} = -\frac{1}{2} \left[\left(\sum_{a,b,c} \frac{\cos^{\lambda}(\theta_{abc})}{r_{ab} + r_{bc}} s_{ab} s_{bc} \right) - \alpha \left(\sum_{b \neq c} s_{ab} s_{ac} + \sum_{a \neq c} s_{ab} s_{cb} \right) - \beta \left(\sum_{a,b} s_{ab} - N \right)^2 \right]$$
(1)
(2)
(3)

- (1) main term: favours aligned, short segments
- (2) 1st penalty term: forbids segments that share head/tail from belonging to the same track
- (3) 2nd penalty term: keeps the number of active segments equal to #hits

QAOA for Track Reconstruction

A **variational** algorithm ideal to solve <u>combinatorial optimization problems</u>, e.g. <u>Max-Cut</u> <u>problem</u>

• *Finding an optimal object out of a finite set of objects*

$$\begin{aligned} |\psi(\beta,\gamma)\rangle &= U(\beta)U(\gamma)...U(\beta)U(\gamma) |\psi_0\rangle \\ U(\beta) &= e^{-i\beta H_B}, \ U(\gamma) = e^{-i\gamma H_P} \end{aligned}$$

- H_B: mixing Hamiltonian, H_p: **problem** Hamiltonian
- <u>Goal</u>: find optimal parameters (□_{opt}, γ_{opt}) such that the quantum state encodes the solution to the problem

Initial results

- Study with simulated straight tracks: 2 tracks, 3 detector layers
- Working on the generalized case

Results and ongoing work

Memory issues to simulate 27 qubits:

- Fix 6, run 21 in batches
- sub-QUBO approach

# tracks	# layers	#qubits (segment s)	Number of Z and ZZ gates
2	3	8	512
3	3	18	2664
3	4	27	5940

- + Translation to triplets
- + Transpilation studies

Fresh from the oven

Figures of Merit à la Q-CTRL [arXiv:2406.01743v1]

- approximation ratio
- raw likelihood that the top solution found by the solver is returned
- Modified QAOA

Quantum Annealers

- Different hardware, not gate-based
- Optimal for minimizing Ising-like Hamiltonians

SIMULATED ANNEALING

· Low energy state: -40

Time: 1.5 hours

4

QUANTUM

Low energy state: 2

Time: few minutes

1.

Related work [arXiv:2210.13021]

- **LUXE** experiment @ **DESY** to study QED in the strong-field regime
- Tracking of positrons traversing 4 layers of tracking detectors
- Classical methods:
 - Combinatorial Kalman Filter using triplets of hits
 - GNN where each hit is a node

$$O = \sum_{i=1}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \quad T_i, T_j \in \{0, 1\}$$

Related work [arXiv:2210.13021]

Variational Quantum Eigensolver: hybrid quantum-classical algorithm

Outlook

Several well-known caveats affect virtually all the approaches:

- Scalability of input
- Circuit depth

Efficient output retrieval:

• Ongoing studies using **Hough transform**

VQLS and **ansatz search** under investigation

Moitas grazas!

Porting to hardware

IBM Quantum

36

ibm_perth OpenQASM 3

Details

7	Status:	• Online	Median CNOT error:	8.593e-3
Qubits	Total pending jobs:	1028 jobs	Median SX error:	3.052e-4
32	Processor type 🛈:	Falcon r5.11H	Median readout	2.510e-2
QV	Version:	1.2.8	Median T1:	110.66 us
2.9K	Basis gates:	CX, ID, RZ, SX, X	Median T2:	105.71 us
CLOPS	Your usage:	0 jobs	Instances with access:	1 Instances ↓

Porting to hardware

IBM Quantum

Noise Error Mitigation

- Study of transpilation optimisation levels (4000 transpilations)
- Tried Zero Noise Extrapolation, Probabilistic Error Correction:
- Need to further investigate

			Obtained by Spiro [4]		
Model	No Mitigation	With ZNE	No Mitigation	Ideal Simulated	
MuSEL	0.75	-	0.72	0.749	
FullSEL	0.50	0.50	0.50	0.671	
FullMPS	0.66	0.66	0.59	0.656	
FullTTN	0.61	0.59	0.54	0.632	

QC & Gravitational Waves

Next generation of GW detectors: increased **bandwidth** and **sensitivity.** \rightarrow new techniques are needed on top classical template matching

Grover search: for template matching. Theoretical studies ongoing on the feasibility of this for GW detection.

Solving Einstein Field Equations:

- The GW signals need to be calculated by solving the set of non-linear equations of the EFE.
- A proof of principle using the algorithms proposed by [2011.10395] to solve a simplified model has been implemented.

QC & Gravitational Waves

Quantum-enhanced Feature Spaces:

- Data is too noisy and large to be used directly by a QML algorithm.
- The number of events is too small for proper training.
- Real noise samples and a simulated event signal are used asc a signal database → a set of time-series features is extracted to create the training dataset.
- **Detection:** kernel method. **Characterisation:** support vector machine.

Local tracking methods [arXiv:2104.11583]

- 1. Seeding
- 2. Track building
- 3. Cleaning
- 4. Selection

Tracking stages	Input size	Output size	Classical complexity	Quantum complexity	
Sording	O(n)	k .	$O\left(n^{c} ight)$	$ ilde{O}\left(\sqrt{k_{ ext{seed}}\cdot n^c} ight)$	
Seeding		h seed	(Theorem 2)	(Theorem 3)	
Track Building	$k_{\text{seed}} + O(n)$	$k_{ m cand}$	$O(k_{ ext{seed}} \cdot n)$	$ ilde{O}\left(k_{ ext{seed}}\cdot\sqrt{n} ight)$	
Hack Dunding			(Theorem 4)	(Theorem 5)	
Cleaning (original)	$k_{ m cand}$	$O(k_{ m cand})$	$O(k_{ m cand}^2)$	-	
Cicaning (original)			(Theorem 6)		
Cleaning (improved)	$k_{ m cand}$	$O(k_{ m cand})$	$ ilde{O}(k_{ ext{cand}})$		
Cleaning (improved)			(Theorem 7)		
Selection	$O(k_{ m cand})$	$O(k_{ m cand})$	$O(k_{ m cand})$		
Belection			(Theorem 8)		
Full Deconstruction	n	$O(n^c)$	$O\left(n^{c+1} ight)$	$ ilde{O}\left(n^{c+0.5} ight)$	
Full Reconstruction			(Theorems 2, 4, 7, 8)	(Theorems 3, 5, 7, 8)	
Full Reconstruction with	~	O(n)	$O\left(n^{c+1} ight)$	$ ilde{O}\left(n^{(c+3)/2} ight)$	
O(n) reconstructed tracks		O(n)	(Theorems 2, 4, 7, 8)	(Theorem 9)	

n: number of particles, c: number of hits, $k_{\rm seed}$: total number of generated seeds, $k_{\rm cand}$: number of track candidates

QAOA for Track Reconstruction

- Quantum Approximate Optimization Algorithm [<u>arXiv:1411.4028</u>, <u>tutorial</u>]
- A **variational** algorithm ideal to solve <u>combinatorial optimization problems</u>, e.g. <u>Max-Cut problem</u>
 - *Finding an optimal object out of a finite set of objects*

$$\begin{aligned} |\psi(\beta,\gamma)\rangle &= U(\beta)U(\gamma)...U(\beta)U(\gamma) |\psi_0\rangle \\ U(\beta) &= e^{-i\beta H_B}, \ U(\gamma) = e^{-i\gamma H_P} \end{aligned}$$

- H_B: mixing Hamiltonian, H_P: **problem** Hamiltonian
- <u>Goal</u>: find optimal parameters $(\Box_{opt}, \gamma_{opt})$ such that the quantum state encodes the solution to the problem

Entropy studies

Study of the Entropy production within a Variational Quantum Circuit during its training phase:

Goal: Use the information of the entropy values to enhance the training performance for the task of jet-tagging (b vs c)

Values of Entropy were inspected

- For each training step "t"
 - At each "depth" of the circuit:
 - depth 0 : $\mathcal{F}(\vec{x}) \left| 0^{\otimes N} \right\rangle$
 - $= \text{ depth 1 } : U_1(\vec{\theta}_1)\mathcal{F}(\vec{x}) \left| 0^{\otimes N} \right\rangle$
 - $= depth \mathrel{ `` } \mathrel{ : } U_L(\vec{\theta}_L)...U_1(\vec{\theta}_1)\mathcal{F}(\vec{x}) \left| 0^{\otimes N} \right\rangle$

(output state)

Study of the Entropy production within a Variational Quantum Circuit

- different circuits
- different datasets (b vs c jet-tagging and IRIS)

- different parameters initializations (Gaussian vs Uniform)
- different loss functions

Study of the Entropy production within a Variational Quantum Circuit

Feature importance from Entropy values

More results coming soon!

Optimization for hardware

IBM Quantum

- Ported from quantum simulations to *real* quantum computers \overline{V}
- Tested and optimised several architectures 🔽
 - Different advantages in terms of robustness against **noise** from hardware imperfections
- Currently trying noise error mitigation techniques ²/₂

